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The motion of a hydrodynamic flow in a chemical reactor described by a one-
dimensional one-parameter diffusion model is considered. Within the framework of this
model, the task is set to identify the boundary condition at the reactor outlet containing an
unknown concentration of the reagent under study leaving the reactor in a stream. In this
case, the law of change in the concentration of the reagent over time at the reactor inlet
is additionally set. After the introduction of dimensionless variables, a discrete analogue
of the transformed inverse problem in the form of a system of linear algebraic equations
is constructed by the method of difference approximation. The discrete analogue of the
additional condition is written as a functional and the solution of a system of linear
algebraic equations is presented as a variational problem with local regularization. A special
representation is proposed for the numerical solution of the constructed variational problem.
As a result, the system of linear equations for each discrete value of a dimensionless time
splits into two independent linear subsystems, each of which is solved independently of
each other. As a result of minimizing the functional, an explicit formula was obtained for
determining the approximate concentration of the reagent under study in the flow leaving
the reactor at each discrete value of the dimensionless time. The proposed computational
algorithm has been tested on the data of a model chemical reactor.

Keywords: chemical reactor; one-parameter diffusion model; Peclet parameter;
boundary inverse problem; local regularization method.

Introduction

It is known that a chemical reactor in which interconnected hydrodynamic, thermal,
and diffusion processes are carried out [1-3| is a central element in any chemical technology
system. To describe various hydrodynamic flows in chemical reactors, models are used:
ideal mixing; ideal displacement; diffusion models; cellular models; and combined models
[4-7]. For mathematical description, most of the real hydrodynamic flows in chemical
reactors mainly use one-parameter and two-parameter diffusion models. According to
the one-parameter diffusion model, the mixing of reagents in reactors occurs only in the
longitudinal direction. According to the two-parameter diffusion model, longitudinal and
radial mixing of reagents occurs simultaneously in the hydrodynamic flow. Diffusion models
accurately reflect the structure of hydrodynamic flows in many real reactors: film, spray,
bubbling columns, extractors, etc. |1, 3.

Usually, when studying the processes occurring in a chemical reactor based on a
diffusion model, the geometric parameters of the reactor, the initial state of the reactor, as
well as the conditions at the inlet and outlet of the reactor are considered set. However, it
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is necessary to note a very important circumstance regarding the conditions set at the exit
from the reactor. The fact is that the regime at the reactor outlet is established during
two interacting processes in the reactor — convective transport and diffusion (convective
diffusion). For this reason, the output mode of the reactor cannot be adjusted according
to a predetermined program. Therefore, it is practically impossible to accurately represent
the conditions at the reactor outlet. In this regard, for the processes of chemical technology,
the task of identifying the boundary condition at the reactor outlet is important only based
on the specified information at the reactor entrance.

1. Problem Statement and Solution Method

Suppose that a hydrodynamic flow continuously enters a chemical reactor, which is a
tubular apparatus, and the incoming flow moves only in one direction along the length of
the reactor. It is assumed that the reactor operates in an isothermal mode and a change in
the concentration of the reagent (understudy) in the reactor occurs due to its transfer by
hydrodynamic flow (convective transfer) and because of its transfer by diffusion (diffusion
transfer). In the reactor, only longitudinal mixing of the reagent takes place in the flow and
the values of the flow parameters along the reactor section are the same. To mathematically
describe the motion of the hydrodynamic flow in this chemical reactor, we use a one-
dimensional, one-parameter diffusion flow model [5, 6]

9C (z,t) N 9C (z,t) 02C(z,t)

=d l t<t 1
B u—p o 0<x<l, 0<t<ty, (1)

where C'(z,t) is the concentration of the reagent, u is the rate of hydrodynamic flow in the
reactor, d is the coefficient of turbulent diffusion, [ is the length of the chemical reactor,
x is the coordinate along which the hydrodynamic flow moves, t is a time.

