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There are two major obstacles for a wide utilisation of the Wiener–Hopf factorization
technique for matrix functions used to solve vectorial Riemann boundary problems. The first
one reflects the absence of a general explicit factorization method in the matrix case, even
though there are some explicit (constructive) factorizations available for specific classes of
matrix functions. The second obstacle follows from the fact that the factorization of a matrix
function is, generally speaking, not stable operation with respect to a small perturbation of
the original function. As a result of the latter, a realisation of any constructive algorithm,
even if it exists for the given matrix function, cannot be performed in practice. Moreover,
developing explicit methods, authors do not often analyze its numerical implementation,
implicitly assuming that all steps of the proposed constructive algorithm can be carried out
exactly. In the proposed work, we continue studying a relation between the explicit and
exact solutions of the factorization problem in the class of matrix polynomials. The main
goal is to obtain an algorithm for the exact evaluation of the so-called indices and essential
polynomials of a finite sequence of matrices. This is the cornerstone of the problem of exact
factorization of matrix polynomials.

Keywords: Wiener–Hopf factorization; toeplitz matrices; essential polynomials of

sequence.

Introduction

Let A(t) be a matrix function from the matrix Wiener algebra W p×p(T) that is
invertible on the unit circle T. The representation

A(t) = A+(t)D(t)A−(t), t ∈ T, (1)

is called a left Wiener–Hopf factorization of A(t). Here A±(t) belong to the group
GW

p×p
± (T) of invertible elements of the subalgebra W

p×p
± (T), the middle factor D(t) is

the diagonal matrix D(t) = diag
[
tλ1 , . . . , tλp

]
, where integers λ1 ≥ . . . ≥ λp are the left

partial indices of A(t). The relation λ1 + . . . + λp = κ = indT detA(z) is valid. A similar
representation in which the factors A± are rearranged is called the right Wiener–Hopf
factorization.

Mathematical modelling of wave diffraction, problems of dynamic elasticity and
fracture mechanics, and geophysical problems are often reduced to the Wiener–Hopf
factorization problem for matrix functions [1–4]. The factorization of matrix functions
is also a powerful tool itself used in various areas of mathematics [5–7, 9].

Unfortunately, for the matrix case, there is no constrictive solution of the factorization
problem in a general setting and it is very important to find cases when the problem
can be solved effectively or explicitly. By the explicit (or constructive) solution of the
factorization problem we understand a clearly defined algorithmic procedure that should
definitely terminate after a finite number of steps. There are not that many classes of
matrix functions for which an explicit solution to factorization problem has been found.
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The most important of them are classes of matrix polynomials [10, 11] and meromorphic
matrix functions [12]. A detailed review of constructive methods for the factorization
problem is presented in the works [13–15].

In addition to the aforementioned lack of availability of explicit solution to the
factorization problem, in the general case, there is another obstacle to use the technique.
This is possible instability of the factorization problem. Even if an explicit method for
solving the particular factorization problem exists, each step of the respective algorithm
can be executed exactly or approximately (numerically).

We say that the problem can be solved exactly if (i) the input data belonging to
the Gaussian field Q(i) of complex rational numbers, and (ii) all steps of the explicit
algorithm can be perform in the exact arithmetic. The instability of the problem leads
to the fact that the explicit algorithm cannot be implemented numerically. As a rule,
researchers developing a particular explicit factorization method usually ignore this issue.
In fact, they implicitly assume that all steps of the proposed explicit algorithm can be
carried out exactly that, unfortunately, is not always possible.

For the first time, the need to accurate study the way of numerical implementation of
the explicit algorithm was highlighted in [16]. This has been done for matrix polynomials,
where existence of an explicit solution of the factorization problem was proved in [11].
In [16], based on this work, a criterion for the exact factorizability of a matrix polynomial
was obtained, and an exact algorithm for a solution of the factorization problem was
developed. This algorithm was also implemented as the package ExactMPF in Maple.
Thus, if the condition satisfies, the problem of an instability does not arise.

