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The paper is devoted to the investigation of the completeness property of the flows

generated by the stochastic algebraic-differential equations given in terms of forward

Nelson’s mean derivatives. This property means that all solutions of those equations exist

for all t ∈ [0,∞). It is very important for the description of qualitative behavior of the

solutions. This problem is new since previously it was investigated for equations given in

terms of symmetric mean derivatives. The case of forward mean derivatives requires different

methods of investigation and the cases of forward and symmetric mean derivatives have

different important applications. We find conditions under which all solutions of stochastic

algebraic-differential equations given in terms of forward Nelson’s mean derivatives, exist

for all t ∈ [0,∞). Some obtained conditions are necessary and sufficient.
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Introduction

The notion of mean derivatives (forward, backward, symmetric and antisymmetric)
was introduced by E. Nelson in [1–3]. In [4] (see also [5] where all preliminaries about mean
derivatives are given) an additional mean derivative, called quadratic, was introduced so
that from some Nelson’s mean derivative and the quadratic one it became in principle
possible to find a stochastic process having those derivatives.

In this paper we investigate the completeness property of the flows generated by
the stochastic algebraic-differential equations given in terms of forward Nelson’s mean
derivatives, i.e., we find conditions, under which all solutions of those equations exist for
all t ∈ [0,∞). Previously, in [6], this problem was investigated for equations given in terms
of symmetric mean derivatives. The case of forward mean derivatives requires absolutely
different methods of investigation. Some conditions that we have found, are necessary and
sufficient.

The structure of the paper is as follows. In Section 1 we give some facts from the theory
of matrices, necessary for the description of algebraic-differential equations. Section 2 is
devoted to preliminaries of the theory of mean derivatives. In Section 3 we present the
main results of the paper.

1. Some Facts from the Theory of Matrices

Everywhere below we deal with the n dimensional linear space R
n, vectors from R

n

and n× n matrices.
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Consider two n×n constant matrices L̃ and M̃ where L̃ is degenerate while M̃ is non-
degenerate. The expression λL̃+M̃ , where λ is real parameter, is called the matrix pencil.
The polynomial θ(λ) = det(λL̃+ M̃) is called the characteristic polynomial of the pencil

λL̃ + M̃ . The pencil is called regular, if its characteristic polynomial is not identically
equal to zero.

If the matrix pencil λL̃+ M̃ is regular, there exist to non-degenerate linear operators
P (acts from the left side) and Q (acts from the right side) that reduce the matrices

L̃ and M̃ to the canonical quasi-diagonal form (see [7]). In the canonical quasi-diagonal

form, under appropriate numeration of basis vectors, in the matrix L = PL̃Q first along
diagonal there is the d×d unit matrix and then along diagonal there are the Jordan boxes
with zeros on diagonal. In M = PM̃Q in the lines corresponding to Jordan boxes, there is
the unit matrix, and in the lines corresponding to the unit matrix in L there is a certain
non-degenerate matrix J . Thus

P (λL̃(t) + M̃(t))Q = λL+M = λ

(
Id 0
0 N(t)

)
+

(
J 0
0 In−d

)
. (1)

Consider a symmetric positive definite (i.e. non-degenerate) d× d matrix Ξ(t).

Lemma 1. ( [4, Lemma 2.2], see also [5]) There exists a d × d matrix A(t) such that
Ξ(t) = AA∗ where A∗ is the transposed matrix A.

2. Mean Derivatives

In this section we briefly describe preliminary facts about mean derivatives. See details
in [1–3, 5].

Consider a stochastic process ξ(t) in R
n, t ∈ [0, T ], given on a certain probability space

(Ω,F ,P) and such that ξ(t) is an L1 random element for all t. It is known that such a
process determines 3 families of σ-subalgebras of the σ-algebra F :

(i) “the past” Pξ
t generated by preimages of Borel sets from R

n under all mappings
ξ(s) : Ω → R

n for 0 ≤ s ≤ t;
(ii) “the future” F ξ

t generated by preimages of Borel sets from R
n under all mappings

ξ(s) : Ω → R
n for t ≤ s ≤ T ;

(iii) “the present” (“now”) N ξ
t generated by preimages of Borel sets from R

n under the
mapping ξ(t) : Ω → R

n.
All the above families we suppose to be complete, i.e., containing all sets of probability

zero.
For the sake of convenience we denote by E

ξ
t the conditional expectation E(·|N ξ

t ) with
respect to the “present” N ξ

t for ξ(t).
Following [1–3], introduce the following notions of forward mean derivatives.

