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There are two major obstacles for a wide utilisation of the Wiener—Hopf factorization
technique for matrix functions used to solve vectorial Riemann boundary problems. The first
one reflects the absence of a general explicit factorization method in the matrix case, even
though there are some explicit (constructive) factorizations available for specific classes of
matrix functions. The second obstacle follows from the fact that the factorization of a matrix
function is, generally speaking, not stable operation with respect to a small perturbation of
the original function. As a result of the latter, a realisation of any constructive algorithm,
even if it exists for the given matrix function, cannot be performed in practice. Moreover,
developing explicit methods, authors do not often analyze its numerical implementation,
implicitly assuming that all steps of the proposed constructive algorithm can be carried out
exactly. In the proposed work, we continue studying a relation between the explicit and
exact solutions of the factorization problem in the class of matrix polynomials. The main
goal is to obtain an algorithm for the exact evaluation of the so-called indices and essential
polynomials of a finite sequence of matrices. This is the cornerstone of the problem of exact
factorization of matrix polynomials.

Keywords: Wiener—Hopf factorization; toeplitz matrices; essential polynomials of
sequence.

Introduction

Let A(t) be a matrix function from the matrix Wiener algebra WP*P(T) that is
invertible on the unit circle T. The representation

A(t) = AL()D()A_(t), t €T, (1)

is called a left Wiener—Hopf factorization of A(t). Here Ai(t) belong to the group
GWZP*P(T) of invertible elements of the subalgebra W1*P(T), the middle factor D(t) is
the diagonal matrix D(t) = diag [t",...,t*], where integers A\; > ... > X, are the left
partial indices of A(t). The relation A\; + ...+ A\, = » = indr det A(z) is valid. A similar
representation in which the factors AL are rearranged is called the right Wiener—Hopf
factorization.

Mathematical modelling of wave diffraction, problems of dynamic elasticity and
fracture mechanics, and geophysical problems are often reduced to the Wiener—Hopf
factorization problem for matrix functions [1-4]. The factorization of matrix functions
is also a powerful tool itself used in various areas of mathematics [5-7,9|.

Unfortunately, for the matrix case, there is no constrictive solution of the factorization
problem in a general setting and it is very important to find cases when the problem
can be solved effectively or explicitly. By the explicit (or constructive) solution of the
factorization problem we understand a clearly defined algorithmic procedure that should
definitely terminate after a finite number of steps. There are not that many classes of
matrix functions for which an explicit solution to factorization problem has been found.
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The most important of them are classes of matrix polynomials [10,11] and meromorphic
matrix functions [12]. A detailed review of constructive methods for the factorization
problem is presented in the works [13-15].

In addition to the aforementioned lack of availability of explicit solution to the
factorization problem, in the general case, there is another obstacle to use the technique.
This is possible instability of the factorization problem. Even if an explicit method for
solving the particular factorization problem exists, each step of the respective algorithm
can be executed exactly or approximately (numerically).

We say that the problem can be solved exactly if (i) the input data belonging to
the Gaussian field Q(7) of complex rational numbers, and (ii) all steps of the explicit
algorithm can be perform in the ezact arithmetic. The instability of the problem leads
to the fact that the explicit algorithm cannot be implemented numerically. As a rule,
researchers developing a particular explicit factorization method usually ignore this issue.
In fact, they implicitly assume that all steps of the proposed explicit algorithm can be
carried out exactly that, unfortunately, is not always possible.

For the first time, the need to accurate study the way of numerical implementation of
the explicit algorithm was highlighted in [16]. This has been done for matrix polynomials,
where existence of an explicit solution of the factorization problem was proved in [11].
In [16], based on this work, a criterion for the ezact factorizability of a matrix polynomial
was obtained, and an exact algorithm for a solution of the factorization problem was
developed. This algorithm was also implemented as the package ExactMPF in Maple.
Thus, if the condition satisfies, the problem of an instability does not arise.

The package makes it easy to carry out numerical experiments with the Wiener—Hopf
factorization for matrix polynomials. It can be used to construct an approximate canonical
factorization with quaranteed accuracy for strictly nonsingular 2 x 2 matrix functions and
to the integration of a discrete analog of the nonlinear Schrodinger equation by Inverse
Scattering Transform. We hope that the application of the package will not be exhausted
by these examples.

