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This study aims to apply a novel technique devised by the authors to process the results

of thermal physics experiments. The paper describes a two-stage technique for identifying

coefficients of mathematical models from observed experimental data. The technique is

based on the maximum likelihood method and is informed by the errors of all sensors used to

obtain parameter measurements. Stage 1 of the technique minimizes the maximum relative

error over all measured parameters, which allows gross measurement errors to be identified

in qualitative terms and reduces the maximum relative error down to acceptable values.

At Stage 2, we propose to use the method of weighted least absolute values to minimize

the sum of absolute values of relative errors of all measured parameters. The technique

was applied to process the results of thermal physics experiments aimed at generalizing the

size of vapor bubbles of various types during unsteady heating of a vertical steel cylindrical

heater surrounded by an upward flow of water subcooled to the saturation temperature. The

numerical simulations reported in this study attest to the high quality of the proposed two-

stage technique for identifying coefficients of mathematical models. The study also presents

a comparative analysis of the results obtained by the classical least squares method and the

novel two-stage technique.
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Introduction

A key problem in thermal physics is how to arrive at the most faithful description
of some investigated process by means of a mathematical model. In the case where
there is uncertainty in the theoretical description of the process, such a mathematical
model includes a number of coefficients that are meant to minimize discrepancies between
modeled and empirical data. It should be noted that in some cases a significant number
of individual experiments are run under different process conditions. In other cases,
the number of experimental conditions is relatively small, but each of them come with
a significant number of individual measurements. Each experiment measures a certain
number of parameters such as temperature, pressure, flow rate, diameter, etc. The essence
of the technique contributed by this study is that we measure not only the coefficients
of the mathematical model but also the values of all parameters measured with some
error. The errors of measurements of experimental parameters can be considered random
variables with normally distributed errors, the variance and RMS errors of which are a
function of the accuracy of the sensors involved in producing such measurements. Thus,
the “true” value of the measured parameter falls within a certain range determined from
the so-called three-sigma rule [1].
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The most effective method for estimating all measured parameters and coefficients of
a mathematical model is the maximum likelihood method [2]. It consists in finding such
values of estimated parameters at which some likelihood function reaches its maximum.
If measurement errors are random, independent, and continuous quantities, then the
likelihood function for a single experiment is equal to the product of probability densities
of relative errors of all measurements of the same experiment. In the case of a series of
experiments, the likelihood function is equal to the sum of likelihood functions of individual
experiments in the series or the average likelihood function per experiment. It is important
to note that the probability density function of the normal error distribution is ill-suited to
serve as an objective function for optimization problems. It consists of concave and convex
parts, which leads to multiple extrema, and, even when the number of parameters to be
optimized is small, this hinders the efficient optimum search. Therefore, the extreme value
of another function whose extremum is close enough to the extremum of the likelihood
function is what one usually looks for instead of the maximum of the likelihood function.
As a rule, the sum of squares of relative errors of measurements in a series of experiments
(least squares method) serves as such a function. When processing the results of thermal
physics experiments, the number of parameters measured in a single experiment is small
(not more than ten), but the number of individual experiments is several hundred, which
leads to a significant overall number of measured parameters, exceeding a thousand. Under
such conditions, the function of the sum-of-squares of relative errors, given the equality
constraints as defined by the mathematical model of the process, gets a pronounced
ravine-shaped profile. Therefore, this study uses the sum of absolute values of relative
errors. Additional variables and inequalities [3] are introduced to yield a smooth objective
function.

The physical system studied in this paper is surface boiling in heated metal channels
and the measured parameter is the size of vapor bubbles. The experiments were carried
out using the resources of the High-Temperature Circuit Multi-Access Research Center.
The parameter is required for building predictive models of heat transfer. A widely used
technique for modeling heat transfer in nucleate boiling is the heat flux partitioning [4–6].
The key bubble boiling parameter included in all components of the heat flux is the
maximum bubble diameter. In the case of subcooled flow boiling, the bubble size is
determined by the energy balance [7,8]. Previous published research reported a wide variety
of constitutive relations for the maximum bubble diameter, relating it to the superheated
layer thickness [6], heater surface superheat, and subcooling of the liquid [7,9,10]. However,
the large discrepancies between the values obtained from these formulas indicate that
its scope of application is extremely limited. In particular, unsteady heat release with a
rapid increase in surface temperature makes all the expressions obtained for steady-state
conditions yield the values of diameters that are many times higher than true values [11].
Therefore, techniques for building a mathematical model of unsteady boiling need a better
consideration of the peculiarities of the extraction of empirical data obtained during the
physics experiment [12,13].

