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The research work develops a Context aware Data Fusion with Ensemblebased Machine
Learning Model (CDF-EMLM) for improving the health data treatment. This research
work focuses on developing the improved context aware data fusion and efficient feature
selection algorithm for improving the classification process for predicting the health care
data. Initially, the data from Internet of Things (IoT) devices are gathered and pre-
processed to make it clear for the fusion processing. In this work, dual filtering method
is introduced for data pre-processing which attempts to label the unlabeled attributes in
the data that are gathered, so that data fusion can be done accurately. And then the
Dynamic Bayesain Network (DBN) is a good trade-off for tractability becoming a tool for
CADF operations. Here the inference problem is handled using the Hidden Markov Model
(HMM) in the DBN model. After that the Principal Component Analysis (PCA) is used for
feature extraction as well as dimension reduction. The feature selection process is performed
by using Enhanced Recursive Feature Elimination (ERFE) method for eliminating the
irrelevant data in dataset. Finally, this data are learnt using the Ensemble based Machine
Learning Model (EMLM) for data fusion performance checking.

Keywords: dynamic bayesain network; hidden markov model; healthcare IoT data;

machine learning; principal component analysis; enhanced recursive feature elimination.

Introduction

Health care is a key area where ubiquitous applications may be found. Pervasive
computing refers to computing that takes place everywhere without participation of
users [1, 2]. It alternates the conventional health-care system, which entails identifying
symptoms, contacting a doctor, reporting symptoms, and receiving treatment [3]. Internet
of Things (IoT) is a relatively novel method in ICT world which allows information to be
sent and received using communication networks [4]. Internet of Things is a platform which
is built on network of physical items, devices, vehicles, buildings, and so on, all of them
are formed by electronic, software, and sensor systems [5, 6]. Kumar et al. [7] introduced
a novel technique for improving lung cancer prediction health-care systems viaaddressing
a designated gap by combining locally taught deep learning techniques with block chain
technology. Gilula et al. [8] introduced an approach for estimating joint distribution of
only the variables of interest directly. Uddin et al. [9] proposed using DRNN, a powerful
DL method based on sequential information of a body sensor-based method for behavior
detection. They combine data from a variety of body sensors, including electrocardiography
(ECG), accelerometer, magnetometer, and others.
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The technique proposed by Dautov et al. [10] was implemented using Complex Event
Processing techniques supports hierarchical processing approach natively and concentrates
on managing streaming data “on the fly”, which is major necessity for storage-constrained
IoT devices and time-critical application areas. Begum et al. [11] used sensor signal fusion
and case-based reasoning to categorize physiological sensor signals. The proposed method
was tested using sensor data fusion to identify people as Stressed or Relaxed. During data
collection phase, physiological sensor signals such as Heart Rate (HR), Finger Temperature
(FT), Respiration Rate (RR), Carbon dioxide (CO2), and Oxygen Saturation (SpO2) are
gathered. Sensor fusion is accomplished in 2 means:

(1) decision-level fusion using features extracted by conventional methods,
(2) data-level fusion using features extracted by employing Multivariate Multi-scale

Entropy (MMSE).
The categorization of the signals is done using Case-Based Reasoning (CBR). In

comparison to an expert in the subject, the developed approach can correctly diagnose
Stressed or Relaxed individuals 87,5 % of the time. As a consequence, it showed potential
in psychophysiological area, as well as it may be feasible to apply the technique to erstwhile
important health care methods in future. In fog computing environment, Muzammal et
al. [12] suggested data fusion supported Ensemble approach for working with clinical
information gathered from BSNs. An comprehensive research study backs up the solution’s
applicability, as well as the findings are encouraging, as they obtained 98 % accuracy
whenever tree depth is equivalent to 15, the estimators number is 40, as well as the
prediction work is based on 8 features. And the work [13] developed smart approaches for
categorization of activities of daily living (ADL), which rely on data from inertial sensors
fixed in user device. Sensitivity index for categories of falls and ADL studied in this article
is 0,81, whereas specificity index is 0,98.