This paper is complimentary to [16], where the length was limited by the publisher
rules. As a result, some crucial technical results have been omitted there. In particular,
the algorithm for constructing essential polynomials was not described. In this work we
fill this gap.

1. Explicit Solution of the Factorization Problems for Matrix
Polynomials

In this section, we present an explicit algorithm for the factorization of an arbitrary
matrix polynomial. Our presentation is based on the results from [11,12,16].

N
Supposed that the matrix polynomial a(z) = > apz®, a, € CP*P, is invertible on the
k=0

unit circle T. We will write its left and right Wiene_r—Hopf factorizations in the form

a(t) =L (t)dL()I-(1), a(t) = r_(D)dr(t)r(t), t € T. (2)

Here d(t) = diag[th,...,t*], and \; > --- > \,; dg(t) = diag[t’,..., "], where
p1 < ... < pp. Note that left \; and right p; indices are usually different sets of
integers and constructions of the right and left factorizations are usually considered as
two separate problems. For explicit construction of these factorizations we will use the
method proposed in the work [11|. The method requires simultaneous considerations of
the both factorizations.
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Let A(z) = deta(z) and A(z) = A_(2)2"A4(2), A_(o0) = 1, be the Wiener-Hopf
factorization of A(z). The factorization is unique with the additional condition at infinity
for the polynomial A_(z). In the sequel, we use, in fact, only one of the factors, namely,
A (z)=1+A7z '+ +A 27" 3 =indrdeta(z).

We expand the rational matrix function A~'(z)a(2) in the Laurent series at infinity:
AN (2)a(z) = Zé\f:_w ¢;jz?. The coefficients ¢; € CP*P are computed recurrently in terms
of matrix coefficients a; of the original matrix polynomial, a(z), and the coefficients A7
of the scalar polynomial, A_(z), (see [16, Eq.(2.5)]).

To construct the factorizations of a(z) we only need a finite number of the coefficients,
¢k, for k = —3¢,...,0,...,5¢. Denote ¢”_ := {c_,,...,c,...,¢.}. The main tools for
computations of the partial indices and factors in the factorizations of matrix functions
are the so-called indices and essential polynomials of the sequence ¢, (see [11,17]). Let
us define these notions.

Form a finite family of the block Toeplitz matrices of finite sizes:

Ty = |lCizjllimht1,ese , —3¢ <k <3, (3)
G=0,1,.p30+k
and study the structure of the right kerg T, = {R € Cr**DX TR = 0} and left
ker, T, = {L € C>**=**D| LT, = 0} kernels of T}. Further it is more convenient to deal
not with vectors R = (ro,r1,...,7k+x)" € kerg Ty, r; € CP*!, but with their generating
column-valued polynomials R(z) =rg+ 712+ + Ty 2F+* We will use the spaces N,
of the generating polynomials instead of the spaces ker T}.

By N, —3 < k < 3, we denote the space of generating vector polynomials for
vectors in kerg T. Put N __ | := {0} and let NF ;| be (25¢ + 2)p-dimensional space of all
column-valued polynomials whose degrees are not greater than 2 + 1.

Repeating the same line of reasoning, we can define the space NiF, —3c < k < s, of
the row-valued generating polynomials in z~! for the rows from ker; 7.

By df, we denote a dimension of the right kernel Af' and introduce the following
integers: Af = dff —df | for —3 < k < s+ 1. A sequence c* is called regular if AR =0
and A, =2p.

For a regular sequence, we have (see [11,17])

0=A% <AF < <ATSAL, =2

Since a monotone integer sequence is piecewise constant, then there are 2p integers p; <
-++ < fu9p such that

AR, = .. = AR =
Afz_“ = ... = Aiﬂ = 1, (4)
AMP—H = = Aﬁ-{-l = 2p

The absence of the j—th row here means that ;11 = p;.

Definition 1. The integers i1, ..., o, defined by the relations (4) are the indices of the
sequence c”,.

Similarly, we can consider the sequence of the left kernel AVj* that will lead, however,
to the same indices.

Furthermore, we define the right essential polynomials of the sequence c* . Note that
N and zN}[* are subspaces of M ; as it follows from the definition of the spaces Ajff. The

dimension, hy, ;, of the complement HjY,, of Nt + 2N in ME | is equal to Af, — Af.
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Then, Egs. (4) imply that hkRJrl # 0 if and only if k£ = p;, j =1,...,2p. Moreover, in this
case, h,fjrl is equal to the multiplicity, s, of the index p;. Therefore, for k # 11; we have
IEH = NkR + ZNIfLa
and for k& = p;
NE L = (A + =NF) o HE, .

