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The research work develops a Context aware Data Fusion with Ensemblebased Machine
Learning Model (CDF-EMLM) for improving the health data treatment. This research
work focuses on developing the improved context aware data fusion and efficient feature
selection algorithm for improving the classification process for predicting the health care
data. Initially, the data from Internet of Things (IoT) devices are gathered and pre-
processed to make it clear for the fusion processing. In this work, dual filtering method
is introduced for data pre-processing which attempts to label the unlabeled attributes in
the data that are gathered, so that data fusion can be done accurately. And then the
Dynamic Bayesain Network (DBN) is a good trade-off for tractability becoming a tool for
CADF operations. Here the inference problem is handled using the Hidden Markov Model
(HMM) in the DBN model. After that the Principal Component Analysis (PCA) is used for
feature extraction as well as dimension reduction. The feature selection process is performed
by using Enhanced Recursive Feature Elimination (ERFE) method for eliminating the
irrelevant data in dataset. Finally, this data are learnt using the Ensemble based Machine
Learning Model (EMLM) for data fusion performance checking.

Keywords: dynamic bayesain network; hidden markov model; healthcare IoT data;
machine learning; principal component analysis; enhanced recursive feature elimination.

Introduction

Health care is a key area where ubiquitous applications may be found. Pervasive
computing refers to computing that takes place everywhere without participation of
users |[1,2|. It alternates the conventional health-care system, which entails identifying
symptoms, contacting a doctor, reporting symptoms, and receiving treatment [3|. Internet
of Things (IoT) is a relatively novel method in ICT world which allows information to be
sent and received using communication networks [4]. Internet of Things is a platform which
is built on network of physical items, devices, vehicles, buildings, and so on, all of them
are formed by electronic, software, and sensor systems [5,6]. Kumar et al. [7] introduced
a novel technique for improving lung cancer prediction health-care systems viaaddressing
a designated gap by combining locally taught deep learning techniques with block chain
technology. Gilula et al. [8] introduced an approach for estimating joint distribution of
only the variables of interest directly. Uddin et al. [9] proposed using DRNN; a powerful
DL method based on sequential information of a body sensor-based method for behavior
detection. They combine data from a variety of body sensors, including electrocardiography
(ECG), accelerometer, magnetometer, and others.
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The technique proposed by Dautov et al. [10] was implemented using Complex Event
Processing techniques supports hierarchical processing approach natively and concentrates
on managing streaming data “on the fly”, which is major necessity for storage-constrained
[oT devices and time-critical application areas. Begum et al. [11] used sensor signal fusion
and case-based reasoning to categorize physiological sensor signals. The proposed method
was tested using sensor data fusion to identify people as Stressed or Relaxed. During data
collection phase, physiological sensor signals such as Heart Rate (HR), Finger Temperature
(FT), Respiration Rate (RR), Carbon dioxide (CO2), and Oxygen Saturation (SpO2) are
gathered. Sensor fusion is accomplished in 2 means:

(1) decision-level fusion using features extracted by conventional methods,

(2) data-level fusion using features extracted by employing Multivariate Multi-scale
Entropy (MMSE).

The categorization of the signals is done using Case-Based Reasoning (CBR). In
comparison to an expert in the subject, the developed approach can correctly diagnose
Stressed or Relaxed individuals 87,5 % of the time. As a consequence, it showed potential
in psychophysiological area, as well as it may be feasible to apply the technique to erstwhile
important health care methods in future. In fog computing environment, Muzammal et
al. [12] suggested data fusion supported Ensemble approach for working with clinical
information gathered from BSNs. An comprehensive research study backs up the solution’s
applicability, as well as the findings are encouraging, as they obtained 98 % accuracy
whenever tree depth is equivalent to 15, the estimators number is 40, as well as the
prediction work is based on 8 features. And the work [13] developed smart approaches for
categorization of activities of daily living (ADL), which rely on data from inertial sensors
fixed in user device. Sensitivity index for categories of falls and ADL studied in this article
is 0,81, whereas specificity index is 0,98.