The package makes it easy to carry out numerical experiments with the Wiener–Hopf
factorization for matrix polynomials. It can be used to construct an approximate canonical
factorization with quaranteed accuracy for strictly nonsingular 2×2 matrix functions and
to the integration of a discrete analog of the nonlinear Schrödinger equation by Inverse
Scattering Transform. We hope that the application of the package will not be exhausted
by these examples.

This paper is complimentary to [16], where the length was limited by the publisher
rules. As a result, some crucial technical results have been omitted there. In particular,
the algorithm for constructing essential polynomials was not described. In this work we
fill this gap.

1. Explicit Solution of the Factorization Problems for Matrix
Polynomials

In this section, we present an explicit algorithm for the factorization of an arbitrary
matrix polynomial. Our presentation is based on the results from [11,12, 16].

Supposed that the matrix polynomial a(z) =
N∑
k=0

akz
k, ak ∈ Cp×p, is invertible on the

unit circle T. We will write its left and right Wiener–Hopf factorizations in the form

a(t) = l+(t)dL(t)l−(t), a(t) = r−(t)dR(t)r+(t), t ∈ T. (2)

Here dL(t) = diag[tλ1 , ..., tλp], and λ1 ≥ · · · ≥ λp; dR(t) = diag [tρ1 , . . . , tρp ], where
ρ1 ≤ . . . ≤ ρp. Note that left λj and right ρj indices are usually different sets of
integers and constructions of the right and left factorizations are usually considered as
two separate problems. For explicit construction of these factorizations we will use the
method proposed in the work [11]. The method requires simultaneous considerations of
the both factorizations.
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Let ∆(z) = det a(z) and ∆(z) = ∆−(z)z
κ∆+(z), ∆−(∞) = 1, be the Wiener–Hopf

factorization of ∆(z). The factorization is unique with the additional condition at infinity
for the polynomial ∆−(z). In the sequel, we use, in fact, only one of the factors, namely,
∆−(z) = 1 + ∆−

1 z
−1 + · · ·+∆−

κ z
−κ, κ = indT det a(z).

We expand the rational matrix function ∆−1
− (z)a(z) in the Laurent series at infinity:

∆−1
− (z)a(z) =

∑N

j=−∞
cjz

j . The coefficients cj ∈ Cp×p are computed recurrently in terms

of matrix coefficients aj of the original matrix polynomial, a(z), and the coefficients ∆−

j

of the scalar polynomial, ∆−(z), (see [16, Eq.(2.5)]).
To construct the factorizations of a(z) we only need a finite number of the coefficients,

ck, for k = −κ, . . . , 0, . . . ,κ. Denote cκ
−κ := {c−κ, . . . , c0, . . . , cκ}. The main tools for

computations of the partial indices and factors in the factorizations of matrix functions
are the so-called indices and essential polynomials of the sequence cκ

−κ (see [11, 17]). Let
us define these notions.

Form a finite family of the block Toeplitz matrices of finite sizes:

Tk = ‖ci−j‖i=k,k+1,...,κ
j=0,1,...,κ+k

, −κ ≤ k ≤ κ, (3)

and study the structure of the right kerR Tk = {R ∈ C(k+κ+1)×1|TkR = 0} and left
kerL Tk = {L ∈ C1×(κ−k+1)|LTk = 0} kernels of Tk. Further it is more convenient to deal
not with vectors R = (r0, r1, . . . , rk+κ)

T ∈ kerR Tk, rj ∈ Cp×1, but with their generating
column-valued polynomials R(z) = r0 + r1 z + · · ·+ r k+κ z

k+κ. We will use the spaces Nk

of the generating polynomials instead of the spaces ker Tk.
By NR

k , −κ ≤ k ≤ κ, we denote the space of generating vector polynomials for
vectors in kerR Tk. Put NR

−κ−1 := {0} and let NR
κ+1 be (2κ + 2)p–dimensional space of all

column-valued polynomials whose degrees are not greater than 2κ + 1.
Repeating the same line of reasoning, we can define the space N L

k , −κ ≤ k ≤ κ, of
the row-valued generating polynomials in z−1 for the rows from kerL Tk.