Definition 2. Any polynomials Rj(2), ..., Rjy,,-1(2) forming a basis for a complement
Hffj 41 are called Tight essential polynomials of the sequence ¢, corresponding to the index
15

As a result, we have defined 2p indices ji, . .., fto, and 2p right essential polynomials
Ry(z2),..., Rop(z) for any regular sequence c¢*,. Similarly, we can define the left essential
polynomials L;(z), ..., Ls,(2) of the sequence cZ,,.

In factorization problems, there are natural candidates for the role of indices and

essential polynomials. To check that this is indeed the case, the following essentiality
criterion can be used ( [17, Theorem 4.1|, see also [11, p. 258],):

Theorem 1. The integers jii, ..., pusy, are the indices and Ry(z),..., Rop(z) are right
essential polynomials of the regular sequence c”, if and only if the matrix

Ap = ( 5R{szﬂflRl(z)} &R{ZHR)QP(Z)} )

L0 . Ry, (0
o i () L )
is invertible. Here op{z Ri(2)} =Y med " CopimmTm’ -

By Theorem 3.1 from [11], the sequence ¢ is regular and there exist respective
essential polynomials Ry (z), ..., Rop(2); L1(2),. .., Loy(z) such that

(i) the constant terms of the polynomials R;(z),..., R,(z) are equal to zero,

(ii) the leading terms of the polynomials L,.1(z2), ..., Ls,(2) are equal to zero.

Definition 3. The essential polynomials Ry(z), ..., Rop(2); L1(2), . .., Lop(2) satisfying the
conditions (i), (i) are called the factorization essential polynomials of the sequence.

Now we can formulate a final result on the explicit Wiener—Hopf factorization of a
matrix polynomial a(z).

Theorem 2. [11, Theorem 3.2| Let p,...,po, be the indices and Ry(z),..., Rop(2)
(Ll(z), . .,Lgp(z)) are the right (left) factorization essential polynomials of the reqular
sequence c”,,. Let us introduce the p X p matriz functions

Ly1(2)
Ri(z) = (Ba(2) ... Byp(2)), La(2) = :
Lay(2)
and dp(z) = diag[z=", ..., 27|, dgr(z) = diag[zF»+1, ... zH2r].

Then the left (\y > --- > \,) and right (py < --- < p,) partial indices and the factors
(1£(2), r+(2)) of the respective factorizations of the matriz polynomial a(z) are defined by
the formulas

)\1 :_,ula"'a)\p:_,upa P1 = Hp+1y- -5 Pp = H2p, (5)
L(2) = A (AP @R (), L) = = AT @) Raz), (6)
(

ro(z2) = A_(2)Ly1(2),  ri(2) = AZN(2)dR (2)L2(2)al2). 7)
In the statement of this theorem, we have corrected the misprints appeared in the
formulas for the factors [, (z), r4(2) in [11, Theorem 3.2].
Let us list the basic steps of the presented factorization algorithm.
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1. Calculation of the Laurent coefficients ¢;, —z < j < s, for the rational matrix
functions A~'(2)a(z).
Here s = indrdet a(z) is a number of zeros of det a(z) in open disc |z| < 1.

Finding s and constructing the factorization of scalar polynomial A(z) can be
considered as explicit procedures. Now calculation of the Laurent coefficient ¢; using
recurrence relations requires a finite number of operations.

2. Calculation of the indices for the sequence c”...

To calculate the indices fu1,. .., pop it is needed to find ranks of the matrices Ty,
—3 < 7 < 2. We can do it by means of linear algebra in a finite number of steps.

3. Calculation of the essential polynomials for the sequence ¢ .

For this it is necessary to find bases of the kerg 1 Tj;, —s¢ < j < 3. We can do it by
means of linear algebra in a finite number of steps.

4. Constructing the factorizations in accordance with Th.2.

Now this step can be done in an explicit form.

Thus, in accordance with our understanding of the explicit solution of the factorization
problem given above, the presented algorithm indeed belongs to this class.