Suppose that at the initial moment, the distribution of the reagent concentration
along the length of the reactor is known, i.e. for equation (1) we have the following initial
condition

C(z,0) =19(x), 0<z<I. (2)

The boundary conditions at the inlet x = 0 and outlet x = [ of the reactor are
formulated according to the Danckwerts condition [5, 8]: the sum of the flows of matter
approaching the reactor boundary should be equal to the flow of matter departing from
the boundary. As a result, we will have

ué(t) d% — uC/(0,1), (3)
o(t) + d% — uC(1, 1), (4)

where £(t) is the concentration of the reagent in the stream entering the reactor, 6(t)
is the concentration of the reagent in the stream leaving the reactor. If you set the
functions ¥ (z), £(t), 0(t) and values of the constant parameters u and d, then solve the
problem (1) — (4), you can find the function C(x,t), i.e., the distribution of the reagent
concentration along the length of the reactor. However, the concentration of the reagent
in the flow leaving the reactor 6(t) is set during the processes in the reactor and it is not
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possible to regulate it according to a given program. Therefore, the function 6(¢) is also
unknown and must be defined along with the function C(x,t). Obviously, in this case, an
additional condition must be set for the correct formulation of the problem. Suppose that
at the reactor inlet = 0, the law of change in the concentration of the reagent over time
is set. Then we will have an additional condition on this boundary

C(0,1) = f(1). (5)

Thus, the task is to determine the functions C(z,t) and 6(t) satisfying equation (1)
and conditions (2) — (5). It should be noted that due to the incorrectness of the boundary
condition (5) for equation (1), problem (1) — (5) is considered incorrectly posed and belongs
to the class of boundary inverse problems [9-12]|. The issues of the correctness of the
statements of boundary inverse problems, the issues of the existence and uniqueness of
their solutions in various functional classes are studied in [9, 10, 13-15|. Numerous papers
have been devoted to the development of numerical methods for solving inverse problems
related to the identification of boundary conditions [9, 11, 16-19].

Let’s introduce dimensionless variables

and the problem (1) — (5) is represented as

dC(y, 1) N oC(y,7) 1 &Cly,7)

=07 <
o7 oy e 02 O<y<l, 0<7<T, (6)
Cly,0) =4v(y), 0<y<l, (7)
1 0C(0,7)
5(7') + ETQ - 0(07 T)? (8>
1 oC(1,7)
9(7)+P—€T—C(1J), (9)
Cc(0,7) = f(7), (10)
where T' = l/_ou’ Pe = Eu are a dimensionless Peclet parameter.

Using the method of difference approximation, we construct a discrete analogue of
the boundary inverse problem (6) — (10), assuming that there is a solution to this
problem and it is the only one. To this end, we discretize a given rectangular area
{0<y <1, 0<7<T} in space and in time, with steps Ay = 1/n by variable y and
AT =T/m by variable 7

w={(yi,7j) : yi =iAy, 7, =jA7, i=0,1,2,...,n, j=0,1,2,...,m}.
The discrete analogue of the problem (6) — (10) on the difference grid @ is represented as

i _ il o 1 ¢4, —209 + 7
; i 4 i-1 _ _~ it i 1—172':17 2,...,n—1, (11>
AT Ay Pe Ay?
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1= :

E%ElTyO:C& (12)
10— .
0+ 5 Ay’“ =3, (13)
Cl=f,7=1,2,...,m, (14)
CY=p, i=0,2,...,n, (15)

where C = C(yi, 1), ¥i = ¥(yi), 1/ = f(75), & = &(1y), 09 = 0(;) .

The linear system of difference equations (11) — (15) for each fixed value j, j =
1,2,...,m is represented as a variational problem with local regularization [11|. To do
this, in accordance with (14), we introduce a smoothing functional in the form

J(67) = [C% = £7]° + a(67)> — min, (16)

where « is a regularization parameter. Thus, the task of determining the concentration
of the reagent in the flow leaving the reactor ¢’ at each fixed value j = 1,2,...,m is
reduced to the task of minimizing the smoothing functional (16) when conditions (11) —
(13) are met. To decompose the system of difference equations (11) — (13) into mutually
independent subsystems, its solution for each fixed value 7 = 1,2,...,m is represented as
[11, 16]

CI=VIi4®W!/, i=0 1,2 ... n, (17)

where V/, W/ and ¢/ are a unknown variables.

