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Volatility forecasting is required for risk management, asset allocation, option pricing,
and financial market trading. It can be done by using various time series forecasting
techniques and Artificial Neural Networks (ANN).

The current research focuses on the modeling and forecasting of stock market indices
using high-frequency data. A recent high-frequency volatility model is called the Realized
GARCH (RGARCH) model, where the key feature is an equation that relates the realized
measure to the conditional variance of returns. This equation incorporates an asymmetric
reaction to shocks, providing a highly flexible representation of market dynamics.

This paper proposes an hybrid model where ANN and RGARCH are used to forecast
stock return volatility. This model was established by entering the predicted Realized
Volatility (RV), calculated using RGARCH, into the ANN. The choice of the input variables
of the ANN is made using the Granger causality test in order to reduce the noise which
would affect the prediction system and which could be generated by an input variable not
statistically linked to stock market volatility.

The results show that a hybrid model based on a recurrent neural network (RNN)
outperforms the RGARCH and HAR-type models in out-of-sample evaluations according
to the RMSE and the correlation coefficient.

Keywords: volatility; Realized GARCH model; hybrid; Granger causality test.

Introduction

Forecasting the stock market is an effort to anticipate how a future event will be
unfolded and is done by using various time series forecasting techniques. The stock market
is fundamentally volatile, therefore forecasting its movement will be beneficial to stock
traders when developing trading methods. Researchers have used different forecasting
techniques to examine the volatility in the stock market.

Engle [1], a pioneer in volatility modeling, developed the Auto Regressive Conditional
Heteroskedastic (ARCH) model to anticipate time series data volatility. The Generalized
Autoregressive Conditional Heteroskedasticity (GARCH) model, developed by Bollerslev
[2], incorporates a moving average component in modeling time-series data volatility in
addition to the autoregressive component. In these models, The asymmetrical return
volatility is not taken into consideration. A number of articles argued that GARCH models
have limited practical usefulness.

Nelson [3| proposed the exponential GARCH (EGARCH) model to describe the
volatility of time-series data based on the asymmetrical influence of positive and negative
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error factors on volatility. The model anticipates the volatility of a time-series variable
using conditional variance as a multiplicative function instead of the addictive functions
of lagged innovations. It takes into account the symmetrical and asymmetrical volatility of
returns. Eryilmaz [4] examined the stock market volatility of the Istanbul Stock Exchange
using the BIST-100 index from 1997 to 2015. The study used the ARCH, GARCH,
EGARCH, and Threshold ARCH models. The EGARCH model was the most accurate
predictor of volatility.

A number of studies have been published in response to the emergence of high-
frequency data in the financial world. The realized variance established by Anderson et
al [5] and Bandorff-Nielsen and Shephard [6], the realized kernel presented by Barndorff-
Nielsen et al (2008), and many other related quantities have become popular research
tools. These measures are more precise and efficient on the level of daily volatility than
the squared returns of financial series often used.

Engel (2002) was the first to examine this type of approach, by proposing the GARCH-
X model which includes the realized variance in the GARCH model. Nielsen et al (2007),
extended this model using realized variance. This model, however, is considered incomplete
or partial, because it does not take into consideration the dynamics of the measurements
made.

A recent study of high-frequency volatility modeling using a GARCH model was
proposed by Hansen et al [7]. These authors built a new model called Realized GARCH
(RGARCH). An equation that connects the realized measure to the conditional variance
of returns is an important component of the RGARCH model. It is distinguished from the
classic GARCH model by its ability to precisely determine the dynamics of its relation
with conditional variance, taking into account the asymmetry of effects due to shocks.

In financial econometrics, the importance of jumps is rapidly growing. Barndorff-
Nielsen and Shephard [8], Lee and Mykland [9], Ait-Sahalia and Mancini [10], and Boudt
et al [11]| have researched jump detection and volatility in the presence of jumps. Barndorff-
Nielson and Sheppard (2004) suggest using the bipower variation measure (BPV) to
separately estimate the integrate variance (V') and the jump components.