2. Exact Solution of the Factorization Problems for Matrix
Polynomials

In this section, we find a condition when the proposed explicit algorithm can be
implemented numerically. Due to the instability of the factorization problem, there are
two obstacles for doing this.

1. The factorization of scalar polynomial A(z), in general case, can only be constructed
approximately.

2. Finding the indices and essential polynomials of the sequence c¢”,_ requires
calculating ranks and constructing bases of kernels for matrices 7). Unfortunately, those
operations can be unstable.

Thus, in general, the proposed explicit factorization algorithm can not be implemented
numerically.

Remark 1. A numerical implementation of the algorithm proposed in [10] meets into
the same difficulties.

However, there is still a possibility to implement the algorithm ezactly by utilising
calculations in rational arithmetic. Obviously, we must demand that the coefficients a;
of the original matrix polynomial a(z) must belong the Gaussian field Q(:i) and the
factorization of A(z) should be performed ezactly. In this case the calculations of the
Laurent coefficients ¢; and finding the indices ji1, . .., pg, can also be made exactly.

Now we have to make sure that finding the factorization essential polynomials can also
be performed ezactly. This was not done in [16] and it is the main goal of this work.

In the following theorem we describe the algorithm of finding these essential
polynomials and prove that this algorithm can be implemented in the exact arithmetic if
entries of the matrices ¢;, —3 < j < 3, belong to the field Q(z).

Theorem 3. Let ¢, := {c_,,...,Co,...,C} be a reqular sequence of complex p X p
matrices with entries from the field Q(i). Suppose that the indices jii, ..., us, of the
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sequence satisfy the condition Z?ﬂﬂj = —, Z iepr1 M = %, and the sequence has the
factorization essential polynomials. Then these polynommls can be found by calculations
in the exact arithmetic.

Proof. Let us restrict ourselves to considering only the right essential polynomials
Ri(2), ..., Rop(2). Algorithm of finding the factorization essential polynomials is based
on the criterion of essentiality (Th. 1).

By Definition 3, these polynomials have zero constant terms: R;(0) =--- = R,(0) = 0.
Hence, to construct the factorization essential polynomials R (z), ..., R,(z) we must select
first p vector polynomials R;(z) € /\/'L 41, J=1,...,p, such that the 2p X 2p matrix

Ag =

_ ( or{z " 'Ri(2)} -+ or{z " 'R,(2)} | or{z " 'Ry (2)} - Tr{zT7 T Ryy(2)} )
T 0 T Bl Ry

will be invertible or, in other words, the p X p submatrices
A= (Fr{z7 " Ri(2)} - Tr{z T Ry(2)}) . Aga = (Bp4a(0) -+ - Ray(0))

will be invertible.
Now it will be convenient to introduce the distinct indices and to assign them the
respective multiplicities. Moreover, it is necessary to highlight the border index p,. Let

v; < --- < Us be the distinct indices of the sequence ¢ and k1, ..., ks their multiplicities.
Let the index p, coincides with v;.

We will use induction by a number of indices vq,...,v. First we select the
factorization essential polynomials R(z),..., R, (2) corresponding to the first index 1

of ki-multiplicity. They are the generating polynomials of vectors forming a basis of
ker T}, +1. Since there are the factorization essential polynomlals there exist a basis of

Nois1 = ker T, 41 such that Ry(z) = 2Ri(2),..., R (2) = 2R, (2) for some polynonials

Ri(2), ..., Rs,(2) from the space N, 11 = ker Tyl+1, where the matrix 7,4, is obtained
from Tyl+1 by deleting of the first p columns, i.e. by deletlng the first block column of

the matrix. It is easily seen that corresponding vectors Rl, . R,.gl form a basis ker 7] V11

Thus, by virtue the essentiality criterion (Th.1) there exists a basis of ker Tu1+1 such that
the 2p X Kk submatrix

or{z7* 'Ri(2)} - Gr{zT 'Ry (2)}
0 e 0
of Ag has the rank is equal to 5. In fact, it is easy to show that this condition is fulfilled

for any choice of a basis Ry, ..., R,,. Since the entries of the matrices ¢; belong to Q(i), the
construction of this basis and calculation of the rank can be done in the exact arithmetic.

Thus, we can exactly construct the first ; polynomials Ry(z),..., R, () such that
R1(0)=0,..., R (0) =0, entries of the p X x; matrix

Gr{z"'R1(2)} - Gr{z " 'Ry (2)})
belong to Q(7), and this matrix has the rank equal to k.