1. Proposed Model

Using [oT devices, healthcare systems may gather data from patients over a long phase
of time. This research work focuses on developing the improved context aware data fusion
and efficient feature selection algorithm. Finally this data are learnt using the Ensemble
based Machine Learning Model (EMLM) for performance checking. Here the Enhanced
Neural Network (ENN), Modified Extreme Gradient Boost Classifier (MXGB) and Logistic
regression model (LR) are combined to construct a predictive model (ensemble model)
for predicting the healthcare data. The detailed explanation of the proposed method is
presented in next part. Fig. 1 shows overall process of the proposed methodology.

1.1. Algorithm

The Kalman filter is the statistical state estimation technique whereas the particle
filter is a stochastic method to estimate moments.
e Kalman filter (KF)
KF is a widely used statistical state estimate technique for fusing dynamic signal level
information. The system’s state estimations are calculated using a recursively implemented
prediction and update method, which believes that the present state of a system is
dependent on the preceding time interval’s state. KF can be used to identify postural
sway throughout quiet standing (standing in one spot while doing no other activity or
leaning on something).
e Particle Filtering (PF)
Depending on accelerometer and gyroscope information, PF may be used to estimate
biomechanical condition.
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Fig. 1. The overall process of the proposed model

Let each data instance z; be a multi-label set I; = {l;; }5_;. For binary classifications,
denote by C'(+) and C(—) positive and negative labels in the set [;, respectively. If pb(+)
and pb(—) are positive and negative label probabilities in the set [;, then

(@) +Y
)= e o) 12y (1)
pr(—) = S+ ®

(CH)+C(=)+2)
for a Laplace correction that is applied. If C'(+) is very near to C'(—), then the margin
between classes |pr(+) — pr(—)| is small. Hence, for an instance x;, if |pr(+) — pr(—)| is
small, then inference algorithms may not integrate the instance and needs to be filtered.
The proposed work uses Algorithm 1 which is listed below. Lines 1 to 7 execute preliminary
filtering using |pr(+) — pr(—)|. The second level of filtering is in Line 8, while Lines 9 to
13 correct noisy labels and Lines 14 to 16 return noiseless data.

1.2. Context Aware Data Fusion (CADF)

DBN is used mainly to infer states of a known feature of interest and stands for the
hidden variable v;. Updates are performed based on sensory readings and their contexts.
S; = (S}, ...,8") is the set of sensory readings active in the time interval ¢ and contexts
set is represented by Cn; = (Cn},...,Cn?) based on the application’s environment. The
probability distribution Pb(S;|v;) represents how sensor information is affected by system’s
present state or sensor model while its state transition model is Pb(v¢|v;—1, Cny), indicates
the probability that a state variable has a specific value, considering its prior value and
current context. The DBN used is a first-order Markov model and a given system state in
the time interval ¢, that is, v; can be defined as

Bl(Ut) = Pb(Ut|SLt, Onl,t)‘ (3)

Bayes Filter analogous procedure is followed for a practical formulation of belief and via
using Bayes rule it is likely to state equation (3) as

Bl(vt) = Pb(vt’SLt:Cnl:t) = Pb(vt‘slztfla St Cnu) = (4)
= H-Pb(stm,Sm—l,Cn1:t)-Pb(Ut|Slzt—1,C”Lt)a
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Algorithm 1. Pre-processing Noisy Data set for Noise Reductions
Input: D = {(z1,9;)}Y, is a training data set with integrated labels;
{I;\X, are the multiple label sets of D; § is a threshold

Output: D is the corrected data set

1. A is an empty set

2.fori=1to N do

3. Account the numbers of positive labels and negative labels in ;,
i.e., C(+) and C(—), respectively

4. Calculate pr(+) and pr(—)

5.1f |pr(+) —pr(—)| <4

6. The instance ¢ is added to the set A

7. End for

8. A filter is applied to the set D /A and all instances filtered
out by the filter form a set B

9.D.=D/(A+ B)

10. Construct a classification model f on the set D,

11. for i =1 to size of (A+ B) do

12. Use the classifier f to relabel the instance 7 in the set A + B
13. End for

14. Update the set A + B to A + B with corrected labels

15.D=D.+A+B
16. Return D as the corrected data set

where 7 is a normalizing constant. In a Markov assumption, the sensor nodes in S; do not
rely on the context variables C'n;, in .S, a state variable and assuming sensor measurements
are mutually independent, the parent node value of S; can be expressed as