1. Technique for Identifying Coefficients of the Mathematical
Model of Thermal Physics Experiments

The present study employs a two-stage identification technique reported elsewhere with
the contribution by the authors [3]. At Stage 1, an optimization problem is formulated and
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solved. The problem is to minimize the maximum relative error between the modeled and
measured values over all measured parameters in all experiments. All equality constraints
(equations of the mathematical model) and inequality constraints (constraints related
to the RMS error of measurements) must be strictly satisfied. This stage is preliminary
and is intended to identify “bad” measurements (if any) and determine the maximum
relative error over all measured parameters. Relative error is equal to the absolute
value of the absolute difference between observed and modeled values of the measured
parameters divided by the RMS error of measurement. The mathematical statement of
the optimization problem solved at this stage of the technique is as follows.
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where x is an auxiliary parameter that corresponds to the maximum relative error of the
measured parameters at the optimal point; xr in

ij is estimated value of the j -th measured
input parameter of the i -th experiment; N in

z is number of measured input parameters in
a single experiment; xr out

ik is estimated value of the k -th measured output parameter of
the i -th the experiment; Nout

z is the number of measured output parameters in a single
experiment; C1, ...., CNC

are coefficients of the mathematical model that are subject to
optimization; NC is the number of coefficients subject to optimization; h1, ..., hNout

z
are

expressions forming the mathematical model of the process aimed at determining the
measured input parameters; xz in

ij is observed value of the j th measured input parameter
of the ith experiment; σin

j is RMS error of the j -th measured input parameter; xz out
ik is

observed value of the k -th measured input parameter of the i -th experiment; σout
k is RMS

error of the kth measured output parameter; Ne is the number of individual experiments.
Parameters that are subject to optimization as part of this problem are auxiliary

parameter x; estimated measured input parameters xr in
ij ; coefficients of the mathematical

model C1, ..., CNC
. Thus, the total number of parameters subject to optimization at Stage 1
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of the technique is Nopt
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Next, at Stage 2, an optimization problem is formulated and solved, which consists in

minimizing the sum of absolute values of relative errors of all measured parameters in all
experiments. As is known, the absolute value of some variable is a non-smooth function
whose derivative has a discontinuity at zero value of the argument. In this connection, we
formulate a mathematical programming problem with a smooth objective function and
equality and inequality constraints so that the minimum of the sum of absolute values
of relative errors of measurements is reached at its solution point. The mathematical
statement of the optimization problem solved at Stage 2 of the technique can be presented
as follows.
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where the notations are the same as in the optimization problem (1); xin
ij is an auxiliary

parameter that corresponds to j -th measured input parameter of the i -th experiment; xout
ik

is estimated value of the k -th measured output parameter of the i -th the experiment; xmax

is maximum permissible error of measured parameters, determined at the first stage of the
methodology.
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Parameters that are subject to optimization as part of this problem are auxiliary
parameters xin

ij , x
out
ik ; estimated measured input parameters xr in

ij ; coefficients of the
mathematical model C1, ..., CNC

. Thus, the total number of parameters subject to
optimization at Stage 2 of the technique is: Nopt
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Our analysis of the problem shows that the total number of inequality constraints is:
Nogr n
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z ) · 6. The number of equality constraints is in turn equal to:
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2
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It is important to note that the value of the maximum relative error of measurements
x obtained at Stage 1 is rounded up and fixed, and then serves as an upper limit xmax for
all relative errors at Stage 2. Thus, the estimated values of all quantities measured with
error are determined at the optimal point of the solution to this problem, as well as the
required coefficients of the mathematical model of the thermal physics experiment.

The likelihood function (sum of probability densities), as well as the functions of the
sum of absolute values and sum of squares of relative errors of a series of experiments are
determined, respectively, from the following expressions.
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The above functions can be used as quality criteria for comparative analysis of
different versions of mathematical models of the same thermal physics experiment. On
the other hand, these functions allow us to evaluate how well different computational
techniques perform when applied to the same sample of experimental data using the
same mathematical models of the experiment. For example, we can perform a numerical
comparison between the results obtained by the classical least squares method and the
results obtained by the novel two-stage technique detailed in this paper.