Now we repeat these considerations for the other indices v, ..., ;. Assume first that
tp < ppi1. Recall that v = p, and has the multiplicity x;. In this case k1 + -+ + K¢
coincides with the number of the indices p1, ..., pp, that is Ky + -+ K, = p.

Suppose that we construct the polynomials

Ri(2),. .., Ry (2); Rey11(2), - oy Ry (2)5 - Ry 41(2)5 oy R (2)
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corresponding to the indices v4,...,v;, 2 < j < wp_y, such that Ry(0) = O0,...,
Ry, 4..4x,;(0) = 0, entries of the p x (k1 + - -+ + K;) matrix

GEalz Rul2)} - Fnde ™ Ry iy (2)))

belong to Q(7), and this matrix has the rank equal to k1 + - - - + &;.
Let us define the polynomials Ry 4. 1x,+1(2), ..., Rejtotn; +1(2) corresponding to the
index v;;1 of the multiplicity x;1. These polynomlals belong to the space N, il =

kerT, 1. Let n;+1 is the dimension of the space /\/'VJ+1+1 = kerTV]+1+1 and the

polynomials Q1(z),...,Qx,,,(2) be a basis of this space. Here T,,, 41 is obtained from
T,,..+1 by deleting the first block column of the matrix. Hence, le( )sos 2Q5,,,(2) is
a basis of the space N, 1.

From this basis , we consequently select the required polynomials. Such a selection
we will do consequently. First we choose among zQ:1(2),...,2Q%,,,(2) a polynomial

Ry, 4.4r;41(2) such that the matrix

(Fr{z "Ri(2)} - Or{e ™ Ryt (2) Tr{z ™ Ry 11(2)})

has the rank equal to k1 + - - -4 ;4 1. This selection is always possible since the sequence
¢, has the factorization essential polynomials. In a similar way, we select the other
polynomials Ry, y..4x;42(2), .- -, R4 gy, (2) for which the matrix

@tz Ra(2)} Tl Reyosy i ()3)

has the rank equal to K1 + -+ + K;41.
Hence, in the case of s 4+ -+ + 3 = p , we obtain, by induction, the polynomials
Ri(2),..., Ry(%), for which the matrix

An = (Gr{z 1 Ri(2)} - or{z T Ry (2)})

over Q(i) has the rank equal to p. Thus, in this case, the first p factorization essential
polynomials R;(z),..., R,(z) are exactly constructed.

Now, we build the polynomials R,1(2),..., Rey(z) such that the matrix Ay is
1nvert1ble These polynomials must be sequentlally Chosen from the spaces N1 = ker T4,
J = Vg1, - .., Vs. It is clear that we can always choose polynomials R,11(2), ..., Rptw,,.(2)
from the basis Noiia+1, such that vectors Ry1(0), ..., Ryiy,,,(0) are linear 1ndependent.
Otherwise, the sequence ¢ would not have factorization essential polynomials. Repeating
these arguments for the indices v449..., 5 we arrive to polynomials Rj,.1(2),. .., Rap(2)
for which the matrix Ag is invertible. Therefore, in the case of u, < p,11, the right
factorization essential polynomials can always be found by the exact computation.

Let us consider now the case when the border index p, satisfies the equality 1, = f1p41,
or more precisely, when

S Sy T Ve < fpil = =y = = flpym = Ve < flpymy1 S0 S Hgp

forsome [l >0, m > 0. Then k1 + - -+ K1 =p—L kg =1l+m, K1+ +Ks=p—m
and k1 +- -+ Ky = p+m > p. The right factorization polynomials Ry (2),. .., Ruj 4w, (2)
corresponding to the indices v4,...,14_1 we can construct as above. Recall that ; is the
number of the right essential polynomials R,y .., ,+1(2),..., R 1.k, (2) corresponding
to the index 1. They belong to the space N, 11 = kerT,,.;. These polynomials are
divided into two type. For the first [ polynomials Ry, 1., ,+1(2), ..., Ry(z), the conditions
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Rty 1+1(0) =0,..., R,(0) = 0 and the invertibility of the matrix A;; must be fulfilled.
The remaining m polynomials R,1(2), ..., Ruygotsq (2) € Nyyq1 must be chosen so that
the vectors R,41(0),..., R, +.1.,(0) are linearly independent.