Pb(St’/Ut, Sl;tfl, Cnl;t) = Pb(St"Ut, Cnl;t) = pb(St"Ut) = H Pb(Si’fUt), (5)

where s; is the specific value of the sensor i in the time interval ¢. Furthermore, the last
term in equation (4) is also presented as

Pb(vt‘slztfla Cnl:t) = th_1 Pb(vtavtfl‘slztfla Cnl:t) = (6)
= Q. th—1 Pb(Ut|Ut—1, Stt-1, Onl:t)'Pb(Ut—1|S1:t—la Onu),

where « is a normalizing constant. Cn; can be carefully neglected from the last term,
as V;_1 do not rely on the next context Cn; when the next state V; is not considered.
Therefore, using Markov assumptions, equation (6) can be expressed as

Pb(Ut’Sufl,Cnl:t) = O"th_l Pb(vtyvtflaCnt)'Pb(vtfl‘SlztflaCnl:tfl) = (7>
=a.) . Pb(vvi1,Cny).Bl(viy).

By substituting equations (5) and (7) in (4), belief is described with the recursion

Bl(v) = . H Pb(s}|vi). > Pb(vy]vi—1, Cny). Bl(vi1), (8)

UVt —
St t—1

where « is integrated with the normalization constant 1. Using equation (6), inference
is executed via storing DBN two slices, where time as well as space updating network’s
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belief are not dependent on the length of sequence. Computational complexity involved
in equation (8) is O(n + m), where n is a number of sensors, m is a number of possible
values of V; and overall complexity of Bl(v;) for all V; is O(m? + m - n). However, the
inference issue in DBNs is identical to inference trouble in BNs, in which the desired
quantity is a posterior marginal distribution of a collection of hidden variables with an
order of observations (up to date of belief):

P(Xy[t]| Xo[1], ..., Xo[T]).

Here X[t] = {X,[t], Xo[t]} is a collection of time evolution variables, where Xy[t] and
Xy [t] specify observed and hidden variables, respectively. According to the time frame of
observation used in calculations, time series inference is referred to as filtering (7 = 1),
smoothing (7 > 1) and the forecast (7 < 1).

e Hidden Markov Model (HMM) consists of a finite number of states (N), everyone
with its own probability distribution. A collection of probabilities known as transition
probabilities governs transitions between states following processes must be completed to
construct a word recognition model that is formed on HMMs:

1) choose a number of states and observations,

2) select HMM topology,

3) choose training and samples,

4) train the system using training data,

5) perform testing using testing data.

Fig. 2 presents an example of a seven-state HMM that only allows transitions to same
state, next state, as well as subsequent states. HMMSs are often defined by the letter £ and

Fig. 2. 7-state Hidden Markov model (HMM)

are specified by a 3-parameter set k = (A, B, p), where A, B, and p are parameters.
e A is a transition probability matrix

A= [‘“1 am} , 9)

Q21 A22
A = {aijla; = P(S; = j)|Si-1 = i}, (10)
A, = P(S5|Sm); myn =1, 2. (11)

Here a,,, represents a probability that the current state S, is provided by the previous
state S,,. The value of a,,, is computed as ratio of the expected number of transitions
from S,, to .S, to the expected number of transitions out of the state S,,.

e BB is an emission probabilities matrix

_|bin bia Dy
B= [bm bao b23] ’ (12)
B = {bj(ox)|bj(or) = P(Or = 0x|S: = j)}, (13)
bup = bu(p) = P(O,]Sn); n=1,2; p=1,2,3. (14)

Here b,(p) is a probability that the present observation O, is given by the present state
Sn. The value of b,(p) is computed as ratio of the expected number of times, where O, is
observed with 5,,, to the expected number of times in the state S,,.