In finance, the study of long-memory properties of time series is even more common.
Several authors have suggested that the stock returns for stock prices exhibit long-
memory behavior (Mandelbrot, 1971, Greene and Fielitz, 1977). Corsi [12] proposed
the Heterogeneous Autoregressive model for RV (HAR-RV) that takes into account RV
throughout a range of interval sizes. This model has been successful in capturing the
long-memory behavior of volatility.

Financial series present complex and non-linear behaviors that make modeling difficult,
AT techniques have been successfully tested for prediction problems. Artificial Neural
Networks (ANN) have been used successfully in many studies [13|. Fausett [14] showed
that an ANN with single hidden layer is sufficient to approximate any continuous function
to an arbitrary degree of precision.

To improve the predictive ability of financial time-series models, traditional time-
series models are combined with neural networks for volatility forecasting. Hybrid systems
attempt to go beyond these results and overcome the shortcomings of other models by
extracting input variables from statistical methods and including them in the ANN. Lu et
al [15] evaluate the performance of two types of hybrid ANN and GARCH-type models in
forecasting volatility showing that the EGARCH-ANN model outperforms other models
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in forecasting the log-return series volatilities in the Chinese energy market, and there are
significant leverage effects in the Chinese energy market.

Dimitrios [16] investigates whether nonlinear models such as Principal Components
Combining, neural networks, and GARCH are more accurate than the Heterogeneous
Autoregressive (HAR) model at forecasting RV. The results show that the persistence of
RV is just too significant to be ignored in RV forecasting.

[17] compares two approaches: HAR-RV and Feedforward Neural Networks (FNN).
It was found that HAR-RV-J performs better, but not significantly better, than the FNN-
HAR model in terms of accuracy, while the FNN-HAR-J model performs significantly
better than the FNN-HAR model. Huang [18| proposed a network autoregressive model
with GARCH effects (NAR-GARCH), which makes satisfactory predictions for 20 stock
indices.

In this paper, we are interested in the statistical analysis of the history of stock index
return volatility based on the analysis and modeling of the internal dynamics of the series
using the information extracted from these statistical characteristics. The data used in
this study is from the Oxford-Man Institute “realised library” which contains daily non-
parametric measures of how volatile financial indexes were in the past.

The problem of predicting stock return volatility is widely documented in the
literature. However, a literature review shows that selection criteria for inputs are rarely
used. In general, a large set of predictor variables of different categories is considered
without verifying whether these input variables cause variation in return volatilities.
This approach may automatically include entries that introduce noise into the predictive
systems and therefore reduce their predictive performance.

The most important step in a neural network is the right choice of input variables in
order to provide predictive systems with only the input variables that show a statistical
causal link with the output variable. The input variables chosen in this study are the only
ones that cause a significant variation in the (RV) using the Granger causality test [19].
The proposed model blends the Realized GARCH model and ANN. The results show
that the ANN models are more resilient than FNN and statistical models in predicting
volatility.

The rest of this paper is divided into three sections. The Methodology is presented in
section 1. The data analysis and application are presented in section 2, and concluding
remarks are presented in section 3.

1. Methodology

The RGARCH model, introduced by Hansen et al (2012), describes the RV stylized
facts very well. This shows that, compared to traditional GARCH models that simply
by employing daily returns, a RGARCH structure leads to substantial improvements in
the empirical fit. The model requires a good choice of input variables for the ANN that
can lead to the best predictions. The choice of input variables is based on the statistical
analysis of the history of the series in question. The variables selected by the Granger
test will constitute the final inputs of the predictive system. The principal input in the
proposed models is the forecast RV of the RGARCH model, as a result of their application
in forecasting the volatilities of economic and financial variables, we also included the
previous bipower and jump volatility components as ANN inputs to capture the impact of
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jumps. Finally, to capture the long memory in the series we included weekly and monthly
volatility.

The goal is to compare various combinations of input variables in order to detect which
ones generates noise in the predictive model. The back-propagation algorithm is used to
estimate the weights of the hybrid models.

1.1. Realized Measure

Assume that the logarithm of an asset price p; follows the diffusion equation:

1 1
bt = / Msds + / Usdwsa (]‘)
0 0

where p, is the drift, o, is the spot volatility and W; is the standard Brownian motion,
with the time interval normalized to 1.
The quadratic variation (QV )defined as :

QV = / 1 olds. (2)
0

The sum of frequently sampled squared returns, also known as RV, is a natural estimator
for QV (Andersen et al 2001).

