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The paper is devoted to the investigation of the completeness property of the flows
generated by the stochastic algebraic-differential equations given in terms of forward
Nelson’s mean derivatives. This property means that all solutions of those equations exist
for all ¢t € [0,00). It is very important for the description of qualitative behavior of the
solutions. This problem is new since previously it was investigated for equations given in
terms of symmetric mean derivatives. The case of forward mean derivatives requires different
methods of investigation and the cases of forward and symmetric mean derivatives have
different important applications. We find conditions under which all solutions of stochastic
algebraic-differential equations given in terms of forward Nelson’s mean derivatives, exist
for all ¢ € [0, 00). Some obtained conditions are necessary and sufficient.

Keywords: algebraic-differebtial equations; forvard mean derivatives; global in time
solutions.

Introduction

The notion of mean derivatives (forward, backward, symmetric and antisymmetric)
was introduced by E. Nelson in [1-3]. In [4] (see also [5] where all preliminaries about mean
derivatives are given) an additional mean derivative, called quadratic, was introduced so
that from some Nelson’s mean derivative and the quadratic one it became in principle
possible to find a stochastic process having those derivatives.

In this paper we investigate the completeness property of the flows generated by
the stochastic algebraic-differential equations given in terms of forward Nelson’s mean
derivatives, i.e., we find conditions, under which all solutions of those equations exist for
all t € [0, 00). Previously, in [6], this problem was investigated for equations given in terms
of symmetric mean derivatives. The case of forward mean derivatives requires absolutely
different methods of investigation. Some conditions that we have found, are necessary and
sufficient.

The structure of the paper is as follows. In Section 1 we give some facts from the theory
of matrices, necessary for the description of algebraic-differential equations. Section 2 is
devoted to preliminaries of the theory of mean derivatives. In Section 3 we present the
main results of the paper.

1. Some Facts from the Theory of Matrices

Everywhere below we deal with the n dimensional linear space R", vectors from R"
and n X n matrices.
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Consider two n x n constant matrices L and M where L is degenerate while M is non-
degenerate. The expression AL L+ M where ) is real parameter, is called the matrix pencil.
The polynomial 6(\) = det()\L +M ) is called the characteristic polynomial of the pencil
AL + M. The pencil is called regular, if its characteristic polynomial is not identically
equal to zero. o

If the matrix pencil AL + M is regular, there exist to non-degenerate linear operators
P (acts from the left side) and @ (acts from the right side) that reduce the matrices
L and M to the canonical quasi-diagonal form (see |7]). In the canonical quasi-diagonal
form, under appropriate numeration of basis vectors, in the matrix L = PZQ first along
diagonal there is the d X d unit matrix and then along diagonal there are the Jordan boxes
with zeros on diagonal. In M = PM() in the lines corresponding to Jordan boxes, there is
the unit matrix, and in the lines corresponding to the unit matrix in L there is a certain
non-degenerate matrix J. Thus

~ ~ B - I; 0 J 0
P(AL(t) + M())Q = AL+ M = X (o N(t)) + (0 Ind) : (1)
Consider a symmetric positive definite (i.e. non-degenerate) d x d matrix =().

Lemma 1. ( [4, Lemma 2.2, see also [5|) There exists a d x d matriz A(t) such that
=(t) = AA* where A* is the transposed matriz A.

2. Mean Derivatives

In this section we briefly describe preliminary facts about mean derivatives. See details
in [1-3,5].

Consider a stochastic process £(t) in R™, t € [0, T], given on a certain probability space
(Q, F,P) and such that £(¢) is an L; random element for all ¢. It is known that such a
process determines 3 families of o-subalgebras of the o-algebra F:

(i) “the past” Pf generated by preimages of Borel sets from R™ under all mappings
£(s) : Q=R for 0 <s <t

(ii) “the future” ff generated by preimages of Borel sets from R™ under all mappings
E(s): Q=R fort <s<T;

(iii) “the present” (“now”) N generated by preimages of Borel sets from R” under the
mapping £(t) : Q@ — R™.