By dRk , we denote a dimension of the right kernel NR
k and introduce the following

integers: ∆R
k = dRk −dRk−1 for −κ ≤ k ≤ κ+1. A sequence cκ

−κ is called regular if ∆R
−κ = 0

and ∆R
κ+1 = 2p.

For a regular sequence, we have (see [11, 17])

0 = ∆R
−κ ≤ ∆R

−κ+1 ≤ · · · ≤ ∆R
κ ≤ ∆R

κ+1 = 2p.

Since a monotone integer sequence is piecewise constant, then there are 2p integers µ1 ≤
· · · ≤ µ 2p such that

∆R
−κ = · · · = ∆R

µ1
= 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∆R

µi+1 = · · · = ∆R
µi+1

= i,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∆R

µ 2p+1 = · · · = ∆R
κ+1 = 2p.

(4)

The absence of the j–th row here means that µj+1 = µj.

Definition 1. The integers µ1, . . . , µ2p defined by the relations (4) are the indices of the
sequence cκ

−κ.

Similarly, we can consider the sequence of the left kernel N L
k that will lead, however,

to the same indices.
Furthermore, we define the right essential polynomials of the sequence cκ

−κ. Note that
NR

k and zNR
k are subspaces of NR

k+1 as it follows from the definition of the spaces NR
k . The

dimension, hR
k+1, of the complement HR

k+1 of NR
k + zNR

k in NR
k+1 is equal to ∆R

k+1 −∆R
k .
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Then, Eqs. (4) imply that hR
k+1 6= 0 if and only if k = µj, j = 1, . . . , 2p. Moreover, in this

case, hR
k+1 is equal to the multiplicity, κj , of the index µj. Therefore, for k 6= µj we have

NR
k+1 = NR

k + zNR
k ,

and for k = µj

NR
k+1 =

(
NR

k + zNR
k

)
⊕HR

k+1.

Definition 2. Any polynomials Rj(z), . . . , Rj+κj−1(z) forming a basis for a complement
HR

µj+1 are called right essential polynomials of the sequence cκ
−κ corresponding to the index

µj.

As a result, we have defined 2p indices µ1, . . . , µ2p and 2p right essential polynomials
R1(z), . . . , R2p(z) for any regular sequence cκ

−κ. Similarly, we can define the left essential
polynomials L1(z), . . . , L2p(z) of the sequence cκ

−κ.
In factorization problems, there are natural candidates for the role of indices and

essential polynomials. To check that this is indeed the case, the following essentiality
criterion can be used ( [17, Theorem 4.1], see also [11, p. 258],):

Theorem 1. The integers µ1, . . . , µ2p are the indices and R1(z), . . . , R2p(z) are right
essential polynomials of the regular sequence cκ

−κ if and only if the matrix

ΛR =

(
σ̃R{z

−κ−1R1(z)} · · · σ̃R{z
−κ−1R2p(z)}

R1(0) · · · R2p(0)

)

is invertible. Here σ̃R{z−κ−1Rj(z)} =
∑κ+µj+1

m=1 cκ+1−mr
(j)
m .

By Theorem 3.1 from [11], the sequence cκ
−κ is regular and there exist respective

essential polynomials R1(z), . . . , R2p(z); L1(z), . . . , L2p(z) such that
(i) the constant terms of the polynomials R1(z), . . . , Rp(z) are equal to zero,
(ii) the leading terms of the polynomials Lp+1(z), . . . , L2p(z) are equal to zero.

Definition 3. The essential polynomials R1(z), . . . , R2p(z);L1(z), . . . , L2p(z) satisfying the
conditions (i), (ii) are called the factorization essential polynomials of the sequence.

Now we can formulate a final result on the explicit Wiener–Hopf factorization of a
matrix polynomial a(z).

