MSC 65L80 DOI: 10.14529 /mmp220405

DECOMPOSITION OF THE PROBLEM IN THE NUMERICAL
SOLUTION OF DIFFERENTIAL-ALGEBRAIC SYSTEMS
FOR CHEMICAL REACTIONS WITH PARTIAL EQUILIBRIA
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donskoy.chem@mail.ru

The paper considers two simple systems of differential-algebraic equations that appear
in the study of chemical kinetics problems with partial equilibria: some of the variables are
determined from the condition argmin for some system function state, which depends on all
variables of the problem. For such a statement, we can write a differential-algebraic system
of equations where the algebraic subproblem expresses the conditions for the minimality of
the state function at each moment. It is convenient to use splitting methods in numerical
solving, i.e. to solve dynamic and optimization subproblems separately. In this work, we
investigate the applicability of differential-algebraic splitting using two simplified systems.
The convergence and order of accuracy of the numerical method are determined. Different
decomposition options are considered. Calculations show that the numerical solution of
the split system of equations has the same order of accuracy as the numerical solution of
the joint problem. The constraints are fulfilled with sufficient accuracy if the procedure of
the numerical method ends with the solution of the optimization subproblem. The results
obtained can be used in the numerical solving of more complex chemical kinetics problems.

Keywords: differential-algebraic systems; optimization; numerical methods.

Introduction

When studying systems of ordinary differential equations with a large spread of time
scales, it is often convenient to divide variables into “fast” and “slow” subsystems. This
decomposition is usually made by analyzing the spectrum of the Jacobian matrix of the
right-hand side [1]. In some cases, however, it is possible to single out “fast” variables
from physical considerations, or based on a qualitative analysis of the relationships in
the system, to describe which differential equations are used [2, 3|. Algebraic equations
approximate the behaviour of the fast subsystem. Decomposition allows decreasing the
stiffness of the system and associated problems with its numerical integration. Methods
for reducing a system of differential equations to differential-algebraic equations are
widely used in chemical kinetics. The mechanisms of chemical transformations of complex
molecules, for example, the combustion of hydrocarbons, include thousands of elementary
stages and hundreds of components, therefore, in practical calculations, it is necessary to
reduce the dimension of the problem by orders of magnitude. Such a reduction becomes
possible due to significant differences in the rates of different reactions. Of course, it is
necessary to choose the appropriate criteria for separating variables. Since the equations
of chemical kinetics (especially in nonisothermal systems) are essentially nonlinear, there
exist no universal and rigorous criteria.

The algebraic subsystem expresses the quasi-stationarity of the “fast” subsystem: the
rate of change of variables becomes insignificant compared with the “slow” subsystem.
Another feature of the “fast” subsystem is the large uncertainty of the kinetic coefficients
[4]. As is known from statistical physics, with a sufficiently large number of “fast”
variables, we can approximate their behaviour by statistical laws. For example, the local
equilibrium approximation is widely used when considering relaxation processes (heat
transfer, diffusion, viscous flow) [5].

Similarly, in [6, 7], the “Rate Controlled Constrained Equilibrium” (RCCE) approach
was proposed, which considers the “fast” subsystem as equilibrium one for the given values
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of “slow” variables. Interestingly, similar models were proposed in [8, 9] in the modelling of
economic systems in which the time scales of the distribution and production of resources
differ significantly. In both cases, the state of the “fast” subsystem is found as a solution
to the optimization problem (maximum entropy, minimum free energy). Models of the
dynamics of physicochemical systems with equilibrium approximations are widely used in
the study of chemical reactors and burners [10-13]. It should be noted that the separation
of variables, generally, still requires suitable criteria. The simplest methods of separation
are based on estimating the Damkohler number or identifying the regions of the reactor in
which processes occur at significantly different rates [14, 15]. The combination of RCCE
with other reduction methods and more detailed methods for the partition of variables are
discussed in [16-19].
Let us consider the system of differential equations:
dx
o = 8(x). (1)

If we can divide x into “slow” part y and “fast” part z, then the system is reduced to
the form:

Y _gly.e). ¢l
z" = argmzin Gly,z), (3)
h(y,z) = 0. (4)

Here G is a function that has the physical meaning of free energy, h is a vector of
equality constraints. In [8], the operator argmin is called the “entropy operator” since
the author uses the entropy of the system under consideration as an optimization criterion
in subproblem (3). In more particular cases, the conditions of partial equilibrium are
determined by the free energy; therefore, we can call (2-4) a system with a partial
equilibrium operator.

