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We consider the heat and mass transfer models in the quasistationary case, i. e., all
coefficients and the data of the problem depends on time while the time derivative in the
equation is absent. Under consideration is the inverse problem of recovering the surface
flux through the values of a solution at some collection of points lying inside the domain.
The flux is sought in the form of a finite segment of the Fourier series with unknown
Fourier coefficients depending on time. The problem of determining the Fourier coefficient
is reduced to a system of algebraic equations with the use of special solutions to the
adjoint problem. The equation is considered in a cylidrical space domain. We prove the
existence and uniqueness theorems for solutions of the corresponding direct problem. The
results are employed in the proof of the corresponding results for the inverse problem. The
corresponding numerical algorithm in the three-dimensional case is constructed and the
results of the numerical experiments are exhibited. It is demonstrated that the algorithm
is stable under random perturbations of the data. The finite element method is used. The
results can be used in the problem of the determination of the fluxes of green house gases
from soils from the concentration measurements.
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Introduction

In general, the problem of calculating the dynamics of an admixture in the atmosphere
can be mathematically defined as a solution under given initial and boundary conditions
of the differential equation [1-4|

Mu = 0u/0t + (d,Vu) = div[KVu] + f, K = diag(cy,ca,...,cp). (1)

Here u is the pollutant concentration minus the background value; @ is the direction
of the wind; the axis z, is directed vertically upward; ¢; = K; + D (i = 1,2,...,n),
with K, D the coefficients of turbulent and molecular diffusion (see [5]) and ¢ is time.
In view of applications, the equation (1) is often considered in some domain G of the
form G = Q x (0, H) (2 is a bounded domain of the class C?). Assume that Sy, S; are
the lower and upper bases of the cylinder G, I' = G, S = 9Q x (0, H). The following
initial-boundary conditions are examined: (see [1,6,7])

uls =0, ulg, =0, ¢,0u/dz, + Puls, = g, uli=o = uo(x). (2)

Sometimes, it is reasonable to assume that the flux is given on the lateral surface or on the
upper cover of the cylinder G rather than the concentration. In some practical problems,
the problem (1), (2) can be simplified. Studying the surface emission of gases, it is possible
to observe that the nonstationary summand 0C/0t is essential in some special cases, in
particular, in conditions of very weak wind or a low intensity turbulent exchange. The
concentration changes are often of quasistationary character and thereby we can exclude
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the summand 9C/0t equating it to zero and assume only that the coefficients of the
equation (1) are known functions of time and space variables [8, p. 19]. The statement of
the inverse problem in the general case is as follows. Given the values of concentrations
measured at some points y; = (Y14, Y2i, - - -, Yni) (1 = 1,2,...,7), find the function g and a
solution C' to the problem (1) — (3) such that the given values 1;(t) are close to C(t,y;)
or (in the ideal case)
u(t,y:) = wi(t), i=1,2,...,m (3)

We look for the function g in the form g = »"'_, ¢;(t)®;(z) + go, where ®; is a collection
of basis functions, the function g is a given function and the functions ¢; are unknowns.

There are two different cases. In the former, the points y; lie on the boundary of the
space domain. In this case the problem is well-posed in the Hadamard sense. In the case
of n =1, the uniqueness theorem in this case is established in [9] and the uniqueness and
existence theorem of a classical solution in [10] (here the heat flux and the higher-order
coefficient depending on time are determined). However, the case of n = 1 is rather simple.
Probably, the first article devoted to the problem (1) — (3) in the multidimensional case
is the article [11] (see also [12]), where, in the case of Mu = u; — Au and r = 1, the
existence and uniqueness theorem of classical solutions to the problem was established.
More general results were obtained in the article [13]. In the latter case, the points y; lie in
the interior of the domain G. In this case the problem is ill-posed (see some existence and
uniqueness results in [14]). At present, there are a series of articles devoted to numerical
solving the problems (1) — (3) in different statements and the points {y;} in (3) can be
interior [1,2,5,10] or boundary [15,16]. The main approach is reducing the problem to a
control problem and minimization of the corresponding cost functional (see, for instance,
[15]). The articles [17-20] are devoted to numerical solving the problem on describing green
house gases emission from soils.