All the above families we suppose to be complete, i.e., containing all sets of probability
Zero.

For the sake of convenience we denote by E* the conditional expectation E(-|NF) with
respect to the “present” NF for &(t).

Following [1-3], introduce the following notions of forward mean derivatives.

Definition 1. The forward mean derivative DE(t) of £(t) at the time instant t is an Ly
random element of the form

At) —

); (2)

where the limit is supposed to exist in L1(Q2, F,P) and At — +0 means that At tends to
0 and At > 0.
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One can easily derive that for an Ito process £(t) =

o .

¢
a(s)ds+ [ A(s)dw(s) its forward
0
¢
mean derivative takes the form DE(t) = a(t) since [ A(s)dw(s) is a martingale and so
0

thA(s)dw(s) = 0.

0
Following [4] (see also [5]) we introduce the differential operator D, that differentiates
an L; random process (), t € [0, 7] according to the rule

Dag(t) = Jim E( (E(t 4+ At) — g(t)ﬁ(t + AL — £(1)

); (3)

where ({(t+ At) —£(t)) is considered as a column vector (vector in R™), (£(t+ At) —&(t))*
is a row vector (transposed, or conjugate vector) and the limit is supposed to exists in
L1(92, F,P). We emphasize that the matrix product of a column on the left and a row on
the right is a matrix. It is shown that D»&(t) takes values in S, (n), the set of symmetric

semi-positive definite matrices. We call Dy the quadratic mean derivative.
t

t
One can easily derive that for an Ito process {(t) = [ a(s)ds+ [ A(s)dw(s) its quadratic
0 0
mean derivative takes the form Do£(t) = AA* (see [4] and also [5]).

Remark 1. From the properties of conditional expectation (see, e.g., [8]) it follows that
there exist Borel mappings a(t,x), and «(t,x) from R x R™ to R™ and to the space
of symmetric positive definite matrices, respectively, such that DE(t) = a(t,&(t)) and
Dy&(t) = a(t,&(t)). Following [8] we call a(t, z) and a(t, x) the regressions.

3. The Main Result

Let Z(t),t € [0,00) be a continuous symmetric positive definite (i.e. non-degenerate)
d x d matrix. By Lemma 1 there exists d x d matrix A such that =(t) = A(t)A*(¢).
Construct the n x n matrix © of the form

@:(E((f) 8) (4)

We investigate the following stochastic algebraic-differential system

{ LDn(t) = Mn(t) + (1), (5)
Don(t) = ©,

where L and M are from formula (1) and f(t) is a smooth deterministic vector in R™.
Taking into account the struicture of matrices L and M we see that system (5) is
decomposed into several independent systems — the one in upper left corner with the
unit matrix in L and matrix J in M and the systems corresponding to Jordan boxes in L
and the unit matrices in M.

The system in upper left corner takes the form

Dnay = Jnay + fay, (6)
DQU(I) ==
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where 71y and fq) are constructed from the first d coordinates of the vectors n(t) and
f(t), respectively.

As an example of the blocs with Jordan matrices in L and the unit matrices in M, we
consider p x p matrix (Jordan box) N in the right bottom corner of L

0100 ...0
0010 ...0
N=|[=:: 0 01,
0000 ...1
0000 ... 0

and the corresponding unit matrix from M. The other systems with Jordan boxes are
quite analogous. This system takes the form

{ NDnie) =ne + fo),

7
Daneay = 0, 0

where 79) and fr) are constructed from the last p coordinates of vectors n(t) and f(t),
respectively.

Let the greatest Jordan box in L be a ¢ X ¢ matrix. We investigate the class of systems
(5) satisfying the following condition:

Condition. The vector f(t) is uniformly bounded for ¢t € [0.00) together with its
derivatives from the first order derivative up to the ¢-th order derivative.

