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A new method for solving the Cauchy problem for an ordinary differential equation
is proposed and implemented using the collocation and least squares method of increased
accuracy. It is based on the derivation of an approximate nonlinear equation by a multipoint
approximation of the problem under consideration. An approximate solution of the problem
in the form of the Pade approximation is reduced to an iterative solution of the linear least
squares problem with respect to the coefficients of the desired rational function. In the case
of nonlinear differential equations, their preliminary linearization is applied. A significant
superiority in accuracy of the method proposed in the paper for solving the problem over
the accuracy of the NDSolve procedure in the Mathematica system is shown. The solution
of a specific example shows the superiority in accuracy of the proposed method over the
fourth-order Runge-Kutta method. Examples of solving the Cauchy problem for linear and
non-linear equations with an accuracy close to the value of rounding errors during operations
on a computer with numbers in the double format are given. It is shown that the accuracy
of solving the problem essentially depends on the complexity of the behavior of the values
of the right-hand side of the equation on a given interval. An example of constructing a
spline from pieces of Pade approximants on partial segments into which a given segment is
divided is given in the case when it is necessary to improve the accuracy of the solution.
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Introduction

The fractional rational functions discovered by Henri Pade aroused the interest of
mathematicians in studying their properties primarily from the point of view of the
theory of functions. A large number of works are devoted to this topic [1 — 7]. One of
the most important properties of fractional rational functions is their applicability to find
high-precision approximations of Pade approximation functions, which can be much more
accurate than polynomial ones. For them, we will use the generally accepted designation
[L/M] and PA together. In the notation [L/M], the value of L is the degree of the
polynomial in the numerator, and M is the degree of the polynomial in the denominator
of fractional rational functions.

For objective reasons, the use of Pade approximations for solving computational
mathematics problems is inferior in the number of cases of using other types of
approximation. However, recently they were used relatively more often for approximate
solutions of various problems of numerical analysis. In this analysis, one of the directions is
the application of the Pade approximation to the solution to ordinary differential equations
(ODEs) [8 — 10]. One of the reasons for the relatively rare use of [L/M] in this direction
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is the difficulty of finding it. Both in the case of the use of fractional rational functions
in solving problems of approximation of given functions, and in some works devoted to
solving the Cauchy problem for ODEs, the connection of the PA with chain fractions is
used. In this approach to solving differential equations, the derivation of complex formulas
is required to find a numerical solution to the problem. This fact makes it difficult to
apply it in applications, which are indirectly indicated in [9] when discussing the content
of the book [8]. Another method, as in the case of constructing PA analytical functions, is
based on using their connection with series expansions [10]. The accuracy of the solution
obtained by applying this property is limited by the radius of convergence of the series.
If there is a need for a global solution to the problem, there may be a need to continue
the solution from a circle with this radius. Therefore, in [10], if such a continuation is
necessary, an additional requirement is imposed on the condition of the problem: “if there
is a need for the practical implementation of the proposed algorithm, (the continuation)
must be algorithmically specified”. The practical application of such an approach is no
less cumbersome than the method using chain fractions and unproductive for obtaining
quantitative results of solving the Cauchy problem.

When finding the approximation of functions using the PA, an approach based on
multipoint approximations [4] is used in combination with the least squares method, which
has not yet found application in solving differential equations. In the least squares and
collocation method collocation and least squares (CLS) method, the approximate solution
of differential [11 — 16] and integral [17] equations is reduced to solving redefined systems of
linear algebraic equations (SLAE). At the same time, the use of the least squares method
in it allows minimizing the error functional of the corresponding SLAE and significantly
expands the possibilities of using the collocation method with polynomial approximation
to solve these equations. Currently, the CLS method has solved with improved accuracy a
number of problems for elliptic, parabolic and hyperbolic equations that are used to model
various physical processes.

The purpose of this work is to show the possibility of a high-precision solution of the
Cauchy problem for a first-order ODE by the iterative solution of the equation obtained
here by its multipoint PA, to show the quantitative characteristics of the solution process
and the found [L/M], as well as to demonstrate the results of combining this approach
with the least squares method for solving a SLAE with a rectangular matrix, which is
obtained in the result of a multipoint approximation of the Cauchy problem for the
ODE. It seems that in the available small number of works on solving the problem
under consideration, these issues are not sufficiently disclosed to attract the attention
of computational mathematics specialists to it. The approach to solving the problem
considered here is quite easily implemented in a computer program, which facilitates its use
for solving specific problems, obtaining their quantitative characteristics and evaluating
the accuracy of numerical results.