Theorem 2. [11, Theorem 3.2] Let µ1, . . . , µ2p be the indices and R1(z), . . . , R2p(z)(
L1(z), . . . , L2p(z)

)
are the right (left) factorization essential polynomials of the regular

sequence cκ
−κ. Let us introduce the p× p matrix functions

R1(z) = (R1(z) . . . Rp(z)) , L2(z) =



Lp+1(z)

...
L2p(z)




and dL(z) = diag[z−µ1 , . . . , z−µp ], dR(z) = diag[zµp+1 , . . . , zµ2p ].
Then the left (λ1 ≥ · · · ≥ λp) and right (ρ1 ≤ · · · ≤ ρp) partial indices and the factors

(l±(z), r±(z)) of the respective factorizations of the matrix polynomial a(z) are defined by
the formulas

λ1 = −µ1, . . . , λp = −µp, ρ1 = µp+1, . . . , ρp = µ2p, (5)

l−(z) = zκ+1∆−(z)d
−1
L (z)R−1

1 (z), l+(t) = z−κ−1∆−1
−
(z)a(z)R1(z), (6)

r−(z) = ∆−(z)L
−1
2 (z), r+(z) = ∆−1

−
(z)d−1

R (z)L2(z)a(z). (7)
In the statement of this theorem, we have corrected the misprints appeared in the

formulas for the factors l+(z), r+(z) in [11, Theorem 3.2].
Let us list the basic steps of the presented factorization algorithm.
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1. Calculation of the Laurent coefficients cj , −κ ≤ j ≤ κ, for the rational matrix
functions ∆−1

− (z)a(z).

Here κ = indT det a(z) is a number of zeros of det a(z) in open disc |z| < 1.

Finding κ and constructing the factorization of scalar polynomial ∆(z) can be
considered as explicit procedures. Now calculation of the Laurent coefficient cj using
recurrence relations requires a finite number of operations.

2. Calculation of the indices for the sequence cκ
−κ.

To calculate the indices µ1, . . . , µ2p it is needed to find ranks of the matrices Tk,
−κ ≤ j ≤ κ. We can do it by means of linear algebra in a finite number of steps.

3. Calculation of the essential polynomials for the sequence cκ
−κ.

For this it is necessary to find bases of the kerR,L Tk, −κ ≤ j ≤ κ. We can do it by
means of linear algebra in a finite number of steps.

4. Constructing the factorizations in accordance with Th.2.

Now this step can be done in an explicit form.

Thus, in accordance with our understanding of the explicit solution of the factorization
problem given above, the presented algorithm indeed belongs to this class.

2. Exact Solution of the Factorization Problems for Matrix
Polynomials

In this section, we find a condition when the proposed explicit algorithm can be
implemented numerically. Due to the instability of the factorization problem, there are
two obstacles for doing this.

1. The factorization of scalar polynomial ∆(z), in general case, can only be constructed
approximately.

2. Finding the indices and essential polynomials of the sequence cκ
−κ requires

calculating ranks and constructing bases of kernels for matrices Tk. Unfortunately, those
operations can be unstable.
Thus, in general, the proposed explicit factorization algorithm can not be implemented
numerically.

Remark 1. A numerical implementation of the algorithm proposed in [10] meets into
the same difficulties.

However, there is still a possibility to implement the algorithm exactly by utilising
calculations in rational arithmetic. Obviously, we must demand that the coefficients aj
of the original matrix polynomial a(z) must belong the Gaussian field Q(i) and the
factorization of ∆(z) should be performed exactly. In this case the calculations of the
Laurent coefficients cj and finding the indices µ1, . . . , µ2p can also be made exactly.

Now we have to make sure that finding the factorization essential polynomials can also
be performed exactly. This was not done in [16] and it is the main goal of this work.

In the following theorem we describe the algorithm of finding these essential
polynomials and prove that this algorithm can be implemented in the exact arithmetic if
entries of the matrices cj, −κ ≤ j ≤ κ, belong to the field Q(i).