It is evident that solution of (5) exists for ¢ € [0,00) if and only if the same is valid
for solutions of (6) and of (7). We will start with (7).

Theorem 1. If equation (5) satisfies Condition, the solution of (7) exists for allt € [0, 00).

Proof. First of all, since Dyny = 0, the process 1) is deterministic and so D turns
into ordinary %.
In coordinates this system has the form

00100 ... 0 o)” o) fe)”
0 01 0 0 né;pﬂ nz;pﬂ f(nQ)—anl
ooron = + . (8)
0000 1 U U i
0000 0 o) ) T
From the last line of (8) we obtain 5 = — f3'. From the last but one line of (8) we obtain

n—1 _ d.n n—1 __ d rn n—1 n—2 __ d. n—1 n—2 __ d? rn d
Moy = @'y — foy = —afy = fioy - Then ng)™ = —Gmy” — fo)" =~ f3 — &l —
f(g)_l — (T;)_Q, etc. Since Condition is satisfied, all coordinates of 79 exist for ¢ € [0, 00).

O

Now we turn to (6). Here we will find several conditions under which the flow, generated
by (6), is complete, i.e, the solution of (6) exist for ¢ € [0, 00).

Definition 2. The flow £(s) is complete on [0,T] if every orbit & ., (s) a.s. exists for any
couple (t,x) (with 0 < t < T) and for all s € [t,T]. The flow {(s) is complete if it is
complete on any interval [0,T] C R.
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The structure of equation (6) means that its solution satisfies the following stochastic
differential equation in Ito form

t

ny(t) = /Jn(l ds+/f ds+/Adw 9)

0

where A is such that AA* = = (see above). Thus the generator of the corresponding flow
&(s) takes the form

d d d d
_ 1 N
Alt, x) = Qizgzlo WW +;;ka a Z f O (10)

where 0% are the elements of matrix =, j¢ are the elements of matrix J and f*(t) are the
coordinates of vector f(t).
Hence the backward equation takes the form

n(t) = —/tjﬁ(l)(s)ds—/tf(l)(s)der/ttr A’(A)ds—/tAdw(s) (11)

and the backward generator takes the form

ﬁ(t,x)f:% 3 0(9:)&’8:)&’“ szk 61 Zf’“ —+trA’(A) (12)

i=1,k=1

where tr A'(A(t,x))f is the derivative of f along the vector field tr A’(A(t, z)).

Definition 3. A function from a topological space X to the real line R is called proper if
the preimage of every relatively compact set in R is relatively compact in X.

Theorem 2. Let there exist a smooth proper function ¢ on R™ such that A(t,z)p < C
for some C' >0 at allt € [0,+00) and x € R"™ where A(t, x) is the generator of flow &(s).
Then the flow £(t, s) is complete.

Theorem 2 is a simple version of rather general sufficient condition |9, Theorem IX.
GA].

Corollary 1. On R x R" consider the flow £(s) = (s,£(s)) with the generator Alt,z) =
O+ A(t,x) (see (10)). Let on RxR™ there exist a proper function $ such that Alt,2)p < C
for some C' >0 at all t € [0,400) and x € R™. Then the flow £(s) on R™ is complete.

Definition 4. We say that the flow £(s) is continuous at infinity if for any finite interval
0,T] C R, any 0 <t < T and any compact K C M the equality

lim P(&.(T)) € K) =0 (13)

Tr—r00

holds where & ,(s) is the orbit of flow £(s) such that & ,(t) = x.

Theorem 3. ( [5, Theorem 7.51], see also [10]) A flow £(s) on R™ having smooth strictly
elliptic generator and being continuous at infinity, is complete on [0, T if and only if there
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exists a positive proper function u’ : R x R™ — R that is C'-smooth in t € [0,T], C?-
smooth i x € R" and such that Aul < C for a certain constant C > 0 at all points
(t,x) € R x R™ where A is the generator of flow (s,£(s)) on R x R™.