Here, in numerical experiments on solving the Cauchy problem for the ODE, it was
observed that the conditionality of the SLAE obtained as a result of the approximation
of the problem depends not only on its size, but also on the ratio of the number of
equations in it to the number of desired coefficients [L/M]. As is known, the possibility
and accuracy of its solution by one method or another depends on the conditionality
of the SLAE. So it depends on the conditionality of the SLAE whether an improved
accuracy of the approximate solution of the problem in the form of [L/M] can be achieved.
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This position takes place in various problems of computational mathematics both in
the search for polynomial approximants and in the search for Pade approximations by
various methods. The need for high accuracy of intermediate calculations when finding
[L/M] to approximate one-dimensional functions using their connection with Taylor series
expansion is already mentioned in the introduction of the book [1]. This may indicate
a poor conditionality of the problem of finding [L/M]. However, questions about the
stability and the accumulation of rounding errors of existing methods for finding Pade
approximations due to their algorithmic complexity have not yet been discussed in the
scientific literature.

1. Problem Statement and Method of Its Solution
Let the Cauchy problem is to be solved:

dy(z)/dx = f(z,y), x € [a,b];  y(§) = vo, & € [a,b]. (1)

Let the function f(x,y) be discretely given at n grid nodes on the segment [a,b], and
the Cauchy condition g is given at some point £ on [a, b]. In the proposed algorithm for
solving the problem, any point of the segment [a,b] can be formally and often practically
set as &, provided that there is a solution to such a problem.

Let us search for an approximate solution of the problem (1) y(x) in the form [L/M]:

(z)
(z)’
in which, for its unambiguous definition, we put by = 1. On [a, b] we define a grid with
n nodes satisfying the inequality L + M + 1 < n by choosing the number of grid nodes.
We write SLAE to find L + M + 1 indeterminate coefficients aq,,ar,bg,, by from the
requirement of approximation by the function [L/M] of the Cauchy equation and condition
(1) by collocation in the nodes of the grid.
After substituting (2) into the differential equation (1), we obtain

dy(z) dN(x) dD(x) 1
dx :(D(:z:) dx ~ V) dx )D2(x)' )

ap+ a1z + ... +apxt N
D

y(z) = =

= 2

Taking into account (2), the expression (1) can be written as:

dy(x) dN(x) N(z)dD(r) dN(x) dD(x)
de ~  de  D(z) dz  drx —y(@) dr )

D(x)

The expression (1) is nonlinear with respect to the desired coefficients [L/M]. In order to
reduce the search for an approximate solution of the problem to a SLAE solution, (4) can
be solved iteratively. Let us rewrite it in the form

Dy () = LD D),

and we assume in the equation at each k-th iteration gx_i(z) the solution of the problem
obtained at the (k — 1)-th iteration. In the case of convergent iterations (5) in the limit
goes to (4). We approximate the Cauchy condition at a given point &.

Ni(&) — yoDi (&) = 0. (6)
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Since f(z,y) and gx_i(z) are known after the (k — 1)-th iteration, then (5) and (6) are
linear with respect to the coefficients of the polynomials Ny (x) and Dy (z). As a result of
collocation of relations (5), (6) in the grid nodes, a SLAE with a matrix with numerical
elements is obtained. In the iterative process of its solution, at each iteration, in the case
of their convergence, it determines a refined approximation to the solution of the problem.
Let us denote it as Ax = b, where A is a rectangular matrix. The number of necessary
iterations depends on the required accuracy of the solution chosen initial approximation
of go(z) and, as shown below in solving the problems given here, on the type of equation
(1), on which an important value depends in the numerical solution of the problem — the
condition number of the obtained SLAE. In the numerical experiments carried out to solve
the Cauchy problem with different complexity of equations using the proposed algorithm,
it was found that in many cases it converges quite quickly, even if the initial approximation
was assumed to be a constant over the entire segment [a, b]. The number of iterations when
searching for [L/M] can be reduced if we take [L;/M;] as go(x), found using the method
proposed here with the values L; < L and M; < M. In the case when the right side of the
equation in problem (1) is an analytical function of a simple form, without large gradients
or any significant singularities on [a, b|, using calculations on a computer with numbers
in double format allows using the proposed algorithm to obtain a solution to problem (1)
with an error value in the interval (107, 10714). At the same time, a high-precision Pade
approximation can be found with a small number of coefficients [L/M] — the degree of its
freedom.