The first type polynomials we can construct as above by choosing successively [
polynomials from a basis Q1(2),. .., Qn,+1 of the space N,,.1 = kerT,, ;1. The existence
of the factorization essential polynomials guarantees that this process can be carried out.

The remaining m polynomials R,.1(2),..., R, 4.1 (2) must be chosen from the
elements of a basis of the space /\/’WH = kerT,,+1 in a way that the rank of the matrix
(Rps1(0) -+ - Ry 454 (0)) is equal to m = 3¢ + - - - + 24 — p. It is again possible since the
sequence c”_ possesses the factorization essential polynomials.

By repeating this choice for the spaces N, 11 = ker T}, 11, j = Viq1, ..., Vs, We obtain
the polynomials R,.1(2),..., Rop(z) for which the matrix Ay is invertible. Then, for
the polynomials Ry(z),..., R,(2), Ryt1(2),..., Rep(2), the matrix Ag is invertible and
these polynomials are the right factorization essential polynomials. To evaluate these
polynomials, we have solved block Toeplitz systems with the coefficients belonging to
Q(i) and have found the ranks of matrices with entries from this field. All such operations
can be performed exactly.

To obtain the left factorization essential polynomials, we can carry out similar
construction with the sequence of left kernels of matrices Ty, —» < k < 3, or can
apply a conformance procedure (see [17], Def. 5.3). This procedure can be also fulfilled
ezxactly. The conformance procedure that is used to construct the left factorization essential
polynomials, is described in [17].

(I

After finding the indices and factorization essential polynomials, we can exactly
construct the Wiener—Hopf factorizations using the formulas (5) — (7).

3. Pseudo-Code for an Exact Constructing the Right Factorization
Essential Polynomials

The full variant of the pseudo-code for the algorithm of simultaneous construction
of the left and right factorizations is given in [18|. However, if only one type of the
factorization is needed (for instance, the left factorization), using the full algorithm leads
to a significant increasing in execution time. For this reason, in this section we give the
pseudo-code for construction of the left factorization only. For simplicity, here we restrict
ourselves to the case when 1, < fip41.

Algorithm. Indices and right factorization essential polynomials of a sequence

Input. The sequence ¢, :={c_,,...,co...,C.}, ¢; € QP*P(3).
Output. The indices pu,..., 12, and the matrix of the right factorization essential
polynomials, Ry := (Ri1(z) - - Ry(2)),

1. find the distinct indices vy, ..., v,, their multiplicities k1, ..., ks, form the indices
f1, - - ., f2p, and the number ¢ such that p, = 1y

2. find the polynomials él(z),...,éﬁliz) forming a basis of the space N,
ker T}, +1, define the matrix Ry := (2Ry(2) - - - 2Ry, (2))

3. form the matrix oy := (UR{Z*"El(Z)} . -UR{Z*”EM(Z)})

4. for j=2,...,tdo
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5. find a basis @1(2), c @ﬁj (z) of the space Nyj+1 = ker T,,jﬂ

6. fork=1,...,n;do

7. form the matrix oy := (011 aR{z_”@k(z)})
8. if rank 03 = rank oy; + 1 then

9. 011 = 09

10. Ry = <R1 z@k(z)>

11. end if

12.  end do

13. end do

14. if rank 011 # p then

15.  print “The factorization essential polynomials were not constructed. The
factorization process is interrupted”

16. stop

17. end if
ZH1 0

18. formD(z)z( Do )
0 lef2p

19. return p, .. ., fap, Ri(2)

Now by formulas (5), (6) we can construct the left factorization of a matrix polynomial.

4. Numerical Example

Based on the proposed algorithm, a procedure ExactFEP was developed, which is
the main part of the ExactMPF package in Maple. The package is designed for the exact
solution of the factorization problem for matrix polynomials. To access ExactMPF use the
commands

> read("ExactMPF.txt");
> with(ExactMPF) ;
> with(LinearAlgebra);

To obtain the factorizations of a(z) we run the module SolverExactMPF with the
argument a(z):

> 1lplus, dl, lminus, rminus, dr, rplus := SolverExactMPF(a):
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The module SolverExactMPF returns the factors Iplus, dl, Iminus of the left factorization
and the factors rminus, dr, rplus of the right factorization.