Becrauk FOYpI'Y. Cepus «MareMmaTudecKoe MoOAeJIMPOBaHUE 115
u nporpammuposBanues (Becruuk FOYpI'Y MMII). 2022. T. 15, Ne 3. C. 111-126



S. Noeiaghdam, S. Balamuralitharan, V. Govindan

e 7 represents the initial states probabilities

. {gj , (15)

m = {m|m = P(S1 =)}, 16
Tm = P(Sp); m=1,2. 17
Due to several advantages of the HMMSs, the adjustment procedure for k = (A, B, p

is as follows.
1. Set A = (A, B, ) arbitrarily: a,, is 1/N, by, is 1/M, 7, is 1/N.
2. Compute the parameters ay(m), 5;(m), & (m,n) and v, (m).

3. Compute model’s novel parameters \* = (A*, B*,7*) using values computed at
Step 2:

ot = Zthl &(m,n) b (p) _ ZtT:Lot:op Ye(n) .

" i wm) T ST (n) , T = 71(m).

4. Compute P(V|\*). As the probability P(V|\*) is rising, repeat Steps 2 and 3.

The model parameters describe a model that best matches the training observation
sequences once they converged to particular values. Owing to the synchronisation of both
streams (DBN and HMM) at every time interval, all observation sequences in the proposed
enhanced context aware data fusion architectures must perform better than the present
fusion process.

1.3. Feature Extraction

This level is split into two halves. The first one performs measurements in the time
or frequency domains. Signal itself, or preliminary information required to determine the
features, can be used to make these measurements. Fig. 3 presents feature extraction
procedure using the proposed method.

Feature Extraction Features

Sensing
modality :> Measurement Parameters :>

Fig. 3. Feature extraction process

e Improved Principal Component Analysis (IPCA). Whenever a multivariate database
is shown as a collection of coordinates in a high-dimensional data space, PCA can
provide the viewer with lower-dimensional image, or projection of object from its
most relevant viewpoint.

e Constructing the Adaptive Gaussian Kernel Matrix. Consider a collection of s nodes
V = {v;,1 < i < s}, each of which may interact with the central coordinator v
in a distributed setup. A local data matrix P, € R™*? with n, data points in the
dimension d, where n; > d, exists on every node v;. A global data matrix P € R™*¢
is formed by concatenating the local data matrix, that is PT = [PL, P}, ..., PT] and

n =Y., n;. The i-th row of P is denoted by p;. Assume that the data points are
centred so that the mean is zero, i.e., Y ;_; p; = 0.
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Consider a nonlinear transformation ¢(z) from the original D-dimensional feature space
to the M-dimensional feature space, where generally M > D. After that every data point
x;, a point ¢(x;) is projected. Perform conventional PCA in a new feature space, however
be aware that this might be both expensive and inefficient. The advantage of using kernel
techniques is that these techniques do not manually calculate ¢(x;) explicitly. Create the
kernel matrix directly from the training data set {z;}.

k(z,y) = («Ty)? (18)
k(z,y) = (z"y + o), (19)

where ¢ > 0 is a constant. The Gaussian kernel is

k(z,y) = exp(—|lz — y|I*/20%), (20)

where ¢ is an Adaptive gaussian kernel parameter. Whilst £ = 1 and the centre is an
r-dimensional subspace, PCA is an unique case. Top r right singular vectors of P, defined
as key components, span this optimum r-dimensional subspace, which may be determined
via the Singular Value Decomposition (SVD).

1.4. Feature Selection Using Enhanced Recursive Feature Elimination (ERFE)

Algorithm 2. Representation of ERFE method procedure for removing unnecessary

information
Input: Dimensionality Reduced data

Output: Relevant features (discard the irrelevant data)
1. Train the classification model by entire features with cross validation
2. Compute model performance

3. Compute feature importance or ranking

4. For every subset T;, i = 0,1,2,3,...n, do

5. Maintain the most vital 7; features

6. Update the adaptive learning function stage using (20)
7

8

9

1

. Re-compute the model’s performance

. Re-compute the ranking importance of every feature
. end

0. Determine optimal number of features

So this work focuses on developing the new method (namely, ERFE), which
redefines the criteria for deleting features from every state.

e Adaptive learning function based RFE. Here the adaptive learning function ¢ is
introduced. As a result, the suggested ERFE enhances generalization accuracy
substantially, particularly for small numbers of features.