The algorithm for solving the Cauchy problem for the ODE using the relations (5)
and (6) is implemented here in the form of a program in the Mathematica system [18],
which for brevity we will call the APODE procedure. Mathematica was originally created
to perform various transformations of expressions and formulas on a computer, written in
a symbolic form close to the form used by mathematicians. Subsequently, a large library
of procedures for the numerical solution of various mathematical problems appeared in
it. The procedure of the Mathematica NDSolve system solves numerically on a given
interval the symbolically written Cauchy problem for the ODE. The application of the
evaluate procedure in Mathematica to the numerical solution obtained by her results in
some approximation of the solution, which allows calculating the values of the solution at
an arbitrary point of this segment without repeated calls to NDSolve. These two procedures
of the Mathematica system are used here as a convenient tool at the stage of verification
of the APODE procedure and variants of the program implementing it. It should be noted
at once that the solutions obtained using NDSolve for a significant number of Cauchy
problems in the performance of this work, some of which are given here, have errors in
the interval (1075, 1075). It does not exceed the accuracy of the representation of numbers
on a computer in float (C++) format, but it can be sufficient for solving many applied
problems. Note that the user of the NDSolve procedure in the Mathematica system, given
a specific Cauchy problem, has no way to influence the accuracy of its solution. It lacks
parameters that determine the accuracy of the solution.

The input data of the APODE procedure, which the user selects and sets, are the
values of the parameters L, M and n, the number of collocation points (the number of
grid nodes on the segment [a, b]. For the convenience of the user, there are two variants of
the condition for terminating iterations: according to the specified number of iterations
or upon reaching a given value of the norm of the difference of approximate solutions
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obtained at the current k-th and the previous (k — 1)-th iterations. In the second iteration
termination criterion, the sought [L/M] is conditionally considered as a vector whose
components are its coefficients, and the Euclidean norm of the vector is taken as the
norm of the difference between the two approximations. For a visual demonstration of the
capabilities of the APODE procedure, the following results of numerical experiments give
the error values of the solutions of the ODE obtained by its application. At the same time,
all calculations and comparisons of the numerical algorithm proposed in this paper for
solving the Cauchy problem for ODE with other methods are carried out on a uniform
grid, which is far from the best for obtaining high accuracy results, which can be more
accurate when using adaptive grids.

2. Numerical Experiments

To verify the APODE procedure and the program implementing it, an example
was first selected that had a known numerical solution with high accuracy. At the same
time, the errors of the solutions obtained by the application APODE and NDSolve were
compared.

Example 1. Let us consider the Cauchy problem

’

y (t) =sin(t)/t, t€[0,7,5], y(0)=1. (7)

Its solution Si(z) is an integral sine for which there is no (finite) exact formula expressed
in terms of elementary functions. An appeal in the Mathematica system to the library
function Sinlntegral|x| gives its values with 16 decimal places. Note that in this example,
when referring to the NDSolve procedure, the point x = 0 cannot be specified as the
point for setting the Cauchy condition, since the right side of the equation in it has a
singularity, and in programming systems the value sin(0)/0 is not calculated. An attempt
to calculate the values of sin(0)/0 on the computer leads to an automatic termination
of calculations by the computer — to an "Automatic computer shutdown". Calculation
of limits is not provided in NDSolve. In order for the formulation of the problem solved
by the two methods being compared to be the same in both cases, the segment [e, 7, 5]
was first taken, on which a grid with n nodes was set. However, it is essential that as
a Cauchy condition in APODE, you can explicitly set y(0) = 1 and use the collocation
method to include this condition in the SLAE defining the desired [L/M]. Table 1 shows
part of the results at € = 1071?, the value of which is close to the rounding errors in the
arithmetic of numbers in double format and practically does not distort the error values
of solutions. The solution of the problem by the APODE procedure under the condition
y(0) = 1 differed from the solution in the case y(e) = 1 by an order of magnitude e.