Let us give an example of using this package.

Example 1. Consider

0 22+ 132+ 15 22
0 0 1

36224+ 172 —14 2 —224+32—1 2410
a(z) =

The module SolverExactMPF gives in this case the following expression for the factors of

a(z):

> 1plus; dl; lminus;

0 22 224132415

[36 2410 22 —22+432—1
0 1 0

2200 14 5L — =0
.10 1 0], 0
0 0 1 0

The executing time is 0,500 seconds when computations were performed on a home

desktop computer HP with Intel(R) Core(TM)i3-415T CPU, 3.00 GHz, 4G RAM,
operating system Windows 10.
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3AMEYAHUE OB AJITOPUTME TOYHOI ®AKTOPU3AIIN
AJId MATPNYHBIX MHOTI'OYJIEHOB

B.M. Aodyxoe', H.B. Adyxosa'?, I Muwypuc?
TOxm0-Ypasbekuit rocyiapeTBenHblil YHIBEPCUTET, I. JeIa01HCK,
Poccniickas @eneparust

2AGepucrynr ynusepcuter, I. A6epucrynt, BesukobpuTtanusa

Cy1ecTByYOT J1Ba OCHOBHBIX IIPEISITCTBUSL JJIsI IITMPOKOI0 UCIIOIb30BAHMS METOA (haK-
topusarnunu Bumepa — Xormda 11st MaTPUI-QYHKIH, UCIOMb3YEMbBIX JIJIsT PEIIEHUsT BEKTOP-
HBIX KpaeBbix 3ajia1 Pumana. [lepBoe npenstcTBre CBSI3aHO ¢ OTCYTCTBAEM ODIIETO SIBHOTO
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MeToJa (PaKTOPU3AIUNA B MATPUIHOM CJIydae, XOTs JIjIsi KOHKPETHBIX KJIACCOB MATPUIHBIX
dyHKUMit MOryT CyIIecTBOBaTH siBHbIE (KOHCTPYKTUBHBIE) MeTobl (pakTopusanuu. Bropoe
[IPEISITCTBUE SABJISETCH CJIEICTBAEM TOTO, 9TO (paKTOPHU3AIusd MaTPUI-PYHKIINN, BOOOIIE TO-
BODS, SABJISIETCS HEYCTONYIUBOI 110 OTHOIIEHUIO K MAJIOMY BO3MYIIEHUIO UCXOAHON (DYyHKIINAM.
B pesysibrare nocsieaero, peaan3sarys Jo60ro KOHCTPYKTHBHOTO aJrOPUTMA, JaKe €CJIU OH
CyIIeCTBYeT JJIsl JIAHHOIW MATPUIbI-(DYHKIMHN, HA IPAKTUKE HE MOYXKET OBbITh OCYIIECTBJIEHA.
Boutee Toro, paspabarbsiBasi SBHbIE METOJIBI, ABTOPHI YACTO HE AHAJIU3UPYIOT €r0 YUCIEHHY O
peaJIn3aluio, HesIBHO IIpeIosarasd, 4To Bee IIaru IPeJJIozKeHHOI0 KOHCTPYKTUBHOT'O aJII'o-
pUTMa MOTYT OBITH BBIIOJHEHBI TOYHO. B miperaraeMoit paboTe MbI IPOIOJIZKAEM U3y YCHIE
CBHA3U MEXK/y SBHBIM U TOYHBIM PEIIeHusIMA 33aJa49u (PAKTOPU3AIUN B KJIACCE MATPUIHBIX
MHOrowIieHOB. OCHOBHAs 11eJib — IIOJIyYUTh AJITOPUTM TOYHOI'O BBIYUCJ/IEHUs] TaK HA3bIBae-
MBIX UHIEKCOB U CYIIIECTBEHHBIX MHOIOYJIEHOB KOHEYHOI [T0C/Ie/I0BATE/IbHOCTH MATPUIL. DTO
KpaeyroJibHbIil KaMeHb MpobJIeMbl TOYHON (DAKTOPHU3aIMN MaTPUIHBIX MHOIOYJIEHOB.

Karoueswie caosa: daxmopusayus Bunepa — Xonga; meniuyesv, mMampuyvl; cyuie-
CMBEHHDLE MHO20YACHDL NOCAED0BATNENBHOCTU.
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