1. Proposed Model

Using IoT devices, healthcare systems may gather data from patients over a long phase
of time. This research work focuses on developing the improved context aware data fusion
and efficient feature selection algorithm. Finally this data are learnt using the Ensemble
based Machine Learning Model (EMLM) for performance checking. Here the Enhanced
Neural Network (ENN), Modified Extreme Gradient Boost Classifier (MXGB) and Logistic
regression model (LR) are combined to construct a predictive model (ensemble model)
for predicting the healthcare data. The detailed explanation of the proposed method is
presented in next part. Fig. 1 shows overall process of the proposed methodology.

1.1. Algorithm

The Kalman filter is the statistical state estimation technique whereas the particle
filter is a stochastic method to estimate moments.
• Kalman filter (KF)
KF is a widely used statistical state estimate technique for fusing dynamic signal level
information. The system’s state estimations are calculated using a recursively implemented
prediction and update method, which believes that the present state of a system is
dependent on the preceding time interval’s state. KF can be used to identify postural
sway throughout quiet standing (standing in one spot while doing no other activity or
leaning on something).
• Particle Filtering (PF)
Depending on accelerometer and gyroscope information, PF may be used to estimate
biomechanical condition.

112 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2022, vol. 15, no. 3, pp. 111–126



ПРОГРАММИРОВАНИЕ

Fig. 1. The overall process of the proposed model

Let each data instance xj be a multi-label set lj = {ljk}
R
k=1. For binary classifications,

denote by C(+) and C(−) positive and negative labels in the set li, respectively. If pb(+)
and pb(−) are positive and negative label probabilities in the set li, then

pr(+) =
(C(+) + 1)

(C(+) + C(−) + 2)
, (1)

pr(−) =
(C(−) + 1)

(C(+) + C(−) + 2)
(2)

for a Laplace correction that is applied. If C(+) is very near to C(−), then the margin
between classes |pr(+)− pr(−)| is small. Hence, for an instance xi, if |pr(+) − pr(−)| is
small, then inference algorithms may not integrate the instance and needs to be filtered.
The proposed work uses Algorithm 1 which is listed below. Lines 1 to 7 execute preliminary
filtering using |pr(+)− pr(−)|. The second level of filtering is in Line 8, while Lines 9 to
13 correct noisy labels and Lines 14 to 16 return noiseless data.

1.2. Context Aware Data Fusion (CADF)

DBN is used mainly to infer states of a known feature of interest and stands for the
hidden variable vt. Updates are performed based on sensory readings and their contexts.
St = (S1

t , ..., S
n
t ) is the set of sensory readings active in the time interval t and contexts

set is represented by Cnt = (Cn1
t , ..., Cnn

t ) based on the application’s environment. The
probability distribution Pb(St|vt) represents how sensor information is affected by system’s
present state or sensor model while its state transition model is Pb(vt|vt−1, Cnt), indicates
the probability that a state variable has a specific value, considering its prior value and
current context. The DBN used is a first-order Markov model and a given system state in
the time interval t, that is, vt can be defined as

Bl(vt) = Pb(vt|S1,t, Cn1,t). (3)

Bayes Filter analogous procedure is followed for a practical formulation of belief and via
using Bayes rule it is likely to state equation (3) as

Bl(vt) = Pb(vt|S1:t, Cn1:t) = Pb(vt|S1:t−1, St, Cn1:t) =
= η.P b(St|vt, S1:t−1, Cn1:t).P b(vt|S1:t−1, Cn1:t),

(4)
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Algorithm 1. Pre-processing Noisy Data set for Noise Reductions

Input: D̂ = {(x1, ŷi)}
N
i=1 is a training data set with integrated labels;

{li}
N
i=1 are the multiple label sets of D̂; δ is a threshold

Output: D̂ is the corrected data set
1. A is an empty set
2. for i = 1 to N do
3. Account the numbers of positive labels and negative labels in li,
i.e., C(+) and C(−), respectively
4. Calculate pr(+) and pr(−)
5. If |pr(+)− pr(−)| ≤ δ
6. The instance i is added to the set A
7. End for