It should be noted that finding a solution to the Cauchy problem by constructing
[L/M] of improved accuracy reduces to solving a poorly conditioned SLAE even in cases
of problems with the right side of the equations f(z,y) of a relatively simple form with
regular behavior of values on the segment under consideration. Here, the condition number
of cond(A) matrices was calculated in the spectral norm using Mathematica library
procedures. A QR decomposition of its matrix was used using an orthogonal matrix
@ when solving SLAE. The solution of the redefined SLAE in this way achieves the
minimum functional of the residual of its equations, as well as the solution of the system
AT Ax = ATb. However, the first method leads to a solution of a SLAE of the form
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Table 1

The error [L/M] of problem (7) solution
by the APODE procedure at various parameter values

L M |n it err([L/M]) cond(R)
Nel {3 4 8 40 19,876 x 1072 11019, 4
Ne2 |3 4 16 |5 1,778 x 10~* 9219,9
Ne3 |3 4 16 [20 [1,331x107° 9193,8
Ned |9 10 [20 [20 [4,201 x10° " |2,7x10"
Ne5 19 10 [20 |40 [4,363x1073 |5,1x 10"
Ne6 [24 [25 [81 [40 [1,554x10""% [1,6x 10%

Rz = QTb with a condition number cond(R) = cond(A). It has a significant advantage over
the second one when solving poorly conditioned SLAES, since cond(ATA) = (cond(A))?
and can often be significantly larger than cond(A). In Table 1, the number of iterations is
written out in the column with the id Cit¥, and in the column err([L/M]) — the values of
the error APODE. The error of the solutions and their convergence were estimated here
and further in the uniform norm || - ||¢ calculated on a certain set of points G' uniformly
located on the segment of the solution of the problem. In this example, using the solutions
obtained, the values max INDSolve — Si(x)| n max |APODE — Si(z)| were calculated — the

errors of the NDSolve and APODE procedures, respectively. The error of NDSolve is fixed
and turned out to be equal to 7.154 x 10~7. The analysis of Table 1 shows that even with
small values of L, M,n,it, the accuracy of the APODE procedure significantly exceeds
the accuracy of NDSolve and with increasing values of these parameters approaches the
accuracy of the representation of real numbers in the double format. At the same time,
cond(R) grows strongly, and its calculation in the above way in Mathematica becomes
unstable. When solving such SLAE, messages appear in the Mathematica system that
they are poorly conditioned. When comparing the first and second rows of Table 1, it can
be seen that the accuracy of the solution in the second row is better than in the first,
although in the second case there were fewer iterations. This suggests that in order to
obtain high accuracy of the solution, it is important to use multipoint approximation in
combination with the least squares method. To do this, it is necessary that the number
of collocation points exceeds the degree of arbitrariness of the desired [L/M]. This fact
took place in all the calculations carried out in this work. In addition, the influence of the
number of collocation points on the error [L/M] is traced.

Similar results and comparisons on the accuracy of problem solutions by these
procedures are obtained in the case of the above simple right sides of the equations.
For example, the solution of the problem y'(t) = 2y(t), t € [0, 1], y(0) = 1, obtained using
APODE at L = 14, M = 15,n = 46, after eighteen iterations reaches an accuracy of the
order of 107!, and the solution obtained by NDSolve is only 4,69 x 1076.

Example 2. Consider a test problem

y () = 4z cos(m /6 + 4x) + 4sin(r /4 — x) + sin(r + 4z), y(0) =2v2, z € [0,27] (8)

with the complex behavior of the right side of the equation on the segment under
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consideration and with the corresponding behavior of the known exact solution
y(x) = 4cos(n/4 — x) + wsin(m/6 + 4x). 9)

The right side of the equation and its solution have about ten local extremes on the segment
of the solution of the problem due to the difference in the periods of periodic functions in
them. The gradient modulus of the right part reaches a value of the order of 102. Fig. 1a
shows a graph of values on the segment [0, 2] of the right side of equation (8) and Fig. 1b
shows a graph of the PA solution of the problem (8). This problem presents some difficulty
when trying to obtain a solution of improved accuracy by numerical methods. Using the
NDSolve procedure, a solution with an error of 3,73 x 10~ was obtained. Using APODE
for 22 iterations, [29/30] was obtained, which has an error of 4,83 x 107!, Note that with a
fixed format for the representation of numbers in a computer program, in cases of examples
with complex behavior of the right side of the equations, the possibility of improving the
accuracy of solutions by increasing the values of the parameters L, M, n is limited. With
their growth, condition number of SLAE increases and the accumulation of rounding error
increases when solving it accordingly. One of the possibilities of improving the accuracy
of solving the Cauchy problem by the APODE procedure is to construct a solution in the
form of a spline from pieces of [L/M] on partial segments into which a given segment is
divided. At the same time, when constructing a continuous spline on each partial segment
in the Cauchy condition, it is assumed to take the value of the solution obtained at the
end of the previous partial segment. Here the initial segment [0, 2] was divided into only 4
parts, and [29/30] was found on each of them. In the first partial segment, the spline had
an error of 3,29 x 107!, in subsequent segments it monotonically increased and in the
last segment it turned out to be equal to 1,88 x 107! The spline of the pieces [29/30] is
more accurate than the monofunctional approximant [29/30] of the solution of the problem
by more than 25 times. The question of the best way to split a segment in terms of the
magnitude of the error of the spline was not considered here.