Theorem 3. Let cκ
−κ := {c−κ, . . . , c0, . . . , cκ} be a regular sequence of complex p × p

matrices with entries from the field Q(i). Suppose that the indices µ1, . . . , µ2p of the
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sequence satisfy the condition
∑p

j=1 µj = −κ,
∑2p

j=p+1 µj = κ, and the sequence has the
factorization essential polynomials. Then these polynomials can be found by calculations
in the exact arithmetic.

Proof. Let us restrict ourselves to considering only the right essential polynomials
R1(z), . . . , R2p(z). Algorithm of finding the factorization essential polynomials is based
on the criterion of essentiality (Th. 1).

By Definition 3, these polynomials have zero constant terms: R1(0) = · · · = Rp(0) = 0.
Hence, to construct the factorization essential polynomials R1(z), . . . , Rp(z) we must select
first p vector polynomials Rj(z) ∈ NR

µj+1, j = 1, . . . , p, such that the 2p× 2p matrix

ΛR =

=

(
σ̃R{z−κ−1R1(z)} · · · σ̃R{z−κ−1Rp(z)} σ̃R{z−κ−1Rp+1(z)} · · · σ̃R{z−κ−1R2p(z)}

0 · · · 0 Rp+1(0) · · · R2p(0)

)
.

will be invertible or, in other words, the p× p submatrices

Λ11 =
(
σ̃R{z−κ−1R1(z)} · · · σ̃R{z−κ−1Rp(z)}

)
, Λ22 = (Rp+1(0) · · ·R2p(0))

will be invertible.
Now it will be convenient to introduce the distinct indices and to assign them the

respective multiplicities. Moreover, it is necessary to highlight the border index µp. Let
ν1 < · · · < νs be the distinct indices of the sequence cκ

−κ and κ1, . . . , κs their multiplicities.
Let the index µp coincides with νt.

We will use induction by a number of indices ν1, . . . , νt. First we select the
factorization essential polynomials R1(z), . . . , Rκ1

(z) corresponding to the first index ν1
of κ1-multiplicity. They are the generating polynomials of vectors forming a basis of
ker Tν1+1. Since there are the factorization essential polynomials, there exist a basis of

Nν1+1
∼= ker Tν1+1 such that R1(z) = zR̃1(z), . . . , Rκ1

(z) = zR̃κ1
(z) for some polynonials

R̃1(z), . . . , R̃κ1
(z) from the space Ñν1+1

∼= ker T̃ν1+1, where the matrix T̃ν1+1 is obtained
from Tν1+1 by deleting of the first p columns, i.e. by deleting the first block column of

the matrix. It is easily seen that corresponding vectors R̃1, . . . , R̃κ1
form a basis ker T̃ν1+1.

Thus, by virtue the essentiality criterion (Th.1) there exists a basis of ker T̃ν1+1 such that
the 2p× κ1 submatrix(

σ̃R{z−κ−1R1(z)} · · · σ̃R{z−κ−1Rκ1
(z)}

0 · · · 0

)

of ΛR has the rank is equal to κ1. In fact, it is easy to show that this condition is fulfilled

for any choice of a basis R̃1, . . . , R̃κ1
. Since the entries of the matrices cj belong to Q(i), the

construction of this basis and calculation of the rank can be done in the exact arithmetic.
Thus, we can exactly construct the first κ1 polynomials R1(z), . . . , Rκ1

(z) such that
R1(0) = 0, . . . , Rκ1

(0) = 0, entries of the p× κ1 matrix

(σ̃R{z−κ−1R1(z)} · · · σ̃R{z−κ−1Rκ1
(z)})

belong to Q(i), and this matrix has the rank equal to κ1.
Now we repeat these considerations for the other indices ν2, . . . , νt. Assume first that

µp < µp+1. Recall that νt = µp and has the multiplicity κt. In this case κ1 + · · · + κt

coincides with the number of the indices µ1, . . . , µp, that is κ1 + · · ·+ κt = p.
Suppose that we construct the polynomials