2. Description of the Experimental Setup

Experimental data of unsteady nucleate boiling were obtained in a vertical channel
with a vertical hollow cylindrical heater made of Type 321 stainless steel (length is
120 mm, diameter is 12 mm, thickness is 1 mm). The total heat release per unit area
of the heater reached 20 MW/m2, which is much larger than the heat flux picked up
by the supercooled flow, which can be 2 MW/m2 [6]. For this reason, we observed a
rapid (up to 3000 K/s) increase in surface temperature, and evaporation occurred in a
highly unsteady temperature field. This study investigates boiling at high levels of water
subcooling. Depending on the level of subcooling, which was 23 K, 83 K, and 103 K,
the nucleate boiling phase began at 35 ms, 30 ms, and 13 ms from the onset of heating,
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respectively, and ended with a transition to boiling accompanied by massive bubble fusion
and the formation of large vapor structures. The heat release duration was 150–180 ms and
the initial pressure in the test area was 0,29 MPa. The initial flow velocity was 0,5 m/s. To
ensure degassing, water was boiled for several hours while maintaining circulation in the
experimental setup. The gases produced by boiling were removed through a degassing tank
that was connected to the ambient air. The degassing tank was then shut off by closing the
switch valves. The boiling video was captured at up to 180 kHz and a spatial resolution
of 5,5 µm per pixel at a frame size of 256× 256 pixels. The errors in the measurements of
bubble diameter, temperature, pressure, and bulk velocity were ±5 µm, ±0, 5K, ±3 kPa,
and ±0, 01 m/s, respectively.

3. Maximum Sizes of Vapor Bubbles at Unsteady Boiling

In what follows we apply the above approach to process the results of a thermal
physics experiment aimed at generalizing the size of vapor bubbles of various types during
unsteady heating of a vertical steel cylindrical heater surrounded by an upward flow of
water subcooled to the saturation temperature. Experimental data were obtained by taking
a video capture of the experimental area at a high frame rate and then processing the
video frames. We processed about 2,800 bubbles at three subcooling values ∆Tsub (23,1;
83; 103 K ). The observed bubbles were assigned to one of three classes: single bubbles
(single, s), clustered bubbles (cluster, c), and pulsating bubbles (pulsating, p). Moreover,
all bubbles were also averaged regardless of their type, thus forming the fourth class of
bubbles averaged over all bubble types (all, a). Each bubble is characterized by a maximum
diameter Dm, lifetime tb, and bubble type.

As evidenced by the results of experiments reported in [6, 11], bubbles of a wide
variety of sizes, differing by a factor of about 10, exist on the heater surface throughout
the nucleate boiling phase simultaneously, while the change in the average size over the
entire nucleate boiling phase does not exceed 400%. Therefore, when building a model
of nucleate boiling, the input data are not the diameters of individual bubbles, but the
values averaged over a time interval with a weighting coefficient, which allows to obtain
the correct value of the averaged heat fluxes in the future. Existing results on estimating
the relative contribution of different components of the heat flux [6] showed that as the
heater temperature increases, the heat flux contribution of the initial vapor evaporation
in the bubble volume increases as well. The magnitude of this heat flux component is
proportional to the diameter of the bubble raised to the power of three. Therefore, the
model identification is based on Dvol as defined by the following relation.

Dvol =

∑N

i=1
(D4

m · tb)
∑N

i=1
(D3

m · tb)
, (6)

where Dm is the maximum size of the observed bubble, N is the number of observed
bubbles within the current time range, tb is a weighting factor capturing the lifetime of
the bubble within the current time range (0 6 tb 6 1).