Define r;; = pi+ — pi—1+ as the it" return on day t, where each intra-day time is
subscripted as ¢ = 1,2, ...,n. The realized variance is simply the sum of the n intra-day

squared returns
n

RV, =Y 1}, (3)

i=1
This estimator converges to QV,
RV 5 QV. (4)

1.2. Jump Process and Bipower Variation

When unexpected news hits the market, prices tend to show sudden and distinct
movements, i.e. jumps.
Let p; denote the logarithmic asset price at time t. The price in stochastic differential

equation form is:
1 1
pr = / psls + / o dWo+ Y s, (5)
0 0

0<s<N

where N is the number of jumps and is a finite-activity simple counting process and J, are
non-zero random variables.

The QV of returns over the interval [0,1] is given by the sum of the diffusive IV and
the cumulative squared jumps:

1
QV:/ olds+ > J2, (6)
0

0<s<N

where J; captures a jump (if present).
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The RV Estimator is a consistent measure of the total QV in the presence of Jumps.
Barndorff-Nielson and Shephard (2006) propose BPV (BiPower Variation) as a consistent
estimator for the integrated variation. BPV is defined as:

BPV:T(/QZ‘TZHTz—ﬂ (7)
=2

The limit of BPV includes only the )V component related to the continuous element of
the price process.

1
BPV—£>/)ﬁd9 (8)
0

Let us assume that [, , is a variable that takes the value 1 if a jump has been detected
on day ¢ at the « significance level (and 0 otherwise). Then the estimate of the realized
jumps is given by:

Jio = I o(RV, — BPV}). (9)

1.3. RGARCH Model

Standard GARCH models use daily returns (generally squared returns) to extract
information about the current level of volatility, and this information is used to form
expectations about the next period’s volatility. The implication is that GARCH models
are poorly suited for situations where volatility is extreme.

In this section, we present the RGARCH model, whose main characteristic is
conditional variance, h; = var(r¢|F;_1), where r; is a return time series. In the GARCH(1,1)
model, the conditional variance h; is a function of h;_; and r;_;, whereas, in RGARCH,
hy will depend on x;_1, which represents a RV measure, such as the realized variance.
A measurement equation, which links the realized measurement to the hidden volatility,
completes the model.

The RGARCH(1,1) model of Hansen et al (2012) is given by:

re = Iz, 2z ~i.0.d(0, 1),
{ hy = w+ ~vyx1 + Bhi_q, (10)
T =&+ Ohy + iz + (22 — 1) + &,
where we have defined the dynamics for the returns (r;), the conditional variance (h;) and
the realized measure (z;). To ensure that the long-run unconditional variance is finite and
positive, the necessary conditions for the RGARCH(1,1) model are:

w49 >0,0<8+vp <1,

It is sufficient that the parameters w, §, and v be positive in order to guarantee the
positivity of each h;.

1.4. ANN

ANN have the advantage of approximating any nonlinear function (Cybenko, 1989).
In this study, we use a multilayer perceptron (MLP) composed of an input layer, a hidden
layer, and an output layer. The conventional back-propagation technique, which uses
gradient descent, is used to minimize the quadratic error. The ANN with a single hidden
layer used for forecasting is illustrated in Fig. 1.
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Fig. 1. The structure of FNN

Neurons in the input layer distribute input signals (z;) to the neurons of the hidden
layer. Each neuron j in the hidden layer receives all the other input signals (z;) weighted
with connection weights wj;.

a; = Z’LU]Z.CI?Z (11)
=1

Each neuron j in the hidden layer computes its output as follows:

zj = f(z w;iT;), (12)

where f is an activation function.
The node of the output layer is degned as:

Yr = ijkf(z wjil'i)‘ (13)

FNN have a number of drawbacks, such as poor memory. It is impossible for FNN to
remember prior inputs or states as they do not store any historical data and each input is
processed independently. Therefore they are inappropriate for tasks requiring the capture
of temporal dependencies or long-term memory. On the other hand, Recurrent neural
networks (RNN) overcome these restrictions by integrating feedback connections, enabling
them to record data from prior inputs.