Fig. 2a shows a graph of the first link of the constructed spline (in this figure, to save
space, the origin of coordinates along the ordinate axis is shifted compared to figure 1b,
and in 2b — a graph of its error. It is characteristic that the error graph turned out to
be a solid “veil” of high-frequency oscillations. This, firstly, corresponds to the fact that
the process of rounding the values of arithmetic calculations on a computer has a random
character, and, secondly, the difference between the amplitude of the oscillations and the
accuracy of the representation of numbers in the double format indicates the value of the
SLAE conditioning number, the solution of which is obtained [29/30]. As is known, in the
magnitude of the error of the SLAE solution, the condition number stands as a multiplier
before the magnitude of the perturbations of the input data of the problem: the values of
the elements of the SLAE matrix and the components of the vector of its right side. Here,
the reason for their perturbations are the errors of rounding numbers on the computer in
the process of solving SLAE.

Example 3. The possibilities of the proposed approach and numerical algorithm are
also tested on solving nonlinear equations. Here we present the results obtained by solving
the Riccati equation arising in various applications

y (x) = a(2)y* () + b(x)y(x) + e(w), (10)
which was solved with different types of its coefficients. The solution to equation (10) can
only be written in particular cases in the form of a finite formula expressed in terms of
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Fig. 1. Graph of the right side of equation (8) (a) and graph [20/30] are the solutions of

the problem (8) on the segment [0, 2] (b)
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Fig. 2. Graph of the first link of the spline from pieces [20/30] (a) and the error graph of
the first link of the spline [20/30] (b)

elementary functions. When finding an approximation in the case of the iterative solution
of the Cauchy problem for (10), different ways of linearization of the summand a(x)y?(x)
in the right side of the equation. In the first case, it was written in the form a(z)yxyr—_1,
in which the value of y,_; in the approximate equation (5) was taken from the previous
(k — 1) iteration, and y, was included in the SLAE with the coefficients sought on the
k-th iteration. In the second case, a simple linearization method was used: the value of
the term a(x)y?(xz) was taken entirely from the (k — 1)-th iteration. In the third case,
when the summand was linearized by Newton, the iterations in the examples discussed
here converged monotonically with a decrease in the discrepancy of the equation on the
approximate solution with an increase in the iteration number and faster than in the other
two cases. In the second case, the discrepancy decreased more slowly and the SLAE was
worse than in the third case. In the first case, the rate of convergence of iterations and
the value of the SLAE condition number were intermediate with respect to the other two
cases.

Example 4. First, to verify the APODE, and an approximate assessment of its
accuracy, consider the problem

y (x) = y*(2) — 2y(x) exp(z) + exp(22) +exp(z), € [0,1], y(0)=0  (11)