R1(z), . . . , Rκ1
(z);Rκ1+1(z), . . . , Rκ1+κ2

(z); . . . ;Rκ1+···+κj−1+1(z), . . . , Rκ1+···+κj
(z)
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corresponding to the indices ν1, . . . , νj, 2 ≤ j ≤ νt−1, such that R1(0) = 0, . . . ,
Rκ1+···+κj

(0) = 0, entries of the p× (κ1 + · · ·+ κj) matrix

(
σ̃R{z−κ−1R1(z)} · · · σ̃R{z−κ−1Rκ1+···+κj

(z)}
)

belong to Q(i), and this matrix has the rank equal to κ1 + · · ·+ κj .
Let us define the polynomials Rκ1+···+κj+1(z), . . . , Rκ1+···+κj+1

(z) corresponding to the
index νj+1 of the multiplicity κj+1. These polynomials belong to the space Nνj+1+1

∼=

ker Tνj+1+1. Let ñj+1 is the dimension of the space Ñνj+1+1
∼= ker T̃νj+1+1 and the

polynomials Q1(z), . . . , Qñj+1
(z) be a basis of this space. Here T̃νj+1+1 is obtained from

Tνj+1+1 by deleting the first block column of the matrix. Hence, zQ1(z), . . . , zQñj+1
(z) is

a basis of the space Nνj+1+1.
From this basis , we consequently select the required polynomials. Such a selection

we will do consequently. First we choose among zQ1(z), . . . , zQñj+1
(z) a polynomial

Rκ1+···+κj+1(z) such that the matrix

(
σ̃R{z−κ−1R1(z)} · · · σ̃R{z−κ−1Rκ1+···+κj

(z) σ̃R{z−κ−1Rκ1+···+κj+1(z)}
)

has the rank equal to κ1+ · · ·+κj +1. This selection is always possible since the sequence
cκ
−κ has the factorization essential polynomials. In a similar way, we select the other

polynomials Rκ1+···+κj+2(z), . . . , Rκ1+···+κj+1
(z) for which the matrix

(
σ̃R{z−κ−1R1(z)} · · · σ̃R{z−κ−1Rκ1+···+κj+1

(z)}
)

has the rank equal to κ1 + · · ·+ κj+1.
Hence, in the case of κ1 + · · · + κt = p , we obtain, by induction, the polynomials

R1(z), . . . , Rp(z), for which the matrix

Λ11 =
(
σ̃R{z−κ−1R1(z)} · · · σ̃R{z−κ−1Rp(z)}

)

over Q(i) has the rank equal to p. Thus, in this case, the first p factorization essential
polynomials R1(z), . . . , Rp(z) are exactly constructed.

Now, we build the polynomials Rp+1(z), . . . , R2p(z) such that the matrix Λ22 is
invertible. These polynomials must be sequentially chosen from the spaces Nj+1

∼= ker Tj+1,
j = νt+1, . . . , νs. It is clear that we can always choose polynomials Rp+1(z), . . . , Rp+κt+1

(z)
from the basis Nνt+1+1, such that vectors Rp+1(0), . . . , Rp+κt+1

(0) are linear independent.
Otherwise, the sequence cκ

−κ would not have factorization essential polynomials. Repeating
these arguments for the indices νt+2 . . . , νs we arrive to polynomials Rp+1(z), . . . , R2p(z)
for which the matrix Λ22 is invertible. Therefore, in the case of µp < µp+1, the right
factorization essential polynomials can always be found by the exact computation.