|w;| = | Z yitijl, (21)
i=1

where x;; is the j-th element of the ¢-th feature vector.
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Following the calculation of (21) for each of P features, they may be ranked in the order
of significance (high-value means more significant). An adaptive learning function ¢ used
to combine the weights was defined as:

1
) = 22
¢(w37T) w]rank (n) ( )
rank (r;) = |r||r > 74, (23)

where w; is RFE weight generated by equation (21), r; is the outcome of attribute rank
for the i-th feature in equation (22). Rather than using the original ranks provided by
findings, the rank function was used to transform them into rank-based form (23). This
implies that a feature with highest rank receives weight of 1, a feature with second highest
rank receives weight of 2, a feature with third highest rank receives weight of 3 and so on,
up to P.

1.5. Ensemble Based Machine Learning Model (EMLM)

Three machine learning-based classification algorithms are employed to classify data in
this study. Here the Enhanced Neural Network (ENN), Modified Extreme Gradient Boost
Classifier (MXGB) and Logistic regression model are combined to construct a predictive
model (ensemble model).

2. Enhanced Deep Neural Network (EDNN)

Deep Learning was shown to be a successful approach for producing extremely accurate
predictions from complicated data sets. A fuzzy neural network is a learning method that
incorporates neural network methods to apply the attributes of fuzzy systems [14].

e Integration with Fuzzy Inference system. The benefit of structured rule-based
algorithms is that they may be influenced by subjective data. This allows an analyst
to give expert knowledge to the system, perhaps enhancing categorization findings
or altering the system’s behaviour [15].

Consider the rules that comprise three Takagi and Sugeno-style fuzzy if-then rules.
Rule 1: If a is X4, bis Y3, cis Z;, then fn, = pia+ qib+ tic+ry.
Rule 2: If a is X», b is Y3, c is Zs, then fny = paa + qob + tac + ro.
Rule 3: If a is X3, b is Y3, cis Z3, then fnz = psa + ¢3b + tzc + r3.
Below expression defines the Fuzzy based neural network mathematical operations.

Layer I. An adaptive node with node function is included.

Ol,’i - /'LAZ'('I)7 fOT 1= 17 27 (24>
Ol,i = ,UBifQ(y)a fO?" 1= 37 47 (25>
Ori = pei-a(2), fori=5,6. (26)

Here pai(x), upi(z) and pe(x) are any acceptable parameterized MF's,Ol,i is a
membership grade of a fuzzy set A = {A;, Ay, By, By or Cy,Cy} which shows the degree
to which the supplied input = (y or z) satisfies the quantifier. This layer is called “Premise
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Parameters”. Furthermore, any suitably parameterized M F', such as a generalised “bell
function”, can be used as the membership function for A:

1
- 1"— ‘(.CIT —Ci>/&i‘2b’

e 1)
where {a;, b, ¢;} is the set of parameters.

Layer II. Each node in this layer is indeed a fixed node, with an outcome equal to the
sum of entire incoming signals.

OQ,i = /‘LAZ(x)/‘LBl(y)/‘LCZ(Z)7 1= 17 27 3. (28>

Every output node indicates a rule’s “Firing Strength”.

Layer III. The function of normalization has a fixed node labelled N:

wy

O3 = . i=1,2,3. (29)

Wi + wWo + ws

The results is generally known as “Normalized Firing Strengths”.

Layer IV. Adaptive nodes are included:
Ou; = Wi f; = Wi(pix + Gy + iz +1;). (30)

Since each node in this layer is a multiplication of the third layer’s Normalized Firing
Strength and the outcome of DNN; it is said to be “Consequent Parameters”.

Layer V. The layer contains a signal fixed node denoted by S with a summing function
that calculates the DNN network’s total output as a sum of all incoming signals.

. Zzwzfz
B doiwi

Finally, the enhanced DNN model provides the best results.