with a known exact solution y(z) = exp(z) — 1/(x + 1). Equation (11) on the solution
obtained using the NDSolve procedure has a discrepancy of 2.992 x 10~%. And substituting
into equation (11) the approximate solution of the problem obtained by the APODE
procedure [11/12] with 36 collocation points and an initial approximation equal to one
over the entire segment [0, 1] gave a discrepancy of 5,063 x 10~1*. Knowledge of the exact
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solution allows us to assess the difference in the possibility of achieving the improved
accuracy of solving the problem by the APODE procedure and the Runge-Kutta high
accuracy scheme of the 4-th order (RK-4). In numerical experiments for solving problem
(11) on the segments [0, 1] and [0, 3], the error behavior was observed depending on the
values of various parameters of the compared methods. With sequential grinding of the
grid step, a decrease in the error of the RK-4 method was first observed until it reached the
minimum value at some sufficiently small grid step. After that, it increased with a further
decrease in the step. For example, when solving equation (11) on the segment [0, 3] on a
grid with 4751 nodes, after reaching the error value of 1,306 x 1072, with further grinding
of the step, it increased as a result of the accumulation of the rounding error due to the
large number of arithmetic operations performed. At the same time, for simplicity, the
error of the RK-4 method was calculated only at the point z = 3, i.e. its maximum value
was not searched for over the entire segment. As a result of solving the problem on the
same segment, the APODE procedure obtained [7/8] with the number of nodes n = 22,
which has a maximum error of 1,145 x 107!3 on the entire segment. A comparison of the
results of solving the problem on the segment [0, 1] showed that the APODE procedure
gave a result a decimal order more accurate than RK-4. An important circumstance is that
in an effort to achieve high accuracy of the solution by the RK-4 method, the calculator
receives a large array of numerical values, the storage and use of which are inconvenient for
him. At the same time, the time spent to obtain this array and the time spent building the
corresponding [L/M] on the computer differ by more than two decimal orders in favor of
the second. As a result of consideration of some other examples of the Cauchy problem for
ODEs with known exact solutions, similar results were obtained, indicating an advantage
in accuracy of the APODE procedure over the RK-4 method. Note simultaneously that
as a result of the application of the PA, the solution of the Cauchy problem for the ODE
is obtained in the form of a finite analytical expression, which, with a small number of
arithmetic operations, allows it to be calculated with high accuracy at any point of a
given segment. Applying many other numerical methods to solve the Cauchy problem, we
obtain a discrete solution at the nodes of a certain grid. If it is necessary to calculate it at
the intermediate points of the segment, it is necessary to apply an additional approximate
computational procedure, for example, interpolation, which introduces an additional error
into it. This is another very important advantage of the PA in solving ODES over many
other numerical methods.
Example 5. When solving the problem

Yy (l’) = yQ(x) - 6.1'2, S [07 1]7 y(()) =1, (12>

the initial approximation, as in most other problems solved here, was equal to 1 for
the entire segment. Due to the lack of an exact solution, in this example, a difference
in the values of the approximants of the solution [11/12] in a uniform norm obtained
on two consecutive iterations was observed. The number of collocation points was equal
40. As the number of iterations grew, the solution converged monotonically. In addition,
the convergence of the residual norm of the equation was observed when substituting
the obtained [11/12] into it, which also monotonically tended to zero and at the 51-st
iteration was equal to 1,332 x 107!%. At the same time, [11/12] obtained at the 51-st
and 52-nd iterations completely matched all the coefficients, both in their numerators and
denominators. In the convergent sequence of an iterative solution, there is a correlation
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between its error and the discrepancy. This numerical experiment gives an approximate
idea of the behavior of the error on the sequence of iterations of the approximate solution
by the APODE procedure in cases where it is not possible to calculate it in the absence
of a known exact solution. When solving the problem by the NDSolve procedure, the
maximum of the residual of equation (12) was 2,99 x 10~%. This indicates the relatively
low accuracy of NDSolve when compared with APODE.

The examples of solving nonlinear equations given here show that Newton’s
preliminary linearization of nonlinear equations expands the classes of ODEs for which
the application of the procedure proposed here allows iteratively finding high-precision
[L/M] solutions to the Cauchy problem.

Conclusion

Using the collocation and least squares method, an iterative procedure for constructing
an [L/M], the approximation of the solution of the Cauchy problem for the ODE is
proposed and implemented in the Mathematica system. The construction of [L/M] is
reduced to solving a linear least squares problem for SLAE obtained by approximating
the original differential problem. The possibility of using this procedure to iteratively find
high-precision [L/M] solutions of the Cauchy problem for linear and nonlinear ODEs is
shown. At the same time, it has an accuracy superiority over the fourth-order Runge—
Kutta method and a significant superiority over NDSolve, the standard procedure of
the Mathematica system for representing the solution of the Cauchy problem as an
approximant. The dependence of the accuracy of solutions on the complexity of the form
of the right-hand side of the equations, on the degree of arbitrariness of the sought [L/M]
and on the of the SLAEs defining them is shown. In the case of a nonlinear equation,
the possibility of constructing [L/M] after preliminary linearization of the equation in
different ways is tested. In the cases considered, Newton linearization proved to be the
most effective. An example of constructing a spline from pieces of [L/M] on partial intervals
of a given segment of the solution of the Cauchy problem is given. It is shown that the
spline of the pieces [L/M] approximates the solution much more accurately in comparison
with the monofunctional [L/M] constructed over the entire segment.
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PEIITEHNE 3AJAYN KOIIIN AJ1Ad OBBIKHOBEHHBIX
JANP®DPEPEHIINAJIBHBIX YPABHEHIIM METO/JI0M KOJIJIOKAIINN
1 HAUMEHBIIINX KBAJIPATOB C AIIIIPOKCUMAIIUEN ITIAJIE