Definition 1. The forward mean derivative Dξ(t) of ξ(t) at the time instant t is an L1

random element of the form

Dξ(t) = lim
△t→+0

E
ξ
t (
ξ(t+△t)− ξ(t)

△t
), (2)

where the limit is supposed to exist in L1(Ω,F ,P) and △t → +0 means that △t tends to
0 and △t > 0.
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One can easily derive that for an Ito process ξ(t) =
t∫
0

a(s)ds+
t∫
0

A(s)dw(s) its forward

mean derivative takes the form Dξ(t) = a(t) since
t∫
0

A(s)dw(s) is a martingale and so

D
t∫
0

A(s)dw(s) = 0.

Following [4] (see also [5]) we introduce the differential operator D2 that differentiates
an L1 random process ξ(t), t ∈ [0, T ] according to the rule

D2ξ(t) = lim
△t→+0

E
ξ
t (
(ξ(t+△t)− ξ(t))(ξ(t+△t)− ξ(t))∗

△t
), (3)

where (ξ(t+△t)−ξ(t)) is considered as a column vector (vector in R
n), (ξ(t+△t)−ξ(t))∗

is a row vector (transposed, or conjugate vector) and the limit is supposed to exists in
L1(Ω,F ,P). We emphasize that the matrix product of a column on the left and a row on
the right is a matrix. It is shown that D2ξ(t) takes values in S̄+(n), the set of symmetric
semi-positive definite matrices. We call D2 the quadratic mean derivative.

One can easily derive that for an Ito process ξ(t) =
t∫
0

a(s)ds+
t∫
0

A(s)dw(s) its quadratic

mean derivative takes the form D2ξ(t) = AA∗ (see [4] and also [5]).

Remark 1. From the properties of conditional expectation (see, e.g., [8]) it follows that
there exist Borel mappings a(t, x), and α(t, x) from R × R

n to R
n and to the space

of symmetric positive definite matrices, respectively, such that Dξ(t) = a(t, ξ(t)) and
D2ξ(t) = α(t, ξ(t)). Following [8] we call a(t, x) and α(t, x) the regressions.

3. The Main Result

Let Ξ(t), t ∈ [0,∞) be a continuous symmetric positive definite (i.e. non-degenerate)
d × d matrix. By Lemma 1 there exists d × d matrix A such that Ξ(t) = A(t)A∗(t).
Construct the n× n matrix Θ of the form

Θ =

(
Ξ(t) 0
0 0

)
. (4)

We investigate the following stochastic algebraic-differential system

{
LDη(t) = Mη(t) + f(t),
D2η(t) = Θ,

(5)

where L and M are from formula (1) and f(t) is a smooth deterministic vector in R
n.

Taking into account the struicture of matrices L and M we see that system (5) is
decomposed into several independent systems — the one in upper left corner with the
unit matrix in L and matrix J in M and the systems corresponding to Jordan boxes in L

and the unit matrices in M .
The system in upper left corner takes the form

{
Dη(1) = Jη(1) + f(1),

D2η(1) = Ξ,
(6)
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where η(1) and f(1) are constructed from the first d coordinates of the vectors η(t) and
f(t), respectively.

As an example of the blocs with Jordan matrices in L and the unit matrices in M , we
consider p× p matrix (Jordan box) N in the right bottom corner of L

N =




0 1 0 0 . . . 0
0 0 1 0 . . . 0
...

...
...

... . . .
...

0 0 0 0 . . . 1
0 0 0 0 . . . 0




,

and the corresponding unit matrix from M . The other systems with Jordan boxes are
quite analogous. This system takes the form

{
NDη(2) = η(2) + f(2),

D2η(2) = 0,
(7)

where η(2) and f(2) are constructed from the last p coordinates of vectors η(t) and f(t),
respectively.

Let the greatest Jordan box in L be a q×q matrix. We investigate the class of systems
(5) satisfying the following condition:

Condition. The vector f(t) is uniformly bounded for t ∈ [0.∞) together with its
derivatives from the first order derivative up to the q-th order derivative.

It is evident that solution of (5) exists for t ∈ [0,∞) if and only if the same is valid
for solutions of (6) and of (7). We will start with (7).

Theorem 1. If equation (5) satisfies Condition, the solution of (7) exists for all t ∈ [0,∞).

Proof. First of all, since D2η(2) = 0, the process η(2) is deterministic and so D turns
into ordinary d

dt
.

In coordinates this system has the form



0 1 0 0 . . . 0
0 0 1 0 . . . 0
...

...
...

... . . .
...

0 0 0 0 . . . 1
0 0 0 0 . . . 0




D




η
n−p

(2)

η
n−p+1
(2)

. . .

ηn−1
(2)

ηn(2)




=




η
n−p

(2)

η
n−p+1
(2)

. . .