Owverall output Os,; = Z W; [

i

(31)

3. Modified Extreme Gradient Boost (MXGB) Classifier

XG Boost (Extreme Gradient Boosting) is a ML approach formed on Gradient
Boosting Decision Tree (GBDT) [16] for classification and regression problems. Number
of data is referred to as m, while the number of features is referred to as n. The prediction
before sigmoid function is represented as z;, as well as the probabilistic prediction is
y; = 0(z;), in which the sigmoid function is represented by o(.). It is crucial to remember
that the notations differ and y; in their analysis are denoted by z. The true label is denoted
by y;, while the parameters for the two loss functions are denoted by « and ~, respectively.
Gradients/hessians expressions are recorded in a merged form that is independent on the
value of y;, as this simplifies program implementation and facilitates vectorization in other
programs. In practice, the additive learning goal is:

LO ="y, 2 + fulw) + Q). (32)
=1
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The t-th iteration of training process is denoted by ¢. In the equation, note that the
notations were replaced. When the second-order Taylor expansion is applied to equation
(32), the following results are obtained:

L0 3 i+ i) + il + 006 )
3 [t + ghtia)?| + a0 3

The last line is due to the fact that the term I(y;, zi(t_l)) may be omitted from learning
goal because it has no effect on model fitting in the t-th iteration. The activation for both
loss functions is sigmoid, as well as the following basic characteristic of sigmoid is applied
consistently in derivatives:

dy  0o(z)

0z 0z (35)
W 621~ 0(2)), (36)
W=y -y) (37)

e Regularization based Adaptive factor (RA). Calculate the optimum weight RAw} of
the leaf j for a fixed structure ¢(z) by

Zz‘e[]- 9i

S A (38)

Rij = —

where h is a factor of approximation.

This implies, obviously, that there are approximately choose points. Every data point is
weighted by h; that indicates the weight; hence, equation (34) may be rewritten as

S ShilfiCen) e/ ()2 + 0. (39)

Define I; = {i|q(z;) = j} as an example set of the leaf j. Then by extending € as follows,
equation (33) may be rewritten as

LY = Z lgz‘ft(fz‘) + %hz‘ff(xi)} +Q(f), (40)
i=1

LY = Z |:ng1§($2) + ahift (fz)} + QAZU}J" (41)
i=1 j=1

With labels g;/h; and weights h;, this is precisely weighted squared loss. Finding candidate
splits that meet the requirements is difficult in large data sets.
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4. Logistic Regression

LR model is used, that is a popular machine learning algorithm, which is frequently
used in real-world applications like data mining [17]. The following is a representation of

a logistic regression model:

621

T 1ter
Here, Y is a binary dependent variable (Y = 1 if an event happens; Y = 0 else), e is
foundation of natural logarithms, whereas Z is

prob(Y =1) (42)

Z = Bo+ b1 X1+ B Xo + ... + B X,

where ) is a constant, [; are coeflicients and X, are predictors, for p predictors (j =
1,2,3,....p).

5. Results and Discussion

Database comprises the motion data of fourteen healthy older people aged 66 to 86
who conducted widely scripted tasks while wearing a battery-less, sternum-level wearable
sensor. Owing to using a passive sensor, the data is scarce and noisy. Participants were
randomly assigned to one of two clinical rooms (S1 and S2). The room setting S1 (Room1)
collects data using four RFID reader antennas (1 on ceiling and 3 on the walls), while the
room setting S2 (Room?2) collects motion data using three RFID reader antennas (2 on the
ceiling and 1 at wall level). The proportion of accurately obtained positive observations
to all predicted positive observations is known as precision.

Precisi True Positive (43)
recision = .
True Positive + False Positive

The proportion of properly detected positive observations to total number of observations
is known as sensitivity or recall.

True Positive
Recall = . 44
ced True Positive + False Negative (44)

Weighted average of Precision and Recall is described as the F-measure. As a consequence,
false positives and false negatives are taken.

2 x (Recall * Precision)

F18 — 45
core (Recall + Precision) (45)

The accuracy is computed with regards to positives and negatives as follows:
Accuracy = True Positive + False Positive (46)

True Positive + True Negative + False Positive + False Negative

Table 1 presents the performance comparison results for the proposed and existing methods
for the data set I.