8. A filter is applied to the set D̂/A and all instances filtered
out by the filter form a set B

9. D̂c = D̂/(A+B)

10. Construct a classification model f on the set D̂c

11. for i = 1 to size of (A+B) do
12. Use the classifier f to relabel the instance i in the set A+B
13. End for
14. Update the set A+B to Ā + B̄ with corrected labels

15. D̂ = D̂c + Ā+ B̄

16. Return D̂ as the corrected data set

where η is a normalizing constant. In a Markov assumption, the sensor nodes in St do not
rely on the context variables Cnt, in St, a state variable and assuming sensor measurements
are mutually independent, the parent node value of St can be expressed as

Pb(St|vt, S1:t−1, Cn1:t) = Pb(St|vt, Cn1:t) = Pb(St|vt) =
∏

sit

Pb(sit|vt), (5)

where sit is the specific value of the sensor i in the time interval t. Furthermore, the last
term in equation (4) is also presented as

Pb(vt|S1:t−1, Cn1:t) =
∑

vt−1
Pb(vt, vt−1|S1:t−1, Cn1:t) =

= α.
∑

vt−1 Pb(vt|vt−1, S1:t−1, Cn1:t).P b(vt−1|S1:t−1, Cn1:t),
(6)

where α is a normalizing constant. Cnt can be carefully neglected from the last term,
as Vt−1 do not rely on the next context Cnt when the next state Vt is not considered.
Therefore, using Markov assumptions, equation (6) can be expressed as

Pb(vt|S1:t−1, Cn1:t) = α.
∑

vt−1
Pb(vt|vt−1, Cnt).P b(vt−1|S1:t−1, Cn1:t−1) =

= α.
∑

vt−1
Pb(vt|vt−1, Cnt).Bl(vt−1).

(7)

By substituting equations (5) and (7) in (4), belief is described with the recursion

Bl(vt) = η.
∏

sit

Pb(sit|vt).
∑

vt−1

Pb(vt|vt−1, Cnt).Bl(vt−1), (8)

where α is integrated with the normalization constant η. Using equation (6), inference
is executed via storing DBN two slices, where time as well as space updating network’s
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belief are not dependent on the length of sequence. Computational complexity involved
in equation (8) is O(n + m), where n is a number of sensors, m is a number of possible
values of Vt and overall complexity of Bl(vt) for all Vt is O(m2 + m · n). However, the
inference issue in DBNs is identical to inference trouble in BNs, in which the desired
quantity is a posterior marginal distribution of a collection of hidden variables with an
order of observations (up to date of belief):

P (Xh[t]|X0[1], ..., X0[τ ]).

Here X [t] = {Xh[t], X0[t]} is a collection of time evolution variables, where X0[t] and
Xh[t] specify observed and hidden variables, respectively. According to the time frame of
observation used in calculations, time series inference is referred to as filtering (τ = 1),
smoothing (τ > 1) and the forecast (τ < 1).

• Hidden Markov Model (HMM) consists of a finite number of states (N), everyone
with its own probability distribution. A collection of probabilities known as transition
probabilities governs transitions between states following processes must be completed to
construct a word recognition model that is formed on HMMs:
1) choose a number of states and observations,
2) select HMM topology,
3) choose training and samples,
4) train the system using training data,
5) perform testing using testing data.
Fig. 2 presents an example of a seven-state HMM that only allows transitions to same
state, next state, as well as subsequent states. HMMs are often defined by the letter k and

Fig. 2. 7-state Hidden Markov model (HMM)

are specified by a 3-parameter set k = (A,B, p), where A,B, and p are parameters.
• A is a transition probability matrix

A =

[

a11 a12
a21 a22

]

, (9)

A = {aij|aij = P (St = j)|St−1 = i}, (10)
amn = P (Sn|Sm); m,n = 1, 2. (11)

Here amn represents a probability that the current state Sn is provided by the previous
state Sm. The value of amn is computed as ratio of the expected number of transitions
from Sm to Sn to the expected number of transitions out of the state Sm.