The works [20, 21| propose methods for reformulating an optimization subproblem as a
dynamic one (by introducing differential equations for Lagrange multipliers). The papers
[22-25] consider methods for solving an optimization problem with linear constraints,
which are obtained from solving a kinetic subproblem. In the present paper, different
combinations of numerical procedures for kinetic and optimization subproblems are
compared. For several (relatively simple) problems, we obtain estimates for the order
of accuracy of computational schemes based on the separation of subsystems.

1. Model System (Additive Case)

Let us consider a simple system with three variables: one slow variable y and two fast
variables z; and z3. The equation for y is as follows:

d
= —Boy + Bii + B, (5)

Here 2] and 23 are solutions to the optimization problem:

minG(zluz%y)v (6>

21,22
where the function GG is an analogue of free energy for the mixture of substances:

G (21, 29, y) =a1z1 hl(Zl) + a2z 1H(Z2) + yln(y). (7>
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Mixture fractions must satisfy the additional relation:
Y+ 21+ 2 =1 (8)

We suppose that only non-negative values of z; and z; have physical sense. It is easy to
see that the function G is convex: its minimum exists and is unique. For y > 0, the solution
to minimization problem (6) smoothly depends on y. In this regard, system of equations
(1-3) is a convenient model object for carrying out numerical calculations. The system is
equivalent to a reaction vessel, in which the reagent decomposes much more slowly than
the competing products transform into each other. The ratio of the products does not
depend on the kinetics of their mutual transformations. Reagent conversion completely
determines this ratio.

Using the Lagrange multipliers method, we can write conditions of extremum in the
following form:

a; +a;In(z)) + A =0, 9)
as +azIn(zy) + A =0, (10)
y+ 2+ =1 (11)

If a; = ag, then the solution is simplified: 2] = 25, which, along with (8), makes it possible
to reduce the problem to a single differential equation. For a; # a9, analytical solution is
much more complex. Further, we consider this particular case.

Using implicit finite-difference approximation, we can write (5) in the form:

yk — ykil — T (—Boyk + ﬁlz'f + 62215) =0. (12)
This equation is linear with respect to y, but the variables z; and z, are non-linearly

related to each other. The Lagrange multipliers method allows us to consider them as
independent variables. Let us write equations (5, 9-11) in the form:

yb — gkt — 7 (= Boyk + Buzk + Bazh)
f ar + ay In(2F) + Mk

= 0. 1
as + az In(25) + A\ 0 (13)
yF 22— 1
Further, we solve the system of 1
equations using the Newton method: 0.9
¥ —x"1_(C [J (Xsfl)]_l £ (Xsfl) . (14) 0.8}
0.7}
Here x is a set of variables [y, 21, 22, A|T; o6l
J is a Jacobi matrix; the parameter C'is |
a coefficient that holds values of vy, z;, 2o =095 s T T T T
in a non-negative range. Fig. 1 shows an o4} PR
example of numerical results (y(0) = 1, 4, P
Bo =1, 5 = 1072 By = 107", a1 = 1 2l L7
a, = 2; T 5-1073). The value of y ' ,'/’
exponentially decreases in time, and the  %1-,
variables z; and z, follow a minimum of G. 0 : . 5 i .
This minimum, however, is local at each t

moment. Fig. 2 shows that G(t) achieves
its minimum value at ¢t = 1,43. After that,
G(t) slowly increases and approaches a
stationary value. This inconsistency results
from a violation of the detailed balance conditions (the parameters § and a are usually
related and cannot be chosen arbitrarily as in the presented case [26]).

Fig. 1. Numerical solution to equations (5) —
(8): solid line denotes y, dotted lines denote
z1 and zo
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The joint solution of the differential 0
equations and the optimization problem is
relatively simple in this particular case. But
for more complex systems, it can turn out
to be unsuitable [27]. First, the dimension
of the problem can vary, and secondly,
the optimization problem conditions can ©
be more complicated (for example, in
non-ideal and heterogeneous systems).

