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In this paper, a smooth approximation of the second-order derivatives of quantile
function is provided. The convergence of approximations of the first and second order
derivatives of quantile function is studied in cases when there exists a deterministic
equivalent for the corresponding stochastic programming problem. The quantile function is
one of common criteria in stochastic programming problems. The first-order derivative
of quantile function can be represented as a ratio of partial derivatives of probability
function. Using smooth approximation of probability function and its derivatives we obtain
approximations of these derivatives in the form of volume integrals. Approximation of the
second-order derivative is obtained directly as derivative of the first-order derivative. A
numerical example is provided to evaluate the accuracy of the presented approximations.
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Introduction

Wide range of design problems are represented as mathematical programming
problems, where the optimization criterion represents the system performance, which
depends on chosen optimization vector (strategy) and some undetermined parameters.
Consideration of the undetermined effects as random parameters appears very effective
in many engineering, financial, and social problems. Addition of random parameters in
the model turns the objective and constraints to random functions. This fact leads us to
consideration of optimization problems in which the objective or constraints are in the
form of a probability function or a quantile function [1]. The probability function equals
to probability that a specified level is not exceeded by the loss value. The quantile function
is the minimum loss level, which is not exceeded with a given probability. The choice of
the loss level or reliability level depends on the specifics of the system considered.

There are vast numerical methods and algorithms developed to solve non-stochastic
optimization problems. These methods often assume that we can calculate or estimate
first and/or second order derivatives of the criterion — estimate its gradient and Hessian.
But this technique can not be applied directly to stochastic optimization problems.
Calculation of a probability function gradient implies the integration over surface [2].
Only in specific cases direct calculation can be implemented through volume integration [3].
Other approaches to derive the gradient approximations are described for example in [4,5],
but they are limited by the type of distribution or other stochastic mechanisms.

One effective approach to estimate the derivatives of probability function is to use the
smooth approximation of probability function. The key idea is to replace the Heaviside
function inside the probability function with its smooth approximation that is a sigmoid
function [6]. Then the approximation of probability function along with its gradient takes a
form of volume integrals. Smooth approximation of probability function and its derivatives
along with the proof of convergence of the approximations were first presented in [6] for
one-dimensional random vector with absolutely continuous distribution. In [7] the same
results were obtained in the case of continuous random vector.
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Smooth approximation of the second-order derivatives of probability function was first
described in [8]. The application of second-order optimization algorithms for stochastic
optimization problems was described. The approximations of the second-order derivatives
were presented as expectations or volume integrals, which can be calculated using
Monte-Carlo method. The proof of convergence of approximations of the second-order
derivatives was not considered in [8], since exact formulas are not available. But numerical
examples show that smooth approximations of the second-order derivatives converge to
ones estimated using finite differences. The present paper continues the research considered
in [8] and presents a smooth approximation of the second-order derivatives of quantile
function. The convergence analysis in some basic setups is provided. Numerical example
is given. The example shows that smooth approximations have lower variance than finite-
difference estimates and provide more accurate estimates.

The paper is organized as follows. In Section 1 all necessary formulas and statements on
the smooth approximations are provided. In Section 2 the convergence analysis is made for
some basic cases of the loss function. In Section 3 numerical example is given, comparing
finite-difference estimates with the smooth approximations of quantile function derivatives.
In conclusion an overview of the paper is provided.

1. Theoretical Part

Consider a complete probability space (2, F,P), an absolutely continuous random
vector X with the support G C R™, a probability density function f(z), and a loss function
g(u, z) depending on a strategy u € U, U C R™. The function g(u,z) is considered to
be smooth and strictly piecewise monotonic with respect to x. The probability function is
equal to probability that a random value g(u, X') do not exceed a specified level ¢, while
the quantile function is equal to minimal loss level, which is not exceeded with a given
probability a:

Polu) 2 P {g(u, X) < 0} = [ 600 glu.2)) f(w)dr 0
G

Pa(u) £ min{p : Py(u) > a}, (2)

where ©(+) is the Heaviside function.
Since g(u, X) is the loss function, we can consider two optimization problems [1]:

#a(u) — min, (3)
Py(u) = max. (4)

According to [6] we replace Heaviside function with a sigmoid function to get a
differentiable approximation of the probability function. The sigmoid function and its
derivatives are defined as follows

So(t) = ﬁ (5)

Sp(t) = 08p(t)(1 = Sp(t),  Sg(t) = 0"Sp(t)(1 — Sp(t))(1 — 2(1)) (6)

with the parameter # > 0 corresponding to the steepness of the sigmoid function.
The approximation of the probability function is defined as:

PLu) = [ Salip = glu,0)) () = E (Sali = gl, X)), @
G
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The approximation of the probability function derivatives are defined as:

el / Syl — g, 2)) F(a)de = E (Sy( — g(u X)), ®
0P (u u,x u
T / it~ g(u,x»agéu; oyt = - (S0t - ot 0252 o