Let us consider now the case when the border index µp satisfies the equality µp = µp+1,
or more precisely, when

µ1 ≤ . . . ≤ µp−l = νt−1 < µp−l+1 = · · · = µp = · · · = µp+m = νt < µp+m+1 ≤ . . . ≤ µ2p

for some l > 0, m > 0. Then κ1 + · · ·+ κt−1 = p− l, κt = l +m, κt+1 + · · ·+ κs = p−m
and κ1+ · · ·+κt = p+m > p. The right factorization polynomials R1(z), . . . , Rκ1+···κt−1

(z)
corresponding to the indices ν1, . . . , νt−1 we can construct as above. Recall that κt is the
number of the right essential polynomials Rκ1+···κt−1+1(z), . . . , Rκ1+···κt

(z) corresponding
to the index νt. They belong to the space Nνt+1

∼= ker Tνt+1. These polynomials are
divided into two type. For the first l polynomials Rκ1+···κt−1+1(z), . . . , Rp(z), the conditions
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Rκ1+···κt−1+1(0) = 0, . . . , Rp(0) = 0 and the invertibility of the matrix Λ11 must be fulfilled.
The remaining m polynomials Rp+1(z), . . . , Rκ1+···+κt

(z) ∈ Nνt+1 must be chosen so that
the vectors Rp+1(0), . . . , Rκ1+···+κt

(0) are linearly independent.
The first type polynomials we can construct as above by choosing successively l

polynomials from a basis Q1(z), . . . , Qnt+1 of the space Ñνt+1
∼= ker T̃νt+1. The existence

of the factorization essential polynomials guarantees that this process can be carried out.
The remaining m polynomials Rp+1(z), . . . , Rκ1+···+κt

(z) must be chosen from the
elements of a basis of the space Nµp+1

∼= ker Tνt+1 in a way that the rank of the matrix
(Rp+1(0) · · ·Rκ1+···+κt

(0)) is equal to m = κ1 + · · ·+ κt − p. It is again possible since the
sequence cκ

−κ possesses the factorization essential polynomials.
By repeating this choice for the spaces Nνj+1

∼= ker Tνj+1, j = νt+1, . . . , νs, we obtain
the polynomials Rp+1(z), . . . , R2p(z) for which the matrix Λ22 is invertible. Then, for
the polynomials R1(z), . . . , Rp(z), Rp+1(z), . . . , R2p(z), the matrix ΛR is invertible and
these polynomials are the right factorization essential polynomials. To evaluate these
polynomials, we have solved block Toeplitz systems with the coefficients belonging to
Q(i) and have found the ranks of matrices with entries from this field. All such operations
can be performed exactly.

To obtain the left factorization essential polynomials, we can carry out similar
construction with the sequence of left kernels of matrices Tk, −κ ≤ k ≤ κ, or can
apply a conformance procedure (see [17], Def. 5.3). This procedure can be also fulfilled
exactly. The conformance procedure that is used to construct the left factorization essential
polynomials, is described in [17].

✷

After finding the indices and factorization essential polynomials, we can exactly
construct the Wiener–Hopf factorizations using the formulas (5) – (7).

3. Pseudo-Code for an Exact Constructing the Right Factorization

Essential Polynomials

The full variant of the pseudo-code for the algorithm of simultaneous construction
of the left and right factorizations is given in [18]. However, if only one type of the
factorization is needed (for instance, the left factorization), using the full algorithm leads
to a significant increasing in execution time. For this reason, in this section we give the
pseudo-code for construction of the left factorization only. For simplicity, here we restrict
ourselves to the case when µp < µp+1.

Algorithm. Indices and right factorization essential polynomials of a sequence

Input. The sequence cκ
−κ := {c−κ, . . . , c0 . . . , cκ}, cj ∈ Qp×p(i).

Output. The indices µ1, . . . , µ2p and the matrix of the right factorization essential
polynomials, R1 :=

(
R1(z) · · ·Rp(z)

)
,

1. find the distinct indices ν1, . . . , νs, their multiplicities κ1, . . . , κs, form the indices
µ1, . . . , µ2p, and the number t such that µp = νt

2. find the polynomials R̃1(z), . . . , R̃κ1
(z) forming a basis of the space Ñν1+1

∼=
ker T̃ν1+1, define the matrix R1 :=

(
zR̃1(z) · · · zR̃κ1

(z)
)

3. form the matrix σ11 :=
(
σR{z−κR̃1(z)} · · ·σR{z−κR̃κ1

(z)}
)

4. for j = 2, . . . , t do
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5. find a basis Q̃1(z), . . . , Q̃ñj
(z) of the space Ñνj+1