Figs. 4, 5 show the performance comparison results for the data set I. This graph clearly
identifies the comparison performance among suggested and current techniques. Fig. 4 (a)
illustrates the precision comparison results of the proposed ICDFT- EMLM for the health
care data. From the results we conclude that the proposed ICDFT- EMLM technique has
high precision results. Fig. 4 (b) illustrates recall outcome comparisons of the suggested
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ICDFT- EMLM model for the health care data. From the results we conclude that the
proposed ICDFT- EMLM technique has high recall results. Fig. 5 (a) shows F-measure
comparison outcomes of the proposed ICDFT- EMLM model for the health care data. From
the results we conclude that the proposed ICDFT- EMLM technique has high F-measure
results. Fig. 5 (b) illustrates the accuracy comparison results of the proposed ICDFT-
EMLM model for the health care data. From the results we conclude that the proposed
ICDFT- EMLM technique has high accuracy results. Figs. 6,7 illustrate the performance
comparison results for both data sets. Based on the results, we note that the suggested
method has higher results than current methods for both data sets. Table 2 presents the
performance comparison results for both data sets. Based on Table 2, we conclude that the
introduced approach has greater performance results for data set I whereas the data set 11
has less. Fig. 6 (a) shows accuracy and precision comparison outcomes for both data sets.
And it is clearly identified that the proposed method has higher results than the exiting
methods. Fig. 6 (b) illustrates the comparison results for both data sets. The graph shows
the high performance results for the data set I whereas the data set II has less for the
given metrics.

Table 1
Comparison Results of Performance for Proposed and Existing Approaches

Metrics DFA | CDFT | CDFT-HLCM | ICDFT-EMLM
Accuracy | 86,059 | 90,950 94,400 97,9003
Precision | 83,29 | 88,92 93,01 96,9710

Recall 88,19 | 90,86 94,67 97,7730
F-measure | 85,67 | 89,88 93,83 97,3704
Table 2

Performance Comparison Results for Proposed
and Existing Methods for Both Data sets

Metrics | Dataset — I | Dataset — II
Accuracy 97,9003 95,800
Precision 96,9710 93,420
Recall 97,7730 96,153
F-measure 97,3704 94,766
0 B 100 I
E=corr I corT
ac e o as | — o
2 [ 2
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a) Precision comparison b) Recall comparison

Fig. 4. Results of the proposed ICDFT- EMLM model for the health care data
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Fig. 5. The proposed ICDFT- EMLM model for the health care data
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Fig. 6. Comparison results for both data sets
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Fig. 7. Performance comparison results for both data sets

Conclusion

In this work, we introduce a dual filtering method for data pre-processing, which
attempts to label the unlabelled attributes in the data that are gathered, so that data
fusion can be done accurately. The improved Dynamic Bayesain Network (IDBN) is a good
trade-off for tractability becoming a tool for ICDF operations and the inference problem is
handled using the Hidden Markov Model (HMM) in DBN model. Thus the proposed HMM
method improves the fusion process which increases the prediction performance. After
that the Improved Principal Component Analysis (IPCA) is used for feature extraction
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as well as dimension reduction. The feature selection process is done by using Enhanced
Recursive feature Elimination (ERFE) method for eliminating the irrelevant data in a
data set. Finally this data is learnt using the Ensemble based Machine Learning Model
(EMLM) for performance checking. Here the Enhanced Neural Network (ENN), Modified
Extreme Gradient Boost Classifier (MXGB) and Logistic regression model (LR) are
combined to construct a predictive model (ensemble model) for predicting the health
care data. Thus the results indicate that the proposed ICDFT-EMLM model improve
the prediction performance of the health care data compared to the existing health care
applications. Further this work focuses on improving the security level of the health data
using cryptography technique as a future work.
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JNMHAMUNYECKAS BAMECOBCKASY CETh I CKPBITAS
MAPKOBCKAAd MOJEJIb ITPO'HO3BNPOBAHUNA JAHHBIX IOT
AJId MOJAEJIN MAIIIMHHOI'O OBYYEHNA C NCITIOJIb3OBAHUEM
PACHIMPEHHOI'O PEKYPCUBHOI'O NCKJIFOYEHN A IIPISHAKOB