Corollary 2. If the flow £(s) on R™ with the generator A introduced in (10) is continuous
at infinity, it is complete if and only if for any T > 0 there exists a positive proper function
u? i R x R" — R that is C'-smooth in t € [0,T], C*-smooth in x € R™ and such that

Au(t,z) < C for a certain constant C > 0 at all points (t,x) € R x R™.

Theorem 4. [11]| Let the backward flow on R™ exist and there exist a smooth positive proper

function uw such that Au < C' for a certain constant C' > 0, where A is the generator of
backward flow &(s). Then the forward flow £(s) is continuous at infinity on [0,T].

Let the flow £(s) generated by equation (9) be a flow of diffeomorphisms, i.e., the
backward flow exists.

~

Theorem 5. The forward flow £(s) and the backward flow &(s) generated by equation
(6), are simultaneously both complete and continuous at infinity if and only if on R x R
there exist positive smooth proper functions u(t,x) and u(t,x) such that the inequalities

0 0 \_. =~
(§+A)U<C and (—§+A)U<C

hold for certain positive constants C' and C.
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O I'NIOBAJIBHBIX ITO BPEMEHU PEIMNTEHNUAX CTOXACTUYECKUX
AJITEBPO-INI®PEPEHIINAJIBHBIX YPABHEHUN
C ITPON3BOJHBIMUN B CPE/ITHEM CIIPABA

IO.

E. I'auxaux, BopoHexKcKuil rocyJIapcTBeHHBIN yHUBEpCUTeT, I. BopoHex,

Poccuiickas ®@enepariust

Crarbs MOCBAIIEHA UCCICIOBAHUIO CBOMCTBA MOJHOTHI IOTOKOB, IIOPOXKJIEHHBIX CTOXa~
cruaeckuMu anrebpo-auddepeHanbHbIMI yPABHEHUSIMHA, 38/ JAHHBIMEA B TEPMUHAX [TPOU3-
BOJIHBIX B CpeJiHeM ciipaBa 110 Hesbcony. D10 ¢BOCTBO O3HAYAET, YTO BCE PEIIEHUsT YKA3AH-
HBIX ypaBHEHUIi CyIecTBYOT npu Beex ¢ € [0, 00). DT0 BasKHO JJIsl ONUCAHNS KAIeCTBEHHOIO
[OBEJIEHNUsT PEIIeHmii. DTo HOBasl 3a/1a4a, MOCKOIBKY paHee Mo I00Has mpobemMa n3ydasach
JUIsl ypaBHEHUil, 3aJJaHHBIX B TEPMUHAX CUMMETPUIECKUX IPOU3BOJIHBLIX B cpeanem. Ciry-
YJail TPOM3BOIHBIX CIIPABA TPEOYIOT JPYIUX METOO0B UCCIEIOBAHNS U CIIyIan ITPOU3BOIHBIX
CIIpaBa W CUMMETPHYECKUX ITPOM3BOIHBIX UMEIOT PAa3HbIe BasKHBbIE NMPUIOKeHus. Mbl Ha-
XOJIMM YCJIOBHSI, TIPU KOTOPBIX BCE PEINIEHUsT CTOXACTHIECKUX aare6po-auddepeHnuaababix
ypaBHeHuil cymecrBytor npu t € [0,00). Hekoropble u3 IOJYYEHHBIX YCJAOBHI SIBJISTIOTCS
HEOOXOAUMBIMU U JIOCTATOYHBIMU.

Karouesvie caosa: anzebpo-duddepenyuanrvrvie YpasHEHUL, NPou3sodHvle 6 CpedHem;

2200a.4HBIE NO BPEMEHU PEULEHUA.

Hccearedosanue noddepotrcaro epanmom Poccutickozo nayunozo gonda N 24-21-00004.
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