1.5. Hybrid Models

In this paper, we look at how to incorporate RGARCH into an ANN structure. We
expected that adding a neural network term to RGARCH would explain the delicate
nonlinearity of RV. Even though RGARCH describes stylized RV facts very well, it is
insufficient for capturing jumps in return volatilities. Many researchers suggested that
continuous volatility and jump components have different dynamics and should thus be
modeled separately. In terms of economics, identifying the jump component detects the
risk associated with the jump. As a result, we can anticipate the links between political
or economic news and price jumps. RGARCH ignores the possibility of a long memory in
the return volatility series. The input variables of the ANN are chosen using the Granger
causality test.
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We proposed three neural network-based RGARCH models. To predict RV at time
t, the first model is built by entering the forecast series of RV using RGARCH, F(t),
the previous Bipower variation BPV(t — 1), and a jump component Jmp(t — 1). The
continuous and discontinuous components of @V have different dynamics, so, the ability
to separate them may lead to improved predictions.

The second hybrid model is built by considering F'(t), the previous Bipower variation
BPV(t — 1), Jmp(t — 1), RV(t — 1), the weekly RV Vw(t — 1), and the monthly RV
Vm(t — 1) as input to the ANN, in order to capture the long memory of return volatility.

We also developed a third model where the same inputs as the second hybrid model
are fed into a standard recurrent neural network (RNN) to benefit from its capacity to
learn and retain information. RNN have recurrent connections that enable them to keep
internal memory and capture temporal dependencies in the data, in contrast to FNN which
receive inputs sequentially and one-way. This makes RNN especially suitable for situations
where identifying underlying patterns or making correct predictions depends on the order
and context of the input data. The performances of three neural network-based RGARCH
models are evaluated using out-of-sample forecasting errors.

2. Data Analysis

We considered a simple realized measure estimator from the Oxford-Man Institute of
Quantitative Finance (which contains daily information about stock indexes from 2000 to
2017) with a sampling frequency of the 5-min realized variance of the stock index for the
period from 2012 to 2017.

We used correlation matrix graphs (Fig. 2) to identify three stock market indexes that
exhibit low correlation among themselves. The data sample is subdivided into two sets,
the first one contains 720 observations and is used to train and develop the model; the
second set of 180 observations is used to test the model.
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When examining the correlation matrix, we looked for values that were close to zero,
which denotes a weak correlation between the variables. We were able to lower the risk of
multi-collinearity and increase the quality of our analysis by identifying poorly correlated
stock indices. This is particularly critical when developing predictive models or doing
statistical studies.

Using correlation graphs allowed us to choose three stock market indices (Nasdaq100,
IBEX 35, and All Ordinaries) with low correlation between them.

2.1. RGARCH

This study focuses on daily financial returns (r;) of Nasdaq 100, IBEX 35, and All
Ordinaries stock indexes multiplied by 100, from 01/03/2012 through 12/04/2017. The
dataset is separated into two subsets. The training set represents 80% of the dataset, and
the testing set represents 20%.

RGARCH is used to capture the mean features of volatility. The partial autocorrelation
function (PACF) can be used for the identification of the autoregressive component of the
RGARCH model. The correlograms of the three stock indexes’ volatility are given in
Figs. 3, 4, and 5.
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Fig. 3. ACF and PACF of Nasdaq 100 RV
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Fig. 4. ACF and PACF of IBEX 35 RV

Table 1 shows the result of the Hurst exponent test, which is a statistical tool used
to assess the long-term memory and predictability of time-series data, often known as the

52 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2023, vol. 16, no. 4, pp. 45—60



I[TPOI'PAMMIPOBAHNE

Hurst coefficient. The exponent value varies from 0 to 1, with values above 0,5 indicating
persistence while values below 0,5 suggest a random or uncorrelated series.
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Fig. 5. ACF and PACF of All Ordinaries RV

Table 1
Hurst exponent test
Stock Index Nasdaq100 | IBEX35 | All Ordinaries
Empirical Hurst exponent 0,7717 0,6675 0,7558

All the results are above 0,5. This indicates that the data may have a memory
that extends beyond short-term fluctuations. A high Hurst exponent indicates that price
movements have a higher chance of continuing in the same direction. According to the
correlogram and Table 1, the time series exhibits a slowly decreasing ACF over time,
which indicates the presence of a long memory.