• B is an emission probabilities matrix

B =

[

b11 b12 b13
b21 b22 b23

]

, (12)

B = {bj(ok)|bj(ok) = P (Ot = ok|St = j)}, (13)
bnp = bn(p) = P (Op|Sn); n = 1, 2; p = 1, 2, 3. (14)

Here bn(p) is a probability that the present observation Op is given by the present state
Sn. The value of bn(p) is computed as ratio of the expected number of times, where Op is
observed with Sn, to the expected number of times in the state Sn.
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• π represents the initial states probabilities

π =

[

π1

π2

]

, (15)

π = {πi|πi = P (S1 = i)}, (16)
πm = P (Sm); m = 1, 2. (17)

Due to several advantages of the HMMs, the adjustment procedure for k = (A,B, p)
is as follows.

1. Set λ = (A,B, π) arbitrarily: amn is 1/N , bmp is 1/M , πm is 1/N .

2. Compute the parameters αt(m), βt(m), ξt(m,n) and γt(m).

3. Compute model’s novel parameters λ∗ = (A∗, B∗, π∗) using values computed at
Step 2:

a∗mn =

∑T

t=1 ξt(m,n)
∑T

t=1 γt(m)
, b∗n(p) =

∑T

t=1,ot=Op
γt(n)

∑T

t=1 γt(n)
, π∗

m = γ1(m).

4. Compute P (V |λ∗). As the probability P (V |λ∗) is rising, repeat Steps 2 and 3.

The model parameters describe a model that best matches the training observation
sequences once they converged to particular values. Owing to the synchronisation of both
streams (DBN and HMM) at every time interval, all observation sequences in the proposed
enhanced context aware data fusion architectures must perform better than the present
fusion process.

1.3. Feature Extraction

This level is split into two halves. The first one performs measurements in the time
or frequency domains. Signal itself, or preliminary information required to determine the
features, can be used to make these measurements. Fig. 3 presents feature extraction
procedure using the proposed method.

Fig. 3. Feature extraction process

• Improved Principal Component Analysis (IPCA). Whenever a multivariate database
is shown as a collection of coordinates in a high-dimensional data space, PCA can
provide the viewer with lower-dimensional image, or projection of object from its
most relevant viewpoint.

• Constructing the Adaptive Gaussian Kernel Matrix. Consider a collection of s nodes
V = {vi, 1 ≤ i ≤ s}, each of which may interact with the central coordinator v0
in a distributed setup. A local data matrix Pi ∈ Rni×d with ni data points in the
dimension d, where ni > d, exists on every node vi. A global data matrix P ∈ Rn×d

is formed by concatenating the local data matrix, that is P T = [P T
1 , P

T
2 , ..., P

T
s ] and

n =
∑s

i=1 ni. The i-th row of P is denoted by pi. Assume that the data points are
centred so that the mean is zero, i.e.,

∑s

i=1 pi = 0.
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Consider a nonlinear transformation φ(x) from the original D-dimensional feature space
to the M-dimensional feature space, where generally M ≫ D. After that every data point
xi, a point φ(xi) is projected. Perform conventional PCA in a new feature space, however
be aware that this might be both expensive and inefficient. The advantage of using kernel
techniques is that these techniques do not manually calculate φ(xi) explicitly. Create the
kernel matrix directly from the training data set {xi}.

k(x, y) = (xTy)d (18)

or

k(x, y) = (xTy + c)d, (19)

where c > 0 is a constant. The Gaussian kernel is

k(x, y) = exp(−‖x− y‖2/2σ2), (20)

where σ is an Adaptive gaussian kernel parameter. Whilst k = 1 and the centre is an
r-dimensional subspace, PCA is an unique case. Top r right singular vectors of P , defined
as key components, span this optimum r-dimensional subspace, which may be determined
via the Singular Value Decomposition (SVD).