Averaging bubble diameters as per the formula reported in (6) was performed for time
intervals equal to 0,3 ms with a step of 0,055 ms for bubbles of each type. To this end,
we took into account the weighting coefficient of the bubble tb, characterizing its lifetime
within the considered time range. That is, if a bubble existed only half the time range
under consideration, its weighting coefficient was 0,5.
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According to several studies [7, 9–11], the maximum bubble size depends on heater
wall temperature and subcooling of the liquid. The saturation temperature Ts is usually
chosen as the reference point for both subcooling of the liquid and heater wall superheat.
Subcooling of the liquid is defined as ∆Tsub = (Ts−T0), where T0 is the water temperature
at the channel inlet. The heater wall superheat is most often defined as (Tw − Ts) [7, 9–
11]. However, as was shown in [6], the choice of TONB as the temperature of the first
bubble appearance allows for consistency of the description of the results for very different
superheat values. Depending on the subcooling in this series of experiments, the shift of
these reference points, (TONB − Ts), varies from 15 to 35 K, so the ranges (Tw − Ts) do
not overlap. Thus, the wall superheat is defined as (Tw − TONB), which is 0 for the first
bubble. Since there is no single model relating subcooling to wall superheat to maximum
bubble diameter, we chose a formula that is linear with respect to both parameters. Thus,
the mathematical model of the weighted average diameter for different types of bubbles
has the following form.

Dvol,s = [(As ·∆Tsub +Bs) · (Tw − TONB) + Cs ·∆Tsub +Ds)] · 10−5; (7)

Dvol,c = [(Ac ·∆Tsub +Bc) · (Tw − TONB) + Cc ·∆Tsub +Dc)] · 10−5; (8)

Dvol,p = [(Ap ·∆Tsub +Bp) · (Tw − TONB) + Cp ·∆Tsub +Dp)] · 10−5; (9)

Dvol,a = [(Aa ·∆Tsub +Ba) · (Tw − TONB) + Ca ·∆Tsub +Da)] · 10−5, (10)

where A,B,C,D are the estimated (adjustable) coefficients of the mathematical model of
a thermophysical process; the subscript s refers to single bubbles (single), the subscript c
refers to clustered bubbles (cluster), the subscript p refers to pulsating bubbles (pulsating),
and the subscript a refers to bubbles averaged over all bubble types (all). Here Dvol is
measured in millimeters.

4. Optimization Results

The two-stage technique for processing experimental data of thermal physics
experiments implies estimation of all parameters measured with an error falling within
the specified accuracy range of measuring instruments. Thus, the RMS errors were as
follows: for the value of subcooling ∆Tsub – 0,1 K, for the value of the independent variable
(Tw − TONB) – 0,5 K, for the weighted average bubble diameter Dvol – 5 µm. It should be
noted that we assumed that the independent variable (Tw − TONB) changed withing the
range of 3 to 14 K to adjust the coefficients of the mathematical model and to estimate
the values of the measured parameters. This was done to exclude the starting area with
abnormally high values of bubble diameters.

A total of 502 experiments were processed; they were organized into three scenarios
(experimental conditions) based on different subcooling values: 164 experiments at ∆Tsub

= 103 K ; 117 experiments at ∆Tsub = 83 K ; 221 experiments at ∆Tsub = 23,1 K. It is
worth noting that no pulsating bubbles were observed under experimental conditions with
∆Tsub = 83 K. Each experiment contained 2 estimated input parameters and 1 estimated
output parameter.

The optimization problem formulated for Stage 1 of solving the problem included 502
equality constraints organized into three scenarios based on different subcooling values
∆Tsub (23,1, 83, 103 K ). Under each of these scenarios we observed that the change in
the weighted average bubble diameter Dvol depended on the change in the independent
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variable (Tw−TONB) across different bubble types. Furthermore, the optimization problem
contained two inequality constraints for each measured parameter. Thus, the number of
individual estimated measured parameters was Npar = 502 · 3 = 1, 506 (of which 1,004
were input parameters for the mathematical model and 502 were output parameters).

The dimensionality of the optimization problem at Stage 1 of the technique at the end
amounted to 1,021 parameters subject to optimization (including 1,004 input parameters
∆Tsub and (Tw − TONB), 16 adjustable coefficients, 4 for each of the bubble types,
and 1 additional parameter characterizing the maximum relative error of the measured
parameters x); 502 equality constraints (one for each of experiments), 3,012 inequality
constraints (2 inequality constraints for each of 1,506 estimated measured parameters). At
the optimal point of the solution at Stage 1, we obtained the value of the maximum relative
error, which was 6,53 sigma. The sum of the probability densities for all experiments
(likelihood function) was 6,4, or an average of 0,0128 per experiment. The sum of the
relative error absolute values was 2,086 or an average of 1,4 per measurement. The sum
of squares of the relative errors was 6,781 and the RMS error was 2,12 per measurement.