The following statements were proven [6,7]:

Jim_ Po(u) = P {gu.X) < ¢} (10)
Jlim 5 PU) = 2P o(u X) < ¢}, (1)
Jlim_ 2 P2u) = 2P {g(u,X) < ). (12)

Approximation of the second-order derivatives of the probability function [8] is

2 DO U
o g(u ! B (5 — gl X))l (0, X0, (0, ) = Silip — gl X))l (0. X)) . (13

Approximation of quantile function derivatives are given in [6]:

0o (1) o 1 0p%(u) 5 E(Shlpalu) — g(u, X))g,, (u, X))
O E(Sh(palu) —g(u, X)) Ou; B (Sy(palu) —g(u, X))

In the last ratio, we denote the numerator and denominator by V(u) and W(u),
respectively:

(14)

V(u) £ E [Sh(palu) — g(u, X)), (u, X)] , (15)
W (u) £ E [Sy(¢a(u) — g(u, X))]. (16)

Approximation of the second partial derivative of the quantile function is defined as:

Pl (u) Vi, (W)W (u) — V(u)Wy (u)

Uj

ou;Ou; W2(u) ’

(17)
where the derivatives of the functions V' (u) and W (u) are defined as:

Vi, () = B [ Sp(ea() = g(u, X))gl, (w, X)| +

B [5(ea(10 = gl )l 0 X) (Gonli) = s, 0 ) )| (19

0
WL (1) = B [ 85(p00) = 900 ) (o-galw) = o, 0.0 )| (19)
J
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2. Convergence Analysis
We assess the convergence of approximations for 3 cases, where the quantile function
can be defined explicitly (the deterministic equivalent exists).
2.1. Separable Loss Function
Let us consider the separable loss function, where uw € U C R™ and X € R™:
9(u, X) = g1(u) + g2(X).

In this case the quantile function and its derivatives are equal to

Opa(u) _ Ogi(w)  Opalu) _ Pgi(u)

aul- aul ’ 3u13uj N 3ui8u]~’

Ya(u) = g1(u) + [g2(X)]a,

where [g2(X )], denotes the quantile of the random variable go(X). In this case

V(u) = E [Sh(@a(u) = g(u, X)) g1, ()] = g1, (WE [Sh(pa(u) — g(u, X))],
W (u) = E[Sj(pa(u) — g(u, X))].

The ratio of V(u) and W (u) gives gy, (u) = a%igl (u):

Opa(uw) _ V() _ Opa(u) Pga(u) _ 0*pa(u)

2.2. Product of Two Functions
Next, consider the loss function to be a product of two functions:
g(ua X) = gl(u)QQ(X>7

where g;(u) > 0 for every u € U. The quantile function and its derivatives are equal to

i, 5 B,

Pa(u) = g1(u)[g2(X)]a,

The auxiliary functions V' (u) and W (u) are defined as:
V(u) = E [Sh(palu) — g(u, X))g1,, (w)g2(X)] = gh, (W) E [Sh(pa(u) — g(u, X))g2(X)],
W (u) = E [Sy(pa(u) — g(u, X))].
The smooth approximation of the quantile function derivative is equal to:

0% (u) _ E [Sg(pa(u) — g(u, X))g2(X)] 0 g1(v)
du, E[Sy(pa(w) — g(u, X)]  du""""

The smooth approximation of the quantile function gradient takes the following form:

E[Sh(palu) — g(u, X))ga(X)]
E[Sy(pa(u) = g(u, X))]
The vectors V¢ (u) and Vg;(u) are codirectional. Smooth approximation of the

second-order derivative is a linear combination of the second-order derivative of the loss
function and the product of the first-order derivatives with coefficient converging to zero.

Vo (u) = Vo (u)
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2.3. One-Dimensional Case

Let X € R, i.e. n = 1, and suppose that g(u,z) is a strictly increasing and left-
continuous function with respect to z for every u. This case was studied in [1, Chapter 4]:

@a(u) = g(u, [X]a)'
Using the properties of the sigmoid function described in [6] we state that:

ot ol ' 9u,(u, ) a5 0 — 0o
V(“) =E [SQ(SOOZ(U) g( 7X)>guz( 7X)] - ‘g;(u’ l‘)| 2=[X]a 0— )
, 1
W(u) = E[Sy(pal(u) — g(u, X)) — 7‘9&(% pTI as 6 — oo,

gziu]- (u7 x)

V! (u) = ——— , W! (u) — 0 as 0 — oo.
j( ) |glx(u7x)‘ z=[X]a J( )
Therefore:
0
6%2€U) - 1‘/{//((?) = G, (1, [X]a) as 6 — oo,
8240 (u) V! ()W (u) — V(uw)W! (u)
y = - J " X ‘
8ui8uj WQ(’LL) - guiuj (u7 [ ]a) as 0 = oo