C. Hotisnedam'?, C. Baaamypasumapar®, B. T'oeundan’

"Mpxyrexuit HaMOHAIBLHBI HCCIEI0BATEILCKIN TeXHIYIecKuil yHuBepeuTeT, I. VIpKyTcK,
Poccniickas @enepariust

2IOzkH0- Y pasbcKuil Tocy1apcTBeHHbIi yHuBepeuTer, . Tensabunck,

Poccuiickas Peiepartius

3SUncTuTyT BHICIEro obpasoBanus u ucciaenosannit Bxapara, r. Yennan, Vnina

4DMI Ienrpansubii yausepceurer Cparoro Moanna Kpecrurensa, r. Manroun, Maitasn

B pamkax nccieoBaresibCKoil paboThl pa3pabOTaHO CIIMSHIE JAHHBIX C yIeTOM KOHTEK-
CTa ¢ MOJEJIbIO MAIIMHHOrO 00y4eHus Ha ocHoBe ancambist (CDF-EMLM) st yorydmenus
06pabOTKHU JJAHHBIX O 3JI0POBbe. DTa UCCIIE0BATEIbLCKAs PaboTa COCPEIOTOYeHa Ha pa3pa-
OOTKeE YLy dII€HHOTO CJAUSHUS TAHHBIX C YI€TOM KOHTEKCTA U aJaropurMa 3(pheKTUBHOIO BbI-
6opa MMPU3HAKOB JIJIsl YJIyYIIIeHUs] TPOIECCa KJIACCU(MUKAINN JIJIsi TPOTHO3UPOBAHUS JTAHHBIX
3apasooxpanenus. [lepBoHavyaibHO JaHHble ¢ yerpoiicrs unrepuera semeir (IoT) cobupa-
IOTCSI U TIPEIBAPUTEIHLHO 00padaThIBAIOTCS, YTOOBI CAEIATh UX HOHATHBIME I 00pabOTKI
ciusausg. B 910l paboTe MOCTpoeH MeTOH ABOWHON (DUIbTpaInu s [TPEIBAPUTEIHLHOM
00pabOTKM TAHHBIX, KOTOPBIH MBITAETCS IOMETUTH HEMAaPKUPOBAHHBIE ATPUOYTHI B COOPaH-
HBIX JTAHHBIX, ITOOBI MOYKHO OBIJIO TOYHO BBIMIOJHHUTL OObEeIUHEHNE TaHHBIX. KpoMe Toro,
JuHaMudeckada GaitecoBckas cerb (DBN) saBjigercst XOponmM KOMIIPOMUCCOM JIJIg MAHHUILY-
JINPOBaHUsI U cTaHOBUTCS MHCTpyMeHTOoM st oneparuii CADF. 3neck npobiiema BbIBOIA
PeIaeTcst ¢ UCHOJIb30BaHueM CKPBITON MapkoBcKoit Mojesnn (HMM) B mogeaun DBN. ITocie
9TOro aHaJu3 OCHOBHbIX KoMioHeHToB (PCA) ucnosb3dyercs st U3BJeYeHUs] IPU3HAKOB,
a TaKKe JJIs YMEHbIIeHUs Pa3MepoB. BbIOOp IPU3HAKOB BBIIOJIHAETCS C HCIIOJIb30BAHIEM
METO/la PACHIMPEHHOr0 peKypcuBHOro uckiodenus upusnakos (ERFE) s ycrpanenus
HEpeJIeBAHTHBIX JIAHHBIX B HAOOpe JaHHbIX. HakoHer, 9TU JaHHBIE M3Y4YaIOTCsI C UCIIOJIb30-
BaHMEM MOJIEJIM MAIIMHHOrO 00y4eHust Ha ocHobe ancaMbis (EMLM) miast npoBepKu 1mpo-
U3BOIUTEILHOCTU CJIUSIHUS TAHHBIX.

Karouesvie crosa: dunamuneckas 6ateco8ckan cembv; CKPbIMaAi MAPKOBCKAA MO0,
IoT dannwie 30pagoorpanenus; Mawurhoe 00yueHUue; AHAAUS 2AABHBIT KOMNOHEHMOE; PAC-

WUPEHHOE PEKYPCUBHOE YCMPAHEHUE NPUSHAKOS.
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