Here we examine the quasistationary case, i. e., the equation (1) is replaced with the
equation

—

Mu = —div(c(t,x)Vu) + b(t, x)Vu + a(t,z)u = f, ¢ = diag(cy, o, ..., ), (4)

and the boundary conditions are of the form
Cnu:tn’SO =9, Ru’S = h7 u’51 =01, 9= Zqz(t)q)z(x) =+ 9o, (5)
i=1

where Ru = u or Ru = Ou/ON + ou. The quasistationary case is considered in [17,19,
20] and many other articles. The most popular idea of constructing a solution to the
inverse problem belongs to Marchuk G.I. [21]. It is also described in [17] and it is based
on constructing some particular solutions to the adjoint problem. In the article [20] the
question on dependence of a solution g = g(z, y) on the parametrization of the coefficients
of the equation is treated, and the function g = const is numerically determined in [19].
In contrast to the other articles, we look for the flux ¢ in the form of a finite segment
of the Fourier series. We expose sharp results on the existence and uniqueness of the
inverse problem. The corresponding numerical algorithm and the results of the numerical
experiments are exhibited in the case of the problem (3) — (5) and n = 3. The algorithm
is based on the finite element method. It is demonstrated that the problem is stable
under random perturbations of the data. The results can be used in the problem of the
determination of the fluxes of green house gases from soils (see the statement in [1]).
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1. Preliminaries

Let G be a domain in R". By L,(G) and W;(G) (1 < p < o0) we mean the Lebesgue
and Sobolev spaces, respectively [22]. Let E be a Banach space. Denote by L,(G;E)
the space of measurable functions defined on G with values in F and the finite norm
I ||u(x)]|EHL @ [22]. We also use the space C*(G; E) of E-valued functions continuous in
G together with their derivatives up to the order £ admitting continuous extensions on
the closure G. The definitions of the Sobolev space W3(G; E) is standard (sce [23]).

Proceed with some auxiliary results. Some of them are of interest themselves. Consider
the auxiliary problem

Lu=— Z Oz, (aij(t, 2)ug,) + Z a;(t, x)uy, +ao(t,z)u+Xu=f, x € G, t € (0,T), (6)
=1

i,j=1 j=

Rulr = h, Ru(t,z',r;) = g;(t,2"), i=0,1, ' = (z1,...,T0_1), (7)

where a,; = a;, = 0fori=1,2,....n—1,r9 =0, = H, Ru = ZZ;;aij(tvx)Vi,%g +
o(t,x)u (¥ is the unit outward normal to S) or Ru = u, Ryu = a,pu,, + oou or Ryu = u,
Ryu = appu,, +o1u or Ryu =u, A > 0, A > 0 is a real parameter. Describe the conditions
on the data. In what follows, we always assume that the operator L is elliptic, i. e., for
some constant dy > 0, the inequality Y- | a;;&:€; > 0ol¢|* holds for all z € Gt € (0,T)

and £ € R". Assume that

aij € C([0,T]; W (G)), a; € C([0,TT; Ly(G)) (¢ > n,q = p),
ao € C([0,T]; Ly, (G)), (@1 >n/2,q1 2 p), 1,5 =1,2,...,m; (8)

fE€C(0,T]; Ly(G)), he C(0,T); Wi 7(S)), gi € C([0, T); WEY7(S;)), i =0,1, (9)

where k (or k;) is equal to 2 if Ru = u (or R;u = u) otherwise, k = 1 and, respectively,
k; = 1. Moreover, we suppose that if Ru # u or (and) R;u # u (i = 0, 1) then, respectively,

o € C([0,T; W (S)), 01 € C([0,T]; W (Sy)), i =0,1. (10)

The consistency conditions are as follows: if Ru = w and Rju = u (i = 0,1) then
h(t,2',0) = gi(t,2")]oq; if Ru = w and Ru # w (i = 0,1) then, for p > 2
Rih(t,2',0) = gi(t,2")|aq; if Ru # w and Rju = w (i = 0,1) then, for p > 2,
R(t, ', ry)gi(x")]|oq = h(t, 2, r;). It is possible that the statement of the following theorem
is already known. But we did not find direct references and thus the proof is exposed
below.