The correlogram shows that the Realized variance at time ¢ presents a significant and
positive correlation with its Realized variance at time t — 1. We use the RGARCH model
with the conditional variance, h;, as a function of h;_; and x;_;. Table 2 indicates the
parameter estimation of the RGARCH model.

The parameters of the RGARCH model demonstrate significance at the 5% level, with
the exception of the w parameter, which exhibits significance at the 13,8% level.

2.2. Hybrid Models

Data Preprocessing

In machine learning and AI, hybrid models have grown in significance. These
models boost their performance and solve challenging real-world tasks by combining the
advantages of different neural network architectures or by using other machine learning
approaches. The advantages of several models are combined in the suggested hybrid model
to increase accuracy, resilience, interpretability, and flexibility.

A critical step in determining the architecture of the neural networks is selection of
variables. In this paper, we used the Granger causality test (Table 3) to optimally detect
the relevant explanatory variables. After identifying the set of inputs, a suitable number
of hidden layers and hidden neurons can be chosen.

According to the approximation theorems [20, 21], in theory, only one hidden layer
suffices for the approximation of any sufficiently regular function. We utilized this rule of
thumb to determine the number of neurons in the hidden layer.
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Table 2
Parameters of the RGARCH model
Parameters ‘ Coeflicients ‘ Std.errors ‘ t-stats ‘ P-Value ‘
Nasdaq 100

w 0,065248 | 0,016619 | 3,02617 | 0,000086
~ 0,374533 | 0,031176 | 12,01333 | 0,000000
B 0,563362 | 0,028617 | 19,68595 | 0,000000
¢ —0,168856 | 0,036386 | —4,64064 | 0,000003
¢ 1,066909 | 0,047236 | 22,58653 | 0,000000

™ —0,108463 | 0,011153 | —9,72489 | 0,000000
2 0,095760 0,006349 | 15,08341 | 0,000000
IBEX 35

w 0,026176 0,017659 1,4823 0,138255
v 0,322072 0,054362 5,9246 0,000000
16 0,656985 0,061559 10,6724 | 0,000000
& —0,067626 | 0,040465 —1,6712 | 0,094682
) 0,872304 0,057890 15,0683 | 0,000000
™ —0,085037 | 0,015258 —5,5731 | 0,000000
Mo 0,117116 0,009440 12,4065 0,000000
All Ordinaries
w 0,062612 0,021228 2,949465 | 0,003183
v 0,189679 0,023508 8,068645 | 0,000000
16 0,752958 0,028289 | 26,617057 | 0,000000
§

¢

—0,477966 | 0,057292 | —8, 342585 | 0,000000

1,095063 0,075504 | 14,503374 | 0,000000
T —0,039646 | 0,017302 | —2,291441 | 0,021938
2 0,194495 0,009983 | 19,483439 | 0,000000

The activation function of the hidden layer is the sigmoid function that takes any real
value as output values in the range of 0 to 1. It is differentiable and provides a smooth
gradient. A gradient descent was used to train the FNN and RNN. We employed an early
stopping method that allows the training to be halted when the validation loss no longer
improves. This avoids overfitting and ensures that the network is trained for an optimal
number of epochs.

The weights of neural networks are commonly initialized according to a law centered
at zero with a standard deviation less than one. It would have been preferable to normalize
the different features to accelerate the gradient descent’s convergence. The results found
after normalization show that the algorithm could never converge when training the model,
which means that the normalization can lead to the loss of information.

The majority of our data are in the range 0 to 10, which makes finding an optimal
result during gradient descent more difficult. The solution is to divide our data (inputs and
target) by ten to generate data in the range 0 to 1. The results are presented in Table 3,
where the probability is associated with the acceptance or rejection of the null hypothesis.