1.4. Feature Selection Using Enhanced Recursive Feature Elimination (ERFE)

Algorithm 2. Representation of ERFE method procedure for removing unnecessary
information

Input: Dimensionality Reduced data
Output: Relevant features (discard the irrelevant data)
1. Train the classification model by entire features with cross validation
2. Compute model performance
3. Compute feature importance or ranking
4. For every subset Ti, i = 0, 1, 2, 3, ...n, do
5. Maintain the most vital Ti features
6. Update the adaptive learning function stage using (20)
7. Re-compute the model’s performance
8. Re-compute the ranking importance of every feature
9. end
10. Determine optimal number of features

So this work focuses on developing the new method (namely, ERFE), which
redefines the criteria for deleting features from every state.

• Adaptive learning function based RFE. Here the adaptive learning function φ is
introduced. As a result, the suggested ERFE enhances generalization accuracy
substantially, particularly for small numbers of features.

|wj| = |

n
∑

i=1

αiyixij |, (21)

where xij is the j-th element of the i-th feature vector.
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Following the calculation of (21) for each of P features, they may be ranked in the order
of significance (high-value means more significant). An adaptive learning function φ used
to combine the weights was defined as:

φ(wj, ri) = wj

1

rank (ri)
, (22)

rank (ri) = |rl||rl ≥ ri|, (23)

where wi is RFE weight generated by equation (21), ri is the outcome of attribute rank
for the i-th feature in equation (22). Rather than using the original ranks provided by
findings, the rank function was used to transform them into rank-based form (23). This
implies that a feature with highest rank receives weight of 1, a feature with second highest
rank receives weight of 2, a feature with third highest rank receives weight of 3 and so on,
up to P .

1.5. Ensemble Based Machine Learning Model (EMLM)

Three machine learning-based classification algorithms are employed to classify data in
this study. Here the Enhanced Neural Network (ENN), Modified Extreme Gradient Boost
Classifier (MXGB) and Logistic regression model are combined to construct a predictive
model (ensemble model).

2. Enhanced Deep Neural Network (EDNN)

Deep Learning was shown to be a successful approach for producing extremely accurate
predictions from complicated data sets. A fuzzy neural network is a learning method that
incorporates neural network methods to apply the attributes of fuzzy systems [14].

• Integration with Fuzzy Inference system. The benefit of structured rule-based
algorithms is that they may be influenced by subjective data. This allows an analyst
to give expert knowledge to the system, perhaps enhancing categorization findings
or altering the system’s behaviour [15].

Consider the rules that comprise three Takagi and Sugeno-style fuzzy if-then rules.

Rule 1: If a is X1, b is Y1, c is Z1, then fn1 = p1a+ q1b+ t1c+ r1.

Rule 2: If a is X2, b is Y2, c is Z2, then fn2 = p2a+ q2b+ t2c+ r2.

Rule 3: If a is X3, b is Y3, c is Z3, then fn3 = p3a+ q3b+ t3c+ r3.

Below expression defines the Fuzzy based neural network mathematical operations.

Layer I. An adaptive node with node function is included.

O1,i = µAi(x), for i = 1, 2, (24)

O1,i = µBi−2(y), for i = 3, 4, (25)

O1,i = µci−4(z), for i = 5, 6. (26)

Here µAi(x), µBi(x) and µci(x) are any acceptable parameterized MFs,Ol, i is a
membership grade of a fuzzy set A = {A1, A2, B1, B2 or C1, C2} which shows the degree
to which the supplied input x (y or z) satisfies the quantifier. This layer is called “Premise
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Parameters”. Furthermore, any suitably parameterized MF , such as a generalised “bell
function”, can be used as the membership function for A:

µA(x) =
1

1 + |(x− ci)/ai|2b
, (27)

where {ai, b, ci} is the set of parameters.

Layer II. Each node in this layer is indeed a fixed node, with an outcome equal to the
sum of entire incoming signals.

O2,i = µAi(x)µBi(y)µci(z), i = 1, 2, 3. (28)

Every output node indicates a rule’s “Firing Strength”.