Substituting the ratio (17) into equation (11), we will have:

ViAW) O VIO -V — 0,

AT Ay B
L Vi OWE 2V 20 4 VL 4 W,
Pe Ay2

or
e i /i AR N N\ i 0
_l’_ -
AT Ay Pe Ay?

+6

Wy W WE, L W WA WL
AT Ay Pe Ay? o

Substituting the representation (17) into (12), (13), gives

VVi-vg o el =wd
e G Bl Vo o] B
1 Vi-Vv/, . 1wl —w .

B S ) SRS V2 OV e A et WS v/ TR R
Pe Ay |t Pe Ay nt

Suppose that the auxiliary variables V7 and W/ are solutions of the following two
independent systems of difference equations
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i-at V-V LV 2 AV

AT Ay Pe Ay? =0, (18)
%nyw—wj%jzo, (19)
%% —Vi=0, (20)
e - p M R o)
Pie%ng — W] =0, (22)
pieL _AZVg—l S Wit1=o0. (23)

Obviously, when using decomposition (17), equation (11) and conditions (12), (13) are
fulfilled automatically at any 67.

The systems of difference equations (18) — (20) and (21) — (23) for each fixed value
7,7 = 1,2,...,m are a system of linear algebraic equations with a tridiagonal matrix
and solutions of these systems can be found by the Thomas method [11]. Substituting
representation (17) into (16), we will have

J(07) = [V§ +6'W§ — f7]” + a(67)* — min.
The minimum of this functionality is achieved when the condition is met
(Vi + W — FI] Wi + ab? = 0.

From here we obtain a formula for determining the approximate value of the desired
function f(7)at 7 = 75, i.e.
_ W V)
(Wi +a

6 (24)

Thus, a computational algorithm for solving a variational problem with local
regularization (11) — (13), (16) by definition C’Z-j and ¢/, i = 0,1,2,...,n, for each fixed
value 7, 7 =1,2,...,m, consists of the following stages:

L. In parallel, solutions of two independent systems of difference equations (18) — (20)
and (21) — (23) concerning auxiliary variables V/, W7 i=0,1,2,...,n.

II. According to formula (24), the approximate value of the desired function 6(7) is
determined at 7 = 7;, i.e. 67.

ITI. The values of the variables C’ij ,t=0,1,2,...,n are calculated using the formula
(17).
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2. The Results of Numerical Calculations

The proposed computational algorithm has been tested on the data of a model reactor.
The numerical experiment was carried out in the following sequence:

1) the functions ¥ (y), (1), 0(7) and the parameter value Pe are set . The solution of
the problem (6) — (9) is determined, i.e. the function C(y,7),0 <y <1, 0<7<T;

2) the found dependence f(7) = C(0,7) is taken as the exact input data for solving
the inverse problem of recovery (7).

Both undisturbed and perturbed input data were used in numerical calculations to
restore 0(7). When using undisturbed input data, the value of the regularization parameter
« is assumed to be zero. In order to perturb the input data, a random variable o(7) is
used, modeled using a random number sensor, and the perturbed data is determined by
the formula

f(r) = f(7) +6a(r) f(7),

d is the level of error. The term do(7)f(7) simulates a different level of error for the
input data f(7). In this case, the value of the regularization parameter « is determined in
accordance with the principle of discrepancy [9, 11].

Numerical experiments were carried out on a uniform difference grid with steps A7 =
0,5, Ay = 5-1073, for the following functions (1) = 0,2+0, 1sin 107; (1) = 1—0,2¢" %7
kg/m? at £(7)= 0,5 kg/m?, ¢(y) = 0, Pe = 0,5 and Pe = 5. To perturb the input data,
the following was used as the error level 6 = 2- 107

The results of numerical experiments conducted with undisturbed and perturbed input
data are presented in Table 1; in it 7— the dimensionless time,0¢ it contains the exact
values of the desired function 6(7), # and 6 the calculated values #(7) with undisturbed
and perturbed input data. Table 1 also shows the dimensionless time change in the
concentration of the reagent at the reactor inlet f7.