The five factors above have a significant causal link to the RV. Therefore, these
factors are used as inputs in ANN. The graphic representation of the predicted results
and forecasted volatility are given in Fig. 6, 7, 8.
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Table 3
The results of the Granger causality test
Probability
Null hypothesis ‘ Nasdaq 100 ‘ IBEX 35 ‘ All Ordinaries
Fr, does not cause RV 0.0005378 *** | 0.0001564 *** | 4.131e-06 ***
Bipower variation does not cause RV 0.0351* 0.003403 ** 0.006459 **
Jump component does not cause RV 0.0182 * 0.002858 ** 0.05757
Weekly volatility does not cause RV 0.0108 * 0.03305 * 0.0015 **
Monthly volatility does not cause RV 0.0130 * 0.04156 * 0.0484 *

Signif : 0 7*** 0,001 "** 0,01 "** 0,05°.7 0,1’ 1
Fry: represents the forecasted RV based on the RGARCH model.
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Fig. 6. Nasdaq 100 predicted testing results
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Fig. 7. IBEX 35 predicted testing results

Fig. 6, 7, and 8 show that the second hybrid model based on FNN exhibits poor
performance and introduces noise into the predictive system, despite the fact that all of
the input variables have a high correlation with the output.
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Fig. 8. All Ordinaries predicted testing results

2.3. A Comparison of Forecasting Performance Between Statistical Models
and Hybrid Models

The comparison of volatility forecasts was conducted for a one-step ahead horizon in
terms of mean squared error (MSE) defined as follows:

N
MSE = 1/N Y "(RVighs — RViprea)®,
i=1
where RV, represents the observed value for ¢ = 1,2, ..., N. N is the number of out-of-
sample observations, and RVj,..q is the predicted value by the model. 180 out-of-sample
observations are used to forecast the volatilities and examine the performance of statistical
and hybrid models.

2.3.1. Empirical Results

Figs. 9 and 10 provide the results of the statistical models and the proposed model to
predict stock index volatilities using MSE and p.
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Fig. 9. The results of forecasting volatilities based on MSE

According to Figs. 9 and 10, the third hybrid model based on RNN performs better
than model-based FNN and statistical models.
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Fig. 10. The results of forecasting volatilities based on the correlation coefficient

Conclusion

Volatility forecasting plays a central role in financial applications such as asset
allocation and option pricing, hedging, and risk analysis. Predicting stock index volatility
is a very difficult task as the time series characterizing stock index movements are complex
and difficult to model.

The GARCH family of models are the most widely used approach to modeling and
forecasting asset return volatility. The GARCH model has been criticized for failing
to account for asymmetric volatility. As a result, a new class of asymmetric GARCH
specifications, such as RGARCH, has been introduced into the literature. This model
takes into account the asymmetry of the effects due to the shocks, but it does not simulate
the stock fluctuations with the jump effect well; and nor does it take long memory into
consideration.

The proposed approach is based on a combination of the RGARCH and ANN models.
The predicted value from the RGARCH model is the input variable and other factors that
showed a causal link with the output variable using the Granger causality test.

The empirical results indicate that the stylized facts relating to the behavior of the
volatility are better captured by the First Hybrid model. This means that the ANN model
is improved by including the forecasted volatility based on the RGARCH model, the jump
component, and the Bi-Power Variation of the stock index as input for the neural network.
The findings also show that the addition of the RV of the previous day, the previous week,
and the previous month to the FNN model generates noise in the predictive model.

FNN is sometimes referred to as a static network by researchers. Even when sample
data display temporal dependency, FNN do not display memory. By permitting internal
feedback, RNN overcome this limitation. For this reason, we employed RNN with a set
of samples that includes all variables that exhibit a causal link with the output in order
to simultaneously capture asymmetry, the jump effect, and long-term dependence. The
results show that RNN outperformed FNN and classic econometric approaches.