It is better to use numerical methods
for solving differential and optimization

1.2+
subproblems separately. For example, the
Runge-Kutta methods can be used to 1.4 ‘ : ‘ ‘
. ” 0 1 2 3 4 5
solve a dynamic (“slow”) subproblem, t

while nonlinear programming methods are
applied for solving an optimization (“fast”)
subproblem. Different methods, as a rule,
are implemented by different solvers. It is possible to organize data exchange between
them to simplify the numerical solution. Thus, we ask the questions: is it possible to
decompose problem (5) — (8) into parallel or sequential problems of different classes, and
what is the error of such a decomposition?

As mentioned above, the algebraic subsystem often approximates the behaviour of
“fast” variables, the relaxation of which is much shorter than the relaxation of “slow”
variables. That is, both subsystems can be considered as laws of dynamics on different
time scales. Further, we can assume that system (5) — (8) can be approximately solved by
splitting into “slow” and “fast” processes. In this case, numerical solution error consists of
the error associated with the difference approximation of the derivatives, and the error of
time scales decomposition (splitting). Let us consider different options to split problem (5)
- (8).

1) Two-step scheme.

First, the dynamic subproblem is solved for fixed values of “fast” variables:

Fig. 2. Dependence of G on time

yF =y =g (VF T AT =0 (15)

When value of y* is found, we solve the optimization subproblem:

[Z]f7 Z]2€:| = arg min G (yk7 21 22) ) (16>

21,22

which can be rewritten considering (8) as follows:

[2F, 28] = arg min [G (y*,21,20) + AMy* + 21+ 22 — 1)] . (17)

217Z27)‘

The value of y* is constant in equation (11). The first step of the scheme solves a one-
dimensional problem (calculating y*), and the second step solves a three-dimensional
problem (calculating z;, z and A). The differences in the computational speed are
negligible in this particular model problem. However, with an increase in the dimension,
it is most likely that there exists an advantage of using splitting schemes.

The sequence of steps is insignificant for estimating the value of y. However, as our
calculations show, the second step ensures that condition (8) is satisfied; therefore, the
splitting error is mainly related to the first step.
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2) Three-step scheme.
The first step is the same as in the previous scheme, but the obtained value of y is
intermediate:

yk‘—l/Q _ yk‘—l _ Tg(yk_1/27 Zlf_l, Zé:—l) — 0 (18)
The intermediate value y*~1/2 is used to solve the extremum problem:
[zf, 25] = arg min}\ [G(zl, 29, ykil/Q) + )\(yk*l/2 + 21+ 2 — 1)] ) (19)
21,22,

Finally, values of 2% and 2% are used to correct the value of y:
v -yt =gyt ) = 0. (20)

On the one hand, the value of y* is refined by adjusting the variables z; on the other hand,
fulfilment of equation (3) is not guaranteed in this case.

Let us refer to scheme (13), (14) as the one-step scheme.

All mentioned schemes are basically different forms of the implicit Euler method. The
expected order of approximation with respect to 7 is 1, and results of direct computations
presented below confirm this. The stability of numerical schemes for differential-algebraic
systems was studied in the papers [27-31], where it was shown that simple difference
approximations can be inappropriate. However, the proposed numerical schemes are stable,
which is easy to show if we approximate variables z by Taylor series:

Y =" = B0y 4+ B (AT (= v TY) 4 B (B (= yF )] = 0. (21)

Here ~ is a derivative 0z/0y, which has no simple expression, but we can see that v is
non-positive for all values of y, for example, see Fig. 1 (due to equation (8)). Stability
conditions of these difference schemes can be reduced to the following expression:

14+ 7(80 — 1B — 1262)| > 1. (22)

As long as v; and 7, are both non-positive, the proposed numerical schemes are absolutely
stable.

The accuracy of different schemes with
respect to the value of y is compared in N
Fig. 3. The three schemes (joint solution  10oe:0
and two splitting schemes) have an order
of accuracy close to 1. In the optimization
problem, the threshold error value ¢ = a o1 m2 A3
Z?Zl |£;] is 1073 for all cases. The average

1 10 100 1000

1.00E-01

number of iterations required to ensure this | 0 ]

error is 30-40 (but it sharply rise in the o

vicinity of y = 1). The splitting practically  1o0e-04 )
does not affect the behaviour of the error o
in determining the value of y. 1.00€-05

However, the choice of the scheme
affects the error in fulfilling condition (8). Fig. 3. Dependence of error on a number of
Fig. 4 shows behavior of this error in time time grid points (The legend shows a number
(the grid step 7 is 1072). The two-step Of steps of the numerical scheme)
scheme gives approximately the same error as the one-step scheme. The three-step scheme,
as expected, gives a much larger error € with the greatest deviation observed in the domain
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of the highest rate of change in y. With a decrease in the grid step, the error decreases.
Thus, using a three-step scheme for the numerical solution of the model system does not
give a significant advantage in the accuracy of determining y but gives a much larger
violation of the constraint (however, this error is still much less than the threshold error).
The two-step scheme turns out to be preferable.