The results of numerical experiments show that when using undisturbed input data,
the values of the desired function 6(7) are restored exactly (the second, third and sixth,
seventh columns of the table 1). When using perturbed input data, in which the error has a
fluctuating character, the values of the desired function are restored with an error (fourth
and eighth columns of the table). However, it follows from the table 1 that at a given level
of error, the maximum relative error in restoring the values of the desired function 6(t)
does not exceed 2,41% and 2,32%, respectively. At the same time, the value of the local
regularization parameter assumed the value o = 5 - 10~*and o = 107, respectively.

To illustrate the possibility of practical application of the proposed method, numerical
calculations were performed for a hypothetical chemical reactor. As input parameters of
the diffusion model of the hydrodynamic flow in the reactor, the following parameters
were set: £(t) is a concentration of the reagent in the stream entering the reactor, f(t) is a
reagent concentration at the reactor inlet x = 0, Pe is a Peclet parameter and ¢ (z) = 0 is a
distribution of the reagent concentration along the length of the reactor at the initial time.
It is required to determine the concentration of the reagent in the flow leaving the reactor
0(t). The results of numerical calculations carried out before entering the stationary mode
of the process in the reactor are presented in Table 2.

The analysis of the results of numerical experimentation indicates that the proposed
computational algorithm can be used to determine the conditions in the reactor under
which a predetermined hydrodynamic regime at the reactor outlet can be implemented.
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Table 1
The results of numerical experiments to determine 6()
i O(t) =0,2+0,1sin107 i () =1-0,2-e 0% i
Pe=10,5 Pe=5
0° 6 0 0° 6 0
1 0,146 0,146 0,145 0,382 0,836 0,836 0,851 0,441
2 0,291 0,291 0,291 0,564 0,866 0,866 0,885 0,454
3 0,101 0,101 0,101 0,831 0,890 0,890 0,889 0,436
4 0,275 0,275 0,274 1,063 0,910 0,910 0,907 | 0,412
5 0,174 0,174 0,174 1,271 0,926 0,926 0,929 0,382
6 0,170 0,170 0,169 1,556 0,940 0,940 0,933 0,347
7 0,277 0,277 0,277 1,738 0,951 0,951 0,940 0,307
8 0,101 0,101 0,100 2,019 0,960 0,960 0,950 0,260
9 0,289 0,289 0,290 2,240 0,967 0,967 0,974 0,207
10 0,149 0,149 0,151 2,465 0,973 0,973 0,979 0,145
11 0,196 0,196 0,195 2,746 0,978 0,978 0,980 0,075
12 0,258 0,258 0,259 2,933 0,982 0,982 0,982 0,006
13 0,107 0,107 0,107 3,225 0,985 0,985 0,986 0,098
14 0,298 0,298 0,298 3,437 0,988 0,988 0,987 | 0,204
15 0,129 0,129 0,130 3,680 0,990 0,990 0,982 0,325
16 0,222 0,222 0,222 3,954 0,992 0,992 0,985 0,463
17 0,235 0,235 0,237 4,149 0,993 0,993 0,974 0,621
18 0,120 0,120 0,119 4,449 0,995 0,995 0,989 0,801
19 0,300 0,300 0,298 4,654 0,996 0,996 1,019 1,008
20 0,113 0,113 0,115 4,915 0,996 0,996 0,974 1,243
Table 2
Results of numerical calculations for a hypothetical reactor
. . 0

&V Pe=05Pe=2.0 Pe=50

0,5; 0,6 0,500 0,507 0,840

1,0; 1,2 1,001 1,014 1,681

1,5; 1,6 1,500 1,507 1,840

Conclusion

The problem of identifying a function included in the boundary condition and
describing the concentration of the reagent under study in the flow leaving the reactor
is considered. After the introduction of dimensionless variables, the problem is discretized
and the resulting system of difference equations is presented as a variational problem with
local regularization, for which a special representation is proposed.