In this paper, our focus has been on the statistical analysis of historical volatility.
However, in practical applications, incorporating a combination of categories of
information (such as economic, technical, and historical data) can enhance the accuracy
of volatility predictions. This perspective highlights the potential for further research into
the integration of diverse information sources for improved prediction outcomes.
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IIPOTHO3MPOBAHUE BOJIATUJIBHOCTHU JOXOJHOCTU AKITUIA
C NCIIOJIbBOBAHUVNEM PEAJIN3OBAHHOI'O GARCH MO/EJIb
1 NICKYCCTBEHHA S HEVIPOHHAY CETH

IOccpa Baxxaau', Mxamed Iav Mepuzuyu', Ab6deavradu Axapud',
A60eana Aszmanu!
YVuusepcurer A6ayna Masuka Ann Caann, 1. Teryan, Mapokko

[IporrosupoBanue BOJATHIBHOCTU BBI3BAJIO MHTEPEC YUEHBIX U MPAKTUKOB B 00JIACTH
MOJIEJTUPOBAHUY (DOHIOBOTO PBIHKA, PACIPEIE/IEHUsI AaKTUBOB, [EHOOOPA30BAHUS OMIHOHOB
U TOPrOBJIA Ha (PUHAHCOBBIX PHIHKAX. DTO HEOOXOIUMO JIJIsl YIPABJICHUS PUCKAMU, PACIIPE-
JIeJICHUsI aKTUBOB, [I€HOO0Pa30BaHKs ONIMOHOB U TOPTOBJIU Ha (DUHAHCOBBIX PBIHKAX. DTO
MOKET OBITH CJEJIAHO € TIOMOIIBIO PA3JIMIHBIX METOJI0B TPOIrHO3UPOBAHNS BDEMEHHBIX PSIIOB
U HCKYCCTBEHHBIX HelipoHHbIX cereil (MTHC).

Texyiree wncciieIoBaHUE MOCBSIIEHO MOJICJIMPOBAHUI0 W MPOTHO3ZUPOBAHUIO HHIEKCA
(OHIOBOTO PBIHKA, ¢ UCIIOJIHL30BAHNEM BHICOKOUACTOTHBIX JIaHHBIX. HelaBHee uccyienoBanmue
MOJIEJIMPOBAHNS BHICOKOYACTOTHON BOJIATHILHOCTU Ha3biBaeTcsa Moaeiab Realized-GARCH,
rjie KJII0UeBOil 0COGEHHOCTBIO SIBJISETCS YPaBHEHUE U3MEPEHHsI, KOTOPOE CBSI3bIBAECT PeasIu-
30BAHHYIO Mepy C YCJIOBHOI muctiepcueii qoxonnocru. 3areM, Realized-GARCH yuunrsiBaer
acuMMeTprio 3PPEKTOB, BHISBAHHBIX MTOKAM.

B nannoit pabore nipeyiaraercs rudbpugaas mogeab: ANN u mozgesns Realized-GARCH
JIUTsI TIPOTHO3UPOBAHUST MHIEKCA BOJATUILHOCTH JIOXOJHOCTH akimii. Jannas Mojiesnb ObLIa
CO3J]aHa [TyTEeM BBEJICHUS IPOTHO3UPYEMOI PeaIn30BaAaHHON BOJATUILHOCTH BOJIATUILHOCTH
(RV) ¢ ucnonbzosanuem mogenn Realized GARCH s THC. Brifop BXOJHBIX II€PEMEHHBIX

AHH 6b11 cestal ¢ UCIOJIB30BAHUEM TeCTa IPUYUHHOCTU ['pelfiHaKepa, 4T00bI Y MEHBIIUTD
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[IIyM, KOTODPBI MOXKET OBJIAITH HA CHCTEMY [TPOTHO3UPOBAHUS U KOTOPBIA MOYXKET ObIThH
MOPO2KJIEH BXOJHON II€PEeMEHHOII IepEMEHHOH, He CBA3aHHOII CTATUCTUYECKU C IOBEICHUEM
BOJIATHJILHOCTU (POHJIOBOTO PHIHKA.

PesysbraThl 10Ka3bIBAIOT, YTO THOPHUAHAs MOJEIL IpeBocxoauT Mojenn Realized
GARCH u HAR-Tuna Bo BHeBBIGOpOYHOI onenke 10 RMSE u koaddurmenty KoppeJs-
1Uu.

Karoueswie caosa: soramuavhocms; modeav Realized-GARCH; 2ubpud; mecm npusun-

nocmu I'petindorcepa.
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