At Stage 2 of solving the problem, we arrived at the value of the minimum sum of
absolute values of relative errors of all measured parameters, which amounted to 1,449,
or an average of 0,96 per measurement (the improvement with respect to this criterion
was 30% compared to the value obtained after Stage 1 of the technique). This was done
within the limits of the maximum relative error xmax obtained after Stage 1, which was
fixed at 6,60. At the same time, the sum of probability densities for all experiments (the
likelihood function) increased significantly and amounted to 9,9, or an average of 0,0198
per experiment (the improvement with respect to this criterion amounted to 36% compared
to the value obtained after Stage 1 of the technique). The sum of squares of relative errors
decreased by 3% compared with Stage 1 of the technique and amounted to 6,382 and the
RMS error was 2,06 per measurement.

The dimensionality of the optimization problem at Stage 2 was as follows: 2,526
parameters subject to optimization (of which 1,004 were input parameters ∆Tsub and
(Tw−TONB), 16 adjustable coefficients, 4 for each of the bubble types, and 1,506 auxiliary
parameters, one for each estimated measured parameter, the sum of which makes up
the objective function of the optimization problem); 502 equality constraints (one per
experiment), 6,024 inequality constraints (2 inequality constraints per each of the 1,506
estimated measured parameters and 2 inequality constraints per each auxiliary parameter).
At the optimal point of the solution, we obtained the values of the estimated measured
parameters and the values of the adjusted coefficients of the mathematical model.

Table 1 shows the coefficients obtained for different types of bubbles by the classical
least squares method and the proposed two-stage technique. Figs. 1–3 show the observed
values of weighted average bubble diameters, as well as linear relationships plotted with
the obtained coefficients for bubbles of different types under three scenarios of subcooling
of the liquid. Single bubbles are shown in red, clusters are shown in yellow, pulsating
bubbles are in green, and blue stands for the bubbles averaged over all types (all). The
linear relationship plotted with the dotted line uses the coefficients obtained by the least
squares method, the dashed line indicates the linear relationship that uses the coefficients
obtained after Stage 1 of the technique, and the solid line plots the linear relationship
based on the coefficients obtained after Stage 2 of the technique.
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Fig. 1. Initial measurements and obtained linear relationships at ∆Tsub = 103 K

Fig. 2. Initial measurements and obtained linear relationships at ∆Tsub = 83 K

Fig. 3. Initial measurements and obtained linear relationships at ∆Tsub = 23,1 K
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Table 1

Values of obtained coefficients of the mathematical model of the process

Bubble types Single Cluster Pulsing Averaged (all)
Coefficients obtained by the least squares method

Coefficient A −9, 8 −5, 3 −8, 5 −5, 5
Coefficient B 2330 1492 679 1505
Coefficient C 49,9 59,3 −17, 3 60,9
Coefficient D -2844 6214 6443 5218

Coefficients obtained after Stage 1 of the technique
Coefficient A −0, 9 11,7 −13, 4 4,5
Coefficient B 2534 2469 957 1955
Coefficient C −45, 9 7,5 25,8 10,0
Coefficient D −1618 −2321 3697 292

Coefficients obtained after Stage 2 of the technique
Coefficient A 3,8 −2, 4 −5, 9 −1, 9
Coefficient B 2105 2845 544 2858
Coefficient C −42, 4 70,8 −40, 2 106,3
Coefficient D 73 −4198 7518 −9009

Table 2

Values of quality criteria of the performed identification of coefficients

Calculation method Least squares
method

After Stage 1 of
the technique

After Stage 2 of
the technique

Maximum relative error, σ 23,24 6,53 6,60
Sum of absolute values of
relative errors, σ

2483 2086 1449

Average relative error per
measurement, σ

1,65 1,39 0,96

Sum of squares of relative
errors, σ2

22328 6781 6382

RMS error per measurement, σ 3,85 2,12 2,06
Sum of probability densities 6,9 6,4 9,9
Average probability density per
experiment