Layer III. The function of normalization has a fixed node labelled N :

O3,i =
wi

w1 + w2 + w3
, i = 1, 2, 3. (29)

The results is generally known as “Normalized Firing Strengths”.

Layer IV. Adaptive nodes are included:

O4,i = w̄ifi = w̄i(pix+ qiy + tiz + ri). (30)

Since each node in this layer is a multiplication of the third layer’s Normalized Firing
Strength and the outcome of DNN, it is said to be “Consequent Parameters”.

Layer V. The layer contains a signal fixed node denoted by S with a summing function
that calculates the DNN network’s total output as a sum of all incoming signals.

Overall output O5,i =
∑

i

w̄ifi =

∑

i wifi
∑

iwi

. (31)

Finally, the enhanced DNN model provides the best results.

3. Modified Extreme Gradient Boost (MXGB) Classifier

XG Boost (Extreme Gradient Boosting) is a ML approach formed on Gradient
Boosting Decision Tree (GBDT) [16] for classification and regression problems. Number
of data is referred to as m, while the number of features is referred to as n. The prediction
before sigmoid function is represented as zi, as well as the probabilistic prediction is
yi = σ(zi), in which the sigmoid function is represented by σ(.). It is crucial to remember
that the notations differ and yi in their analysis are denoted by z. The true label is denoted
by yi, while the parameters for the two loss functions are denoted by α and γ, respectively.
Gradients/hessians expressions are recorded in a merged form that is independent on the
value of yi, as this simplifies program implementation and facilitates vectorization in other
programs. In practice, the additive learning goal is:

L(t) =

n
∑

i=1

l(yi, z
(t−1)
i + ft(xi)) + Ω(ft). (32)
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The t-th iteration of training process is denoted by t. In the equation, note that the
notations were replaced. When the second-order Taylor expansion is applied to equation
(32), the following results are obtained:

L(t) ≈
n

∑

i=1

[

l(yi, z
(t−1)
i + gift(xi)) +

1

2
hi(ft(xi))

2

]

+ Ω(ft) (33)

∝

n
∑

i=1

[

gift(xi) +
1

2
hi(ft(xi))

2

]

+ Ω(ft). (34)

The last line is due to the fact that the term l(yi, z
(t−1)
i ) may be omitted from learning

goal because it has no effect on model fitting in the t-th iteration. The activation for both
loss functions is sigmoid, as well as the following basic characteristic of sigmoid is applied
consistently in derivatives:

∂y

∂z
=

∂σ(z)

∂z
, (35)

∂y

∂z
= σ(z)(1 − σ(z)), (36)

∂y

∂z
= y(1− y). (37)

• Regularization based Adaptive factor (RA). Calculate the optimum weight RAw∗

j of
the leaf j for a fixed structure q(x) by

RAw∗

j = −

∑

i∈Ij
gi

∑

i∈Ij
hi + λ

, (38)

where h is a factor of approximation.

This implies, obviously, that there are approximately choose points. Every data point is
weighted by hi that indicates the weight; hence, equation (34) may be rewritten as

n
∑

i=1

1

2
hi(ft(xi)− gi/(hi))

2 + Ω(ft). (39)

Define Ij = {i|q(xi) = j} as an example set of the leaf j. Then by extending Ω as follows,
equation (33) may be rewritten as

L(t) =

n
∑

i=1

[

gift(xi) +
1

2
hif

2
t (xi)

]

+ Ω(ft), (40)

L(t) =
n

∑

i=1

[

gift(xi) +
1

2
hif

2
t (xi)

]

+
1

2
λ

T
∑

j=1

w2
j . (41)

With labels gi/hi and weights hi, this is precisely weighted squared loss. Finding candidate
splits that meet the requirements is difficult in large data sets.
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4. Logistic Regression

LR model is used, that is a popular machine learning algorithm, which is frequently
used in real-world applications like data mining [17]. The following is a representation of
a logistic regression model:

prob(Y = 1) =
ez

1 + ez
. (42)

Here, Y is a binary dependent variable (Y = 1 if an event happens; Y = 0 else), e is
foundation of natural logarithms, whereas Z is

Z = β0 + β1X1 + β2X2 + ...+ βpXp,

where β0 is a constant, βj are coefficients and Xj are predictors, for p predictors (j =
1, 2, 3, ..., p).