B.II. IIlanees'?

YneruryT Teoperndeckoit u npukiagnoit Mexanuku umM. C.A. Xpucruanosuaa CO PAH,
r. HoBocubupck, Poccuiickass @enepariust

2Hosocubupckuii rocygapcrBenHblii yausepeutet, r. HoBocubupcek,

Poccuiickas @enepartiust

IIpemmoxken n peam30BaH HOBBII crtocob pemtenust 3agadn Ko 111 00bIKHOBEHHOTO
nuddepeHIuajIbHOrO ypaBHEHHsT METOIOM KOJUIOKAIIUNA W HAWMEHBIINX KBAJPATOB IIOBbI-
menHoi TouHocTr. OH OCHOBaH Ha BBIBOJIE IMPHUOJIMIKEHHOIO HEJIMHEHHOIO yPABHEHUST MHO-
rOTOYEYHOIl alllpoKCHMAaIleil paccMarpuBaeMoil 3ajgadn. [1pubin:keHHOe perieHne 3aJa-
49U B BUJEe anmpokcuMmanuu [lajie cBOgUTCsl K UTEPAIMOHHOMY PEIeHUI0 JINHEIHON 3a1aum
HAWMEHBIIIX KBAJIPATOB OTHOCUTEIHLHO KOIMDMUIMEHTOB UCKOMON JIPpOGHO-PAIMOHATLHOMN
dyukmun. B cayvae nenmHeHHBIX AuddEepEHITNATBHBIX YPABHEHNH TPUMEHIETCST UX MPE/I-
BapuTeJibHas JJuHeapu3alus. [loka3aHo 3HAUNTEIbHOE IIPEBOCXOICTBO 10 TOYHOCTH IIPE/IJIO-
2KEHHOT'O B paboTe crocoba peleHus 3aJa49u HaJl TOIHOCTHIO mporeypbl NDSolve cucrembr
Mathematica. Ha perrernn KOHKpEeTHOTO IpUMEpa MOKA3aHO MPEBOCXOACTBO M0 TOTHOCTH
IpEeJIOYKEHHOTO crocoba Haxx MerogoM Pymre — KyTra derBeproro mopsaka. Ilpusemernnr
[PUMEPBI PEIeHusT MPEeJIOKEHHBIM CIIoco0oM 3ajadn Kormm s JUHEeHHbIX U HeJInHeiH-
HBIX yPaBHEHUIl C TOYHOCTBIO, OJINBKON K BeJIMYMHE OIMIMOOK OKPYIJIEHWIl IIPU OIepaIlusix
Ha KoMmmbiorepe ¢ unciamu B popmare double. ITokazamno, 900 TOYHOCTH pEIIeHUsT 3a,1a91
CYIIECTBEHHO 3aBUCUT OT CJIOYKHOCTH IIOBEJIEHUsI 3HAYEHUI IIPaBOil YacTU ypaBHEHUs] HA
3aJIAHHOM OTpe3Ke. [IpuBejieH mpuMep MOCTPOEHUs CIUIaiiHa M3 KYCKOB AIIPOKCUMAHTOB
[Tase Ha 9acTHYHBIX OTPE3KaX, HA KOTOpbIE Pa30UT 3aJaHHBIA OTPE30K, B CJIydae, KOTIa
TPedyeTCsi MOBBICUTH TOYHOCTH PEIEeHUsI.

Karoueswie crosa: s3adavwa Kowu; obwiknosennoe duddepenyuanrvhoe ypasruenue; an-
npokcumayusn Ilade; memod KoALOKAUUYL U HAUMERDWUL KEAOPAMOE; NOGHUEHHAA MO~

nocmow; cucmema Mathematica.
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