ηn−1
(2)

ηn(2)




+




f
n−p

(2)

f
n−p+1
(2)

. . .

fn−1
(2)

fn
(2)




. (8)

From the last line of (8) we obtain ηn2 = −fn
2 . From the last but one line of (8) we obtain

ηn−1
(2) = d

dt
ηn(2) − fn−1

(2) = − d
dt
fn
2 − fn−1

(2) . Then ηn−2
(2) = − d

dt
ηn−1
(2) − fn−2

(2) = − d2

dt2
fn
2 − d

dt
f
p

(2) −

fn−1
(2) − fn−2

(2) , etc. Since Condition is satisfied, all coordinates of η(2) exist for t ∈ [0,∞).

✷

Now we turn to (6). Here we will find several conditions under which the flow, generated
by (6), is complete, i.e, the solution of (6) exist for t ∈ [0,∞).

Definition 2. The flow ξ(s) is complete on [0, T ] if every orbit ξt,m(s) a.s. exists for any
couple (t, x) (with 0 ≤ t ≤ T ) and for all s ∈ [t, T ]. The flow ξ(s) is complete if it is
complete on any interval [0, T ] ⊂ R.
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The structure of equation (6) means that its solution satisfies the following stochastic
differential equation in Ito form

η(1)(t) =

t∫

0

Jη(1)(s)ds+

t∫

0

f(1)(s)ds+

t∫

0

Adw(s), (9)

where A is such that AA∗ = Ξ (see above). Thus the generator of the corresponding flow
ξ(s) takes the form

A(t, x) =
1

2

d∑

i=1k=1

σik ∂2

∂xi∂xk
+

d∑

i=1

d∑

k=1

jikx
k ∂

∂xi
+

d∑

k=1

fk(t)
∂

∂xk
, (10)

where σij are the elements of matrix Ξ, jik are the elements of matrix J and fk(t) are the
coordinates of vector f(t).

Hence the backward equation takes the form

η̂(t) = −

t∫

0

Jη̂(1)(s)ds−

t∫

0

f(1)(s)ds+

t∫

0

tr A′(A)ds−

t∫

0

Adw(s) (11)

and the backward generator takes the form

Â(t, x)f =
1

2

∑

i=1,k=1

σij ∂2

∂xi∂xk
−

d∑

i=1

d∑

k=1

jikx
k ∂

∂xi
−

d∑

k=1

fk(t)
∂

∂xk
+ tr A′(A). (12)

where tr A′(A(t, x))f is the derivative of f along the vector field tr A′(A(t, x)).

Definition 3. A function from a topological space X to the real line R is called proper if
the preimage of every relatively compact set in R is relatively compact in X.

Theorem 2. Let there exist a smooth proper function ϕ on R
n such that A(t, x)ϕ < C

for some C > 0 at all t ∈ [0,+∞) and x ∈ Rn where A(t, x) is the generator of flow ξ(s).
Then the flow ξ(t, s) is complete.

Theorem 2 is a simple version of rather general sufficient condition [9, Theorem IX.
6A].

Corollary 1. On R× R
n consider the flow ξ̃(s) = (s, ξ(s)) with the generator Ã(t, x) =

∂
∂t
+A(t, x) (see (10)). Let on R×R

n there exist a proper function ϕ̃ such that Ã(t, x)ϕ̃ < C

for some C > 0 at all t ∈ [0,+∞) and x ∈ Rn. Then the flow ξ(s) on R
n is complete.

Definition 4. We say that the flow ξ(s) is continuous at infinity if for any finite interval
[0, T ] ⊂ R, any 0 ≤ t ≤ T and any compact K ⊂ M the equality

lim
x→∞

P(ξt,x(T )) ∈ K) = 0 (13)

holds where ξt,x(s) is the orbit of flow ξ(s) such that ξt,x(t) = x.

Theorem 3. ( [5, Theorem 7.51], see also [10]) A flow ξ(s) on R
n having smooth strictly

elliptic generator and being continuous at infinity, is complete on [0, T ] if and only if there
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exists a positive proper function uT : R × R
n → R that is C1-smooth in t ∈ [0, T ], C2-

smooth in x ∈ R
n and such that ÃuT < C for a certain constant C > 0 at all points

(t, x) ∈ R× R
n where Ã is the generator of flow (s, ξ(s)) on R× R

n.

Corollary 2. If the flow ξ(s) on R
n with the generator A introduced in (10) is continuous

at infinity, it is complete if and only if for any T > 0 there exists a positive proper function
uT : R × R

n → R that is C1-smooth in t ∈ [0, T ], C2-smooth in x ∈ R
n and such that

Ãu(t, x) < C for a certain constant C > 0 at all points (t, x) ∈ R× R
n.

Theorem 4. [11] Let the backward flow on R
n exist and there exist a smooth positive proper

function u such that Âu < C for a certain constant C > 0, where Â is the generator of
backward flow ξ̂(s). Then the forward flow ξ(s) is continuous at infinity on [0, T ].