5. Results and Discussion

Database comprises the motion data of fourteen healthy older people aged 66 to 86
who conducted widely scripted tasks while wearing a battery-less, sternum-level wearable
sensor. Owing to using a passive sensor, the data is scarce and noisy. Participants were
randomly assigned to one of two clinical rooms (S1 and S2). The room setting S1 (Room1)
collects data using four RFID reader antennas (1 on ceiling and 3 on the walls), while the
room setting S2 (Room2) collects motion data using three RFID reader antennas (2 on the
ceiling and 1 at wall level). The proportion of accurately obtained positive observations
to all predicted positive observations is known as precision.

Precision =
True Positive

True Positive + False Positive
. (43)

The proportion of properly detected positive observations to total number of observations
is known as sensitivity or recall.

Recall =
True Positive

True Positive+ False Negative
. (44)

Weighted average of Precision and Recall is described as the F-measure. As a consequence,
false positives and false negatives are taken.

F1 Score =
2 ∗ (Recall ∗ Precision)

(Recall + Precision)
(45)

The accuracy is computed with regards to positives and negatives as follows:

Accuracy =
True Positive + False Positive

True Positive+ True Negative+ False Positive+ False Negative
. (46)

Table 1 presents the performance comparison results for the proposed and existing methods
for the data set I.

Figs. 4, 5 show the performance comparison results for the data set I. This graph clearly
identifies the comparison performance among suggested and current techniques. Fig. 4 (a)
illustrates the precision comparison results of the proposed ICDFT- EMLM for the health
care data. From the results we conclude that the proposed ICDFT- EMLM technique has
high precision results. Fig. 4 (b) illustrates recall outcome comparisons of the suggested
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ICDFT- EMLM model for the health care data. From the results we conclude that the
proposed ICDFT- EMLM technique has high recall results. Fig. 5 (a) shows F-measure
comparison outcomes of the proposed ICDFT- EMLM model for the health care data. From
the results we conclude that the proposed ICDFT- EMLM technique has high F-measure
results. Fig. 5 (b) illustrates the accuracy comparison results of the proposed ICDFT-
EMLM model for the health care data. From the results we conclude that the proposed
ICDFT- EMLM technique has high accuracy results. Figs. 6,7 illustrate the performance
comparison results for both data sets. Based on the results, we note that the suggested
method has higher results than current methods for both data sets. Table 2 presents the
performance comparison results for both data sets. Based on Table 2, we conclude that the
introduced approach has greater performance results for data set I whereas the data set II
has less. Fig. 6 (a) shows accuracy and precision comparison outcomes for both data sets.
And it is clearly identified that the proposed method has higher results than the exiting
methods. Fig. 6 (b) illustrates the comparison results for both data sets. The graph shows
the high performance results for the data set I whereas the data set II has less for the
given metrics.

Table 1
Comparison Results of Performance for Proposed and Existing Approaches

Metrics DFA CDFT CDFT-HLCM ICDFT-EMLM
Accuracy 86,059 90,950 94,400 97,9003
Precision 83,29 88,92 93,01 96,9710
Recall 88,19 90,86 94,67 97,7730

F-measure 85,67 89,88 93,83 97,3704

Table 2
Performance Comparison Results for Proposed

and Existing Methods for Both Data sets

Metrics Dataset – I Dataset – II
Accuracy 97,9003 95,800
Precision 96,9710 93,420
Recall 97,7730 96,153

F-measure 97,3704 94,766

a) Precision comparison b) Recall comparison

Fig. 4. Results of the proposed ICDFT- EMLM model for the health care data
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a) Comparison outcomes of F-measure b) Accuracy comparison