The proposed computational algorithm allows, according to a predetermined
hydrodynamic regime at the reactor entrance, to calculate the parameters of the
hydrodynamic flow at the reactor outlet.
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NAEHTUO®UKAIINSA TPAHUYHOTI'O YCJIOBUYA B ANO®PY3NOHHON
MOAEJIN TNAPOIMHAMMNYECKOI'O IIOTOKA B XUMNYECKOM
PEAKTOPE

X.M. TI'amsaes', H.X. Batipamosa'
! AzepbaiiizKaHCK1it Tocy/IapCTBEeHHBIH yHUBepeuTeT HepTH U IPOMBIIIICHHOCTH,
r. Baky, AzepbaiimKkan

PaccmarpuBaercst nBukeHre rupoNHAMUYECKOTO IOTOKA B XHMUYIECKOM PEAKTOPE,
ONMCHIBAEMOE OJHOMEPHON OJHOTapaMeTpudeckoit muddy3noHHoil Momenno. B pamkax
JIAHHOW MOJIEJIN IOCTABJIEHA 33Ja4a WACHTUMUKAINA TPAHUIHOIO YCJIOBUS HA BBIXONE pe-
aKTOPa, COJEP2Kalllero HEM3BECTHYIO KOHIEHTPAIMIO UCCJIELyeMOr0 pearcHTa, BhIXOJAAIIEro
13 peakTopa notoke. IIpu 3ToM JTOMOTHUTETBHO 33/1a€TCs 3aKOH M3MEHEHUsT KOHIIEHTPAITUN
peareHTa BO BpeMeHH Ha BXoje peakropa. llociie BBejeHUs1 Ge3pa3MEpPHBIX EPEMEHHBIX,
METOJIOM PA3HOCTHON AIMIPOKCUMAIIIN TOCTPOEH AUCKPETHDIN aHAIOT ITPeoOPA30BAHHON 00-
paTHOI 3a1a9W B BUJE CUCTEMBbI JJUHEHHDBIX aaredpandecKux ypapuennii. JluckpeTHbril ana-
JIOT' JIOTIOJIHATEJIBHOTO YCJIOBUsI 3AIMCHIBAETCs B BHJIe (DYHKIIMOHAJIA U PEIIeHre CUCTEMbI
JIMTHEHHBIX aJIPeOpPAMvIeCKUX yPaBHEHUIl MPEICTaB/IseTCA KAK BapUAIllMOHHAS 33Ja4a, C JIO-
KaJIbHOI peryispusarueii. /g IucaIeHHoro pereHnst TOCTPOSHHON BAPUAITMOHHON 38,12 U
[IPEJJIATAETCs CIEIHAJILHOE [IPEICTaBIeHNe. B pe3ysibTare cucreMa JIMHEHHDBIX yDaBHEHMIA
[IPU KaXKJOM JIMCKPETHOM 3HAaYeHnn Oe3pa3MepHOl BPEMEHHU PACIAJAeTCs HA JBE HE3ABU-
cAMble JIMHEHbIe II0JCUCTeMbl, KazK/1ad U3 KOTOPBIX pellaeTcd He3aBUCUMO JPYT OT Jpyra.
B pesysbrare MmunnMuzanuu QyHKIMOHAJIA, [TOJIyUYeHa siBHAsT (pOPMYyJIa IJIsi OlpeesIeHIs
PUOJIMXKEHHOTO 3HAYEHUsI KOHIIEHTPAIIUU UCCJIEyEMOIO PeareHTa B IOTOKE, BBIXOISIIErO
U3 PEaKTOpa, IPHU KaKJIO0M JUCKPETHOM 3HavYeHnn Oe3pa3mepHoi Bpemenu. 1lpeaiokeHubit
BBIMHCJIATEIHHBIN aJIrOPUTM OIPOOOBAH HA JMAHHBIX MOJIEIHHOIO XMMHUYIECKOTO PEAKTODA.

Karouesvie cr06a: Tumuteckuts peaxmop; 00HONAPaMempPuseckas ouddysuonnas mo-

deav; napamemp Ilexae; epanuunasn obpamnas 3a0a4a; Memood A0KANGHOT DELYAAPUIAUUL.
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