3x1o"° a 3x1o"° b 1“0»5 C
0.9
08
1 1 0.7
0.6

€o - €o €05
|| ‘ | ‘ ' l o4
El El I“ |
2

03
-2 -2 0.2

0.1

3 -3 0
0 1 2 3 4 5 6 0 1 3 4 5 0 1 2 3 4 5

t t t

Fig. 4. Numerical error of filfilling equation (8) for different numerical schemes: (a) —
one-step scheme; (b) — two-step sheme; (c) — three-step scheme

Most of the computational time for schemes with splitting is occupied by the solution
of the optimization problem, so the difference between them is almost negligible. With an
increase in the dimension of the problem, the difference in computational time increases
as likely as not.

2. Oxidation of Methane (Multiplicative Case)

Let us consider a little more complex non-linear system. It is the isothermal oxidation
of methane in the air. The empirical equation describing brutto-reaction rate is as follows:

dn A _ Eo
% =3¢ R T (23)
Here n is the amount of component, mol; A is the preexponential factor; E, is the activation
energy of the reaction; Ry is gas constant; 1" is the temperature; m is the kinetic order;
V' is the volume of the reactor. Values of coefficients are listed in Table 1 [32]. Reaction
products are carbon oxides, hydrogen and water vapours. The material balance conditions
for a closed system are the laws of conservation of elements:

ncm, + Nco, + Nco = Ne, (24)
dncy, +2ny, +2np,0 = Ny, (25)
2%02 + 2%002 + nco + nNH,0 = NoO- (26)
Table 1
Values of coefficients included in the kinetic equation of methane oxidation
Coeffcient Dimensions Value
A m? mol~(mFm2—1) g =1 [ 8 83.106
E, J mol~! 121-103
R, J mol™! K1 8,314
mi - 1
my - 0,69
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We suppose that nitrogen does not participate in chemical reactions. Equations (24)
— (26) are linear, so they can be written in a simple matrix form: An = b, where A
is a matrix of atom indexes, and b is a vector of amounts of chemical elements. Instead
of kinetic equations for reaction products and intermediate species, we use the partial
equilibrium approximation:

min G(n), (27)
Z 11 (n)n;, (28)

An = b, (29)

pi(m) = 10 +1In (%) Wi =2..N,. (30)

Here G is Gibbs free energy, u is the chemical potential of a mixture component, and
o is a sum of all components. The solution has physical sense only if the amounts of
all components are non-negative. It can be shown that, as in the previous example, the
function G has a logarithmic singularity on the boundary of the feasible domain, i.e. the
extremum is always inside the domain (although it can be very close to the boundary)
[26]. The amount of methane (we suppose that methane has index 1) is included in the
problem of minimizing G as a parameter.

Note that kinetic equation (23) is suitable only for the complete combustion of
methane. For example, with a lack of oxygen, methane cannot react with water vapour
and carbon dioxide, as it happens, for example, in reforming processes. To describe these
reactions, additional kinetic equations are required.

The one-step scheme equations are as follows:

nlé*H4 nCH4 + 7K (7"00H4)ml (n&)m =0, (31)
Ne
n*) + Z Ma; =0,Vj =2...Nj, (32)
N
> aynf —b; =0,Vi=1..N.. (33)
j=1

Two-step scheme is written by analogy with (15) — (17).
1) The kinetic subproblem is solved to determine the amount of burned methane:

ném nCH4 + 7K (ncH4) ! ( g;ﬂ) , (34)
ngjﬂ — né;l + 27K (nléH4)m1 (ngj)mg ) (35)

The calculated amount of oxygen ngj/ 2

is auxiliary for the kinetic subproblem. At the
second step, the amount of oxygen is reduced to the quasi-equilibrium value n’ég.
We can suggest another option for the first step. Assuming that the oxygen

concentration changes slowly, we can reduce the problem to the linear equation:

nlé’H4 nCH4 + 7K (nCH4) ( ](321) =0. (36)
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2) The optimization problem is solved
at the second step:

Zaijnf —bi—ajlnlém :O,VZ = 1...Ne. (38)
j=2

In the three-step scheme, the amount of

methane is corrected by solving the kinetic

equation with the fixed oxygen amount:
k k— k m k—1\™M
négnem K (nem,) (neo,') - (39)

Figs. 5 and 6 show a numerical solution

CH4
_— 02
002
- HZO
0.06 0.b8 0.1
Fig. 5. Dependence of gas mixture

composition on time (numerical solution,
one-step scheme)

obtained using the one-step scheme (7 = 1073). Free energy of the system G decreases
monotonically, following thermodynamic laws (in this case, detailed balance conditions are
not fulfilled, but global equilibrium is close enough to the boundary of the feasible domain

where ngy, ~ 0 ).
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Fig. 6. Dependence of gas mixture free energy
G on time (numerical solution, one-step

scheme)

Fig. 7 shows the accuracy of different
schemes related to methane amount.
Interestingly, option Ne 2 has the worst
accuracy. Accuracy even does not improve
with decrease in the time step. Apparently,
the use of an auxiliary variable (the
intermediate amount of oxygen) only
increases the splitting error due to
nonlinearity. The other three options give
close results with an approximation order
close to unity. Fig. 8 shows the numerical
error of fulfilment of (24) — (26). Option
Ne 4 (three-step scheme) gives the lowest
accuracy, which is consistent with the
results obtained in the previous section.

Various splitting alternatives were used
for the calculations. Option Ne 1 is the
one-step scheme with a joint solution
of the kinetic equation and optimization
subproblem. Option Ne 2 is the two-step
splitting scheme that solves a nonlinear
equation for chemical Kkinetics. Option
Ne 3 is the two-step scheme in which the
chemical kinetics equation is solved using
a linear approximation. Finally, option
Ne 4 is the three-step scheme, in which
both kinetic problem steps use linear
approximation (34). In the initial state,
ncm, =1, no, =2, nn, =8, nco = npy, =

nco, = nmo = 0. The values of u° were
taken from the reference book [33].
1.00E+00
1 10 100 1000 10000
1.00E-01
m}
O
1.00E-02 f o
[m]
€ g
1.00E-03 A #
A
<1 a2 %
1.00E-04 A B
A3 X4 A

1.00E-05

Fig. 7. Dependence of numerical error of the
solution to equations (21) — (28) on number of
time grid point (legend shows option number
of numerical scheme)
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Computational time is close for all compared numerical schemes. Option Ne 3 can be called
the best scheme, which gives the least error in calculating the variables and preserves the
fulfilment of the constraints.
N We can propose other options for
X X constructing  numerical  schemes  for
1.00E-01 4 10 190 1000 X X X X R
differential equations with a partial
o1 o equilibrium operator. For example, the
L0OE-05 kinetic and optimization subsystems can
100E07 | A3 x4 be solved iteratively: the results of solving
one subsystem are substituted into another
until the solution converges. For the
considered examples, iterations have little
effect on the accuracy, and the convergence
L0OE-15 turns out to be quite fast, so these options
are not presented here. Newton’s method
Fig. 8. Dependence of numerical error of fq solving nonlinear equations systems
fulﬁl.ling equations (24) - (26) on the number can be less effective when considering
of time grid points for different numerical large dimension or heterogeneous systems:
schemes.(legend shows the option number of i, this case, it is better to solve the
a numerical scheme) optimization subproblem, first of all, using
methods developed for chemical thermodynamics, such as RAND and its modifications
[34], interior-point methods [24], etc. Then it is possible to optimize the numerical solution
of equations (2) — (4), entrusting the subsystems to different solvers. In our previous
works [15, 35|, we used similar methods in the fuel processing modelling.

The examples given in this paper are of limited importance since they are low
dimensional and have a small number of connections between subsystems. In addition,
the example problems have properties that greatly simplify their solution. Namely, the
extremum of GG is unique, and its position continuously depends on the parameters of the
problem (however, note that these conditions are usually valid for reacting systems). It is
interesting to study similar problems for open systems (for example, stationary chemical
reactors and systems with diffusion). Numerical schemes for solving such problems will be
considered in the following works.