Fig. 5. The proposed ICDFT- EMLM model for the health care data

a) Accuracy and precision comparison b) Recall and F-measure comparison

Fig. 6. Comparison results for both data sets

Fig. 7. Performance comparison results for both data sets

Conclusion

In this work, we introduce a dual filtering method for data pre-processing, which
attempts to label the unlabelled attributes in the data that are gathered, so that data
fusion can be done accurately. The improved Dynamic Bayesain Network (IDBN) is a good
trade-off for tractability becoming a tool for ICDF operations and the inference problem is
handled using the Hidden Markov Model (HMM) in DBN model. Thus the proposed HMM
method improves the fusion process which increases the prediction performance. After
that the Improved Principal Component Analysis (IPCA) is used for feature extraction
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as well as dimension reduction. The feature selection process is done by using Enhanced
Recursive feature Elimination (ERFE) method for eliminating the irrelevant data in a
data set. Finally this data is learnt using the Ensemble based Machine Learning Model
(EMLM) for performance checking. Here the Enhanced Neural Network (ENN), Modified
Extreme Gradient Boost Classifier (MXGB) and Logistic regression model (LR) are
combined to construct a predictive model (ensemble model) for predicting the health
care data. Thus the results indicate that the proposed ICDFT-EMLM model improve
the prediction performance of the health care data compared to the existing health care
applications. Further this work focuses on improving the security level of the health data
using cryptography technique as a future work.
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ДИНАМИЧЕСКАЯ БАЙЕСОВСКАЯ СЕТЬ И СКРЫТАЯ
МАРКОВСКАЯ МОДЕЛЬ ПРОГНОЗИРОВАНИЯ ДАННЫХ IOT
ДЛЯ МОДЕЛИ МАШИННОГО ОБУЧЕНИЯ С ИСПОЛЬЗОВАНИЕМ
РАСШИРЕННОГО РЕКУРСИВНОГО ИСКЛЮЧЕНИЯ ПРИЗНАКОВ

С. Нойягдам1,2, С. Баламуралитаран3, В. Говиндан4

1Иркутский национальный исследовательский технический университет, г. Иркутск,
Российская Федерация
2Южно-Уральский государственный университет, г. Челябинск,
Российская Федерация
3Институт высшего образования и исследований Бхарата, г. Ченнаи, Индия
4DMI Центральный университет Святого Иоанна Крестителя, г. Мангочи, Малави

В рамках исследовательской работы разработано слияние данных с учетом контек-
ста с моделью машинного обучения на основе ансамбля (CDF-EMLM) для улучшения
обработки данных о здоровье. Эта исследовательская работа сосредоточена на разра-
ботке улучшенного слияния данных с учетом контекста и алгоритма эффективного вы-
бора признаков для улучшения процесса классификации для прогнозирования данных
здравоохранения. Первоначально данные с устройств интернета вещей (IoT) собира-
ются и предварительно обрабатываются, чтобы сделать их понятными для обработки
слияния. В этой работе построен метод двойной фильтрации для предварительной
обработки данных, который пытается пометить немаркированные атрибуты в собран-
ных данных, чтобы можно было точно выполнить объединение данных. Кроме того,
динамическая байесовская сеть (DBN) является хорошим компромиссом для манипу-
лирования и становится инструментом для операций CADF. Здесь проблема вывода
решается с использованием скрытой марковской модели (HMM) в модели DBN. После
этого анализ основных компонентов (PCA) используется для извлечения признаков,
а также для уменьшения размеров. Выбор признаков выполняется с использованием
метода расширенного рекурсивного исключения признаков (ERFE) для устранения
нерелевантных данных в наборе данных. Наконец, эти данные изучаются с использо-
ванием модели машинного обучения на основе ансамбля (EMLM) для проверки про-
изводительности слияния данных.

Ключевые слова: динамическая байесовская сеть; скрытая марковская модель;

IoT данные здравоохранения; машинное обучение; анализ главных компонентов; рас-

ширенное рекурсивное устранение признаков.
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