0,0138 0,0128 0,0198

Table 2 sums up the values of the quality criteria for the performed identification of
coefficients of the mathematical model of thermal physics experiments. The analysis of
these criteria allows us to compare numerically the classical least squares method and
the novel two-stage technique detailed in this paper. The least squares method has an
excessively high maximum relative error value of over 23 sigma. This can be explained by
the fact that this method considers all input parameters as true values of the measured
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parameters, and the errors of sensors measuring the corresponding parameters are ignored.
As a result, the sum of relative error absolute values (4) and the sum of relative error
squares (5) are larger than the value obtained after the Stage 2 of our technique by 42 %
and 72 %, respectively. The sum of probability densities (3) is in turn 30 % higher (i.e.,
better) in the case of the technique contributed by this study. All things considered, this
attests to the high quality of the proposed two-stage technique for identifying coefficients
of mathematical models.

The above optimization problems for Stage 1 and Stage 2 of the technique for
processing experimental data of thermal physics experiments were solved by the stepwise
optimization method developed at the Melentiev Energy Systems Institute, SB RAS [14].
The method has a high solution accuracy and has been tested in identification and
optimization of mathematical models of complex cogeneration plants [15, 16].

Conclusion

This paper contributed a novel two-stage technique for processing the results of thermal
physics experiments. The technique aims at identifying coefficients of mathematical models
of experiments from observed experimental data. The technique is based on the maximum
likelihood method and is informed by the errors of all sensors used to obtain parameter
measurements. Stage 1 of the technique involves minimization of the maximum relative
error over all measured parameters, which allows gross measurement errors to be identified
and reduces the maximum relative error down to acceptable values. At Stage 2, we rely
on the method of weighted least absolute values to minimize the sum of absolute values
of relative errors of all measured parameters. The technique was applied to process the
results of thermal physics experiments aimed at generalizing the size of vapor bubbles of
various types during unsteady heating at the surface of a steel heater in the flow of water
subcooled to the saturation temperature. As is evidenced by our comparison of the quality
of identification of model parameters, the technique reported in this study yields 1) lower
values of criteria measuring the discrepancy from experimentally observed values and 2)
higher probability density values than the least squares method used previously.
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ОБОБЩЕНИЕ РАЗМЕРА ПАРОВЫХ ПУЗЫРЬКОВ ПРИ
НЕСТАЦИОНАРНОМ КИПЕНИИ С ПРИМЕНЕНИЕМ
ДВУХЭТАПНОЙ МЕТОДИКИ ОПТИМИЗАЦИИ

В. Алексеюк1,2, А. Левин1, П. Хан1

1Институт систем энергетики им. Л.А. Мелентьева СО РАН, г. Иркутск, Российская
Федерация
2Иркутский национальный исследовательский технический университет, г. Иркутск,
Российская Федерация

Целью исследования является применение разработанной авторами оригинальной

методики обработки результатов теплофизических экспериментов. В статье приводит-

ся описание двухэтапной методики идентификации коэффициентов математических

моделей по результатам замеренных опытных данных. Методика основана на методе

максимального правдоподобия и учитывает погрешности всех датчиков, используе-

мых для получения замеряемых параметров. На первом этапе решения задачи ме-

тодика предполагает минимизацию максимальной относительной погрешности среди

всех замеряемых параметров, что позволяет качественно выявлять грубые погрешно-

сти измерений и снижать максимальную относительную погрешность до приемлемых

значений. На втором этапе предлагается применять метод взвешенных наименьших

модулей для минимизации суммы модулей относительных погрешностей всех замеряе-

мых параметров. Данная методика была применена для обработки результатов тепло-

физических экспериментов, направленных на обобщение размера паровых пузырьков

различных типов при нестационарном нагреве вертикально расположенного стального

цилиндрического нагревателя, омываемого восходящим потоком воды, недогретой до

температуры насыщения. Вычислительные эксперименты, представленные в данной

работе, демонстрируют высокое качество предлагаемой двухэтапной методики иден-

тификации коэффициентов математических моделей. В работе также представлено

сравнение результатов, полученных классическим методом наименьших квадратов и

предлагаемой двухэтапной методикой.

Ключевые слова: теплофизический эксперимент; идентификация коэффициен-

тов; математическая модель; критерий максимального правдоподобия; метод взве-

шенных наименьших модулей; метод наименьших квадратов.
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