1.00E-03

1.00E-09
1.00E-11

1.00E-13

Conclusion

The paper compares numerical schemes for solving systems that include ordinary
differential equations and equations of extremum of a convex function. Such systems
often arise in the study of complex chemical reactions dynamics. The characteristics of
computational schemes based on the decomposition (splitting) are investigated using two
model systems. The calculation results show that the most suitable numerical scheme
for systems with partial equilibrium is a two-step scheme, in which the dynamic and
optimization subproblems are solved separately. In this case, the solution to the dynamic
subsystem gives additional constraints for the optimization subproblem. This scheme
allows fulfilling the constraints while maintaining the order of accuracy (in the considered
examples, the order is close to 1).
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AEKOMITIO3NIINA SAJAYN TPV YNCJIEHHOM PEIITEHNN
JANOPOEPEHIINMAJIBHO-AJITEBPANYECKNX CUCTEM

JJId XUMNYECKUX PEAKIINI C YACTUYHBIMU
PABHOBECUAMU

U.TI. Jowckot, Uncruryr cucrem suepreruku uMm. JI.A. MenenrreBa CO PAH,
r. Upkyrck, Poccuiickag Peneparius

B pabore paccmarpuBaioTcs JIB€  IPOCTbIE  CHCTEMBI  IubdepeHImaIbHo-
ajredbpanvecKux ypaBHEHUI, KOTOPBIE MOSIBJISIIOTCS IPYU MCCJIEI0OBAHIY 33089 XUMIIECKOM
KHHETUKHM C YACTUYHBIME PABHOBECHUSIMHU: YACTh MMEPEMEHHBIX OIPEJIESIeTCs U3 YCJIOBUS
argmin Jijist HEKOTOPOi (DYHKIUH COCTOSTHUSI CUCTEMBI, KOTOPast 3aBUCUAT OT BCEX MEPEMEH-
HBIX 3a0a4u. 1 TaKOi MOCTaHOBKYM MOYKHO 3aIUCATDH AuddepeHInaaIbHO-aIred paniecKyio
CHUCTEMY YpaBHEHWUI, B KOTOPOIi ajredpanmvecKas M0A3aada BBIPAXKAET YCJIOBUs MUIHU-
MaJIbHOCTU (DYHKITUU COCTOSIHUSI B KaKJIbIi MOMEHT BpeMeHHU. lIpu ducjeHHOM pereHun
yI0OHO IIPOBECTH JIEKOMIO3UIMIO (PACIIEILUICHUE) 3818491, T.€. PEIIaTh JUHAMUYECKYIO U
ONTUMU3AIMOHHYIO 3aJa9M [OCJIeI0BaTeIbHO. B pabore Ha JBYX MPUMEPAX HUCCJIEIYETCS
[PUMEHUMOCTh TAKOW JIEKOMITO3UIIUU: OIPEIENISeTCS CXOJUMOCTh W IMOPSIOK TOYHOCTH
YUCJIEHHOTO METOJ[a, a TaKXKe MPeJJIOXKEHbI JIPYyTHe BAPUAHTHI eKOMIo3uruu. [lokasano,
YTO YUCJIEHHOE PeIleHne PACIIEIJIEHHOW CHCTeMbl YPaBHEHUU HMMeeT TaKOW Ke IOPSIOK
TOYHOCTH, KaK U YHCJIEHHOE peIlleHne COBMECTHOI 3a/adu. BbINOJHEHNe OrpaHuJYeHui
VIIOBJIETBOPSIETCS € IOCTATOYIHOM TOYHOCTHIO, €CJIU BPEMEHHOI MIar YUCJIEHHOTO METOa 3a-
KAHIUBAETCS PEIIeHNEeM ONTUMU3AIMOHHON 3a1aau. [losrydentbie pe3ysibTaTbl MOTYT ObIThH
UCIIOJIb30BAHBI TIPU Pa3pabOTKe YHCJIEHHBIX AJTOPUTMOB JJIs DEIIeHust 0oJiee CJIOKHBIX
3389 XUMAIECKON KUHETUKH.

Karouesvie caosa: duddepenyuarvro-arzedbpauieckue cucmemvl; ONMUMUSGUUSL; YUC-
AEHHBIE METOODL.

Urops l'ennagbena Jlomckoit, KaHuaaT TEXHUIECKNX HAYK, CTAPIIAN Hay4IHBIA CO-

TPYIHUK, JJabopaTropus TepMoauHaMuku, VHctuTyT cucrem sHepreruku uM. JI.A. Mesen-
theBa CO PAH (r. Upkyrck, Poceniickast @egepanust), donskoy.chem@mail.ru.
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