∼= ker T̃νj+1

6. for k = 1, . . . , ñj do

7. form the matrix σ2 :=
(
σ11 σR{z−κQ̃k(z)}

)

8. if rankσ2 = rankσ11 + 1 then

9. σ11 := σ2

10. R1 :=
(
R1 zQ̃k(z)

)

11. end if

12. end do

13. end do

14. if rankσ11 6= p then

15. print “The factorization essential polynomials were not constructed. The
factorization process is interrupted”

16. stop

17. end if

18. form D(z) =

(
zµ1 ... 0
...

...
...

0 ... z
µ2p

)
.

19. return µ1, . . . , µ2p, R1(z)

Now by formulas (5), (6) we can construct the left factorization of a matrix polynomial.

4. Numerical Example

Based on the proposed algorithm, a procedure ExactFEP was developed, which is
the main part of the ExactMPF package in Maple. The package is designed for the exact
solution of the factorization problem for matrix polynomials. To access ExactMPF use the
commands

> read("ExactMPF.txt");
> with(ExactMPF);
> with(LinearAlgebra);

To obtain the factorizations of a(z) we run the module SolverExactMPF with the
argument a(z):

> lplus, dl, lminus, rminus, dr, rplus := SolverExactMPF(a):
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The module SolverExactMPF returns the factors lplus, dl, lminus of the left factorization
and the factors rminus, dr, rplus of the right factorization.

Let us give an example of using this package.

Example 1. Consider

a(z) :=

(
36z2 + 17z − 14 z4 − z2 + 3z − 1 z + 10

0 z2 + 13z + 15 z2

0 0 1

)
.

The module SolverExactMPF gives in this case the following expression for the factors of
a(z):

> lplus; dl; lminus;

[
36 z + 10 z4 − z2 + 3z − 1
0 z2 z2 + 13z + 15
0 1 0

]
,

[
z2 0 0
0 1 0
0 0 1

]
,



1 + 17

36z
− 7

18z2
0 0

0 0 1
0 1 0




The executing time is 0,500 seconds when computations were performed on a home
desktop computer HP with Intel(R) Core(TM)i3-415T CPU, 3.00 GHz, 4G RAM,
operating system Windows 10.
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ЗАМЕЧАНИЕ ОБ АЛГОРИТМЕ ТОЧНОЙ ФАКТОРИЗАЦИИ
ДЛЯ МАТРИЧНЫХ МНОГОЧЛЕНОВ

В.М. Адуков1, Н.В. Адукова1,2, Г. Мишурис2
1Южно-Уральский государственный университет, г. Челябинск,
Российская Федерация
2Аберистуит университет, г. Аберистуит, Великобритания

Существуют два основных препятствия для широкого использования метода фак-
торизации Винера – Хопфа для матриц-функций, используемых для решения вектор-
ных краевых задач Римана. Первое препятствие связано с отсутствием общего явного
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метода факторизации в матричном случае, хотя для конкретных классов матричных
функций могут существовать явные (конструктивные) методы факторизации. Второе
препятствие является следствием того, что факторизация матриц-функций, вообще го-
воря, является неустойчивой по отношению к малому возмущению исходной функции.
В результате последнего, реализация любого конструктивного алгоритма, даже если он
существует для данной матрицы-функции, на практике не может быть осуществлена.
Более того, разрабатывая явные методы, авторы часто не анализируют его численную
реализацию, неявно предполагая, что все шаги предложенного конструктивного алго-
ритма могут быть выполнены точно. В предлагаемой работе мы продолжаем изучение
связи между явным и точным решениями задачи факторизации в классе матричных
многочленов. Основная цель – получить алгоритм точного вычисления так называе-
мых индексов и существенных многочленов конечной последовательности матриц. Это
краеугольный камень проблемы точной факторизации матричных многочленов.

Ключевые слова: факторизация Винера – Хопфа; теплицевы матрицы; суще-

ственные многочлены последовательности.
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