3. Numerical Example

Let us compare smooth approximation of quantile function derivatives with the finite
difference estimates based on sample quantiles. We use a sample of size 100000 to calculate
sample quantiles and to calculate expectations in (14) — (19). The parameter « is equal
to 0,8, 0 is equal to 30. To find a sample quantile for a given vector u we use the sample
{X;}Y, of size N, then obtain a sample of loss function values {g;(u)}¥ ,, where g;(u) =

g(u, X;). Let g@)(u) be the i-th element of the variational series:
9 (u) < gey(u) < ... < gav(u).
The sample quantile is a statistical estimate of the quantile function [9]:
@a(u) S g([aN])(u)v (2())
where [-] denotes the integer part.

Example 1. Let us consider a two-dimensional case with a bilinear loss function and

multivariate normal distribution:
g(U,X):U1X1+U2X2, XNN(m,K),

0 10,5
(o) e o )

The quantile function can be found explicitly:

a(u) = xa\/u% + uyug + 2u3,
where x,, is the a-quantile for standard Gaussian distribution.

The comparison of the smooth approximation of quantile function derivatives with the
finite-difference estimates and with exact derivatives is presented in Figure. The smooth
approximation of the first-order derivatives is close to the exact derivative and have lower
variance. The smooth approximation of the second-order derivative has correct sign and
slope, but is more affected by noise when compared to the first-order approximations.
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298(u) AS(u) 3pq(u)

ouy Auy ouy

’pg(u) A2pf(u) 3°@a(u)
du10Uy AuiAuy durou,

- 2 06 ¥
R R “ 10 10

First and second order derivatives of quantile function in Example 1

Conclusion

We provide a smooth approximation of the second-order derivatives of quantile
function. Approximations of the first and second order derivatives of quantile function
are expressed via partial derivatives of the probability function, which have a form of
volume integrals and can be calculated using Monte-Carlo method. We provide convergence
analysis for special cases of loss function and give a numerical example to analyse
the accuracy of the smooth approximations of quantile function derivatives. Numerical
example shows that the smooth approximation of quantile function derivatives is close to
exact values.
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O IJIAJIKOW AIIIIPOKCUMAIINN ITPOM3BOJIHBIX ®YHKIINN
KBAHTNJIN

B.P. Coboav', P.O. Topuwmwiii*
"Mockogckuit apnanuonnpiit uncruryr (HIIY), r. Mocksa, Poccuiickast @eepanust

B crarbe mpejioxkeHa riiaiKast alipoKCUMAIAs BTOPBIX ITPOU3BOIHBIX (DYHKIINYA KBaH-
Trr. CXOIMMOCTD AIIIPOKCUMAIIAN [EPBBIX U BTOPBIX IIPOU3BOIHBIX (DYHKIMY KBAHTHIN
HCCEeyeTCd B ClydadaXx, KOIrJa JJisd COOTBETCTBYIOMICH 334349 CTOXaCTUICCKOI'O IIPOrpaM-
MUPOBaHUS CYIIECTBYeT AETEPMUHUPOBAHHDBIN KBUBAJEHT. DYHKINS KBAHTUINA SBJISIETCS
OJIHUM U3 OCHOBHBIX KPUTEPHEB B 33/[a4aX CTOXACTUIECKOrO Imporpammuposanus. [Ipons-
BOJ[HAS MIEPBOT'O HOPSIKA MOXKET OBITH IIPEJCTABICHA KAK OTHOIIEHNE YACTHBIX IIPOU3BOI-
HBbIX (DYHKIMH BEPOSITHOCTH. VICIo/Ib3yst MIaJIKYIO allllPOKCUMAIINIO (DYHKIMH BEPOSTHOCTU
U ee IPOM3BOJIHBIX, 3TU IIPOU3BOJHbBIE AITPOKCUMUPYIOTCS B pOpMe 0ObEMHBIX MHTErpPa-
JIOB. ATpokcumaltiysi BTopoil IIpOU3BOIHON OIIPeIe isieTCsl HEITOCPEICTBEHHO muddepeH -
POBaHMEM AIIPOKCUMAIINY [I€PBON TPOU3BOAHOM. JIJ1s OIEHKN TOYHOCTH IIPEICTABIEHHBIX
AMIIPOKCUMAINN IPUBEJECH YUCJICHHBI IpUMep.

Karoueswie caosa: cmoxacmuveckoe mpozpamMmuposanue; @GyHKUUs 8epoammHocmu;

PYNKUUA KEAHMUAY U €€ NPOU3BOTHDLE.

Hcenedosarue svinoaneno 3a cuwem epanma Poccutickozo naywnozo gonda Ne 22-21-

002183, https://rscf.ru/project/22-21-00213/
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