Let the flow ξ(s) generated by equation (9) be a flow of diffeomorphisms, i.e., the
backward flow exists.

Theorem 5. The forward flow ξ(s) and the backward flow ξ̂(s) generated by equation
(6), are simultaneously both complete and continuous at infinity if and only if on R× R

n
+

there exist positive smooth proper functions u(t, x) and û(t, x) such that the inequalities

(
∂

∂t
+A

)
u < C and

(
−

∂

∂t
+ Â

)
û < Ĉ

hold for certain positive constants C and Ĉ.
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О ГЛОБАЛЬНЫХ ПО ВРЕМЕНИ РЕШЕНИЯХ СТОХАСТИЧЕСКИХ
АЛГЕБРО-ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
С ПРОИЗВОДНЫМИ В СРЕДНЕМ СПРАВА

Ю.Е. Гликлих, Воронежский государственный университет, г. Воронеж,
Российская Федерация

Статья посвящена исследованию свойства полноты потоков, порожденных стоха-

стическими алгебро-дифференциальными уравнениями, заданными в терминах произ-

водных в среднем справа по Нельсону. Это свойство означает, что все решения указан-

ных уравнений существуют при всех t ∈ [0,∞). Это важно для описания качественного

поведения решений. Это новая задача, поскольку ранее подобная проблема изучалась

для уравнений, заданных в терминах симметрических производных в среднем. Слу-

чай производных справа требуют других методов исследования и случаи производных

справа и симметрических производных имеют разные важные приложения. Мы на-

ходим условия, при которых все решения стохастических адгебро-дифференциальных

уравнений существуют при t ∈ [0,∞). Некоторые из полученных условий являются

необходимыми и достаточными.

Ключевые слова: алгебро-дифференциальные уравнения; производные в среднем;

глобальные по времени решения.

Исследование поддержано грантом Российского научного фонда № 24-21-00004.

Литература

1. Nelson, E. Derivation of the Schrödinger Equation from Newtonian Mechanics / E. Nelson
// Physic Reviews. – 1966. – V. 150, № 4. – P. 1079–1085.

2. Nelson, E. Dynamical Theory of Brownian Motion / E. Nelson. – Princeton: Princeton
University Press, 1967.

3. Nelson, E. Quantum Fluctuations / E. Nelson. – Princeton: Princeton University Press, 1985.

4. Azarina, S.V. Differential Inclusions with Mean Derivatives / S.V. Azarina, Yu.E. Gliklikh
// Dynamic Systems and Applications. – 2007. – V. 16, № 1. – P. 49–71.

5. Gliklikh, Yu.E. Global and Stochastic Analysis with Applications to Mathematical Physics
/ Yu.E. Gliklikh. – London: Springer, 2011.

6. Gliklikh, Yu.E. On Conditions for Completeness of Flows Generated by Stochastic
Differential-Algebraic Equations / Yu.E. Gliklikh, D. Sergeeva // Global and Stochastic
Analysis. – 2021. – V. 8, № 2. – P. 1–7.

102 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2024, vol. 17, no. 2, pp. 96–103



КРАТКИЕ СООБЩЕНИЯ

7. Чистяков, В.Ф. Избранные главы теории алгебро-дифференциальных систем / В.Ф. Чи-
стяков, А.А. Щеглова. – Новосибирск: Наука, 2003.

8. Партасарати, К. Введение в теорию вероятностей и теорию меры / К. Партасарати. –
М.: Мир, 1983

9. Elworthy K.D. Stochastic Differential Equations on Manifolds / K.D. Elworthy // Lecture
Notes in Statistics. – Cambridge: Cambridge University Press, 1982.

10. Gliklikh, Yu.E. Necessary and Sufficient Conditions for Global in Time Existence of Solutions
of Ordinary, Stochastic, and Parabolic Differential Equations / Yu.E. Gliklikh // Abstract
and Applied Analysis. – 2006. – V. 2006. – Article ID: 39786. – 17 p.

11. Gliklikh, Yu.E. On the Completeness of Stochastic Flows Generated by Equations with
Current Velocities / Yu.E. Gliklikh, T.A. Shchichko // Theory of Probability and its
Applications. – 2019. – V. 64, № 1. – 11 p.

Юрий Евгеньевич Гликлих, доктор физико-математических наук, профессор,
профессор кафедры математического и прикладного анализа, Воронежский государ-
ственный университет (г. Воронеж, Российская Федерация), yeg@math.vsu.ru.

Поступила в редакцию 9 апреля 2024 г.

Вестник ЮУрГУ. Серия ≪Математическое моделирование
и программирование≫ (Вестник ЮУрГУ ММП). 2024. Т. 17, № 2. С. 96–103

103