Theorem 1. Let the conditions (8) — (10) and the consistency conditions for every
t € (0,7) hold. Assume also that p # 2. Then if a solution to the problem (6),(7)
is unique in the class W2(G) for every t € [0,T] then a solution u exists for every t,

u e C([0,T); W2 (G)) and satisfies the estimate

1 ). (11)

1
u : <c : + ||h 1+ i —
H HC([O’T]’WPQ(G)) < elllf leqoazyen + | HC([O,T];W: ;(S)) ;Hg HC([O,T};W:Z P (8:))
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If h =0,91 = 0,90 = 0, and p € (1,00) then there exists a parameter Ao > 0 such that
for all X > o there exists a unique solution u € C([0,T]; W2(G)) to the problem (6) — (7)
satisfying the estimate

[ulleqoriwze) + MullcqoriLe) < clfllcqoriLey, (12)

where the constant ¢ is independent of .

Proof. First of all, we note that under the consistency conditions there exists a function
® € C([0,T]; W2(G)) satisfying the boundary conditions (7) (see Theorem 7.3 in [25]).
After the change of variables u = v 4+ ®, we arrive at the problem

Lv = f, Ruls =0, Ryu(t,2',r;) =0, i1=0,1, (13)

where the same the notation for the new right-hand side is employed. Without loss of
generality, we can assume that if R;u # u then o; = 0. Since the summands o;u in the
boundary condition are lower-order terms, the case of o; # 0 can be easily considered with
the help of the method of continuation in a parameter, for example. Consider the case of
the boundary conditions Royu = u,,,, Riu = u,, Ru = u. The remaining cases are treated
by analogy. Construct a function ¢y(x,) € C*(R) even in the variable z,, € (—H, H)
and such that suppiy € (—=2H/3,2H/3), 1o = 1 for z,, € [0, H/2]. Define also a function
Y1 (x,) even with respect to the point x, = H and such that v (x,) = 1 — t(z,) for
xn, € (0,H) and ¢ (x,) = 0 for z,, < 0. Construct also functions «;(z,) € C*(R) with
the same properties such that suppag C (—2H/3,2H/3), suppoy C (H/3,5H/3), a; = 1
on supp; (i = 0,1) and op = 1 on supp);. Construct domains Gy and G; such that
Go D Qx[0,2H/3], Go C 2 x[0,3H/4), Gy D Q x [H/3,H], Gy C Qx [H/4, H], and the
parts of the boundaries 0G| and 0G| lying in the domains x,, > 0 and z,, < H, respectively,
belong to the class C%. Next, we construct the extensions of Gy and G symmetric with
respect to the planes x,, = 0 and x,, = H. Denote these extensions by the same symbols.
By construction, Gy € C? and 9G; € C?. Given a function ¢ € L,(G), extend it to
Qu = Q x (—H,2H) taking ¢(t, 2, x,) = p(t, 2, z,) for x, € (0,H), p = p(t, 2, —x,)
for z, € (—H,0), ¢(t, 2, z,) = g(o/,2H — x,,) for x,, € (H,2H). We have ¢ € L,(Qpn).
Extend the coefficients a;;, a;(i # n) as even functions and a,, as an odd function with
respect to the points z,, = 0 and x,, = H into Q. Consider the problems

LUZ' = gOéi, T € Gi, 1= O, 1, (14)

uiloe, =0, i =0, 1. (15)

By Theorem 8.2 [24], there exists A\g > 0 such that the problems (14), (15) are uniquely
solvable for A > Ay and the estimate

uillwzey + AMlwill Ly < ellglliy@y, i=0,1 (16)

holds. Due compactness of the segment [0,7], we can assume that the constant ¢ is
independent of time. In our case (G is symmetric with respect to the planes z, = 0
and a solution wuy possesses the property ug,|s,—0 = 0. Indeed, consider the function
to(t,x) = up(t,2’, —x,) for x € Gy. In this case tlog, = 0, Uz, = —Uos, (t, ', —x,),
oz, = Uoz, (L, 2, —2p), Uozyw, = Uozne, (LT, —Tn), Uozz; = Uoa, (L, 2, —2,) fori, j < n—1.
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This function @y is also a solution to the problem (14), (15). The uniqueness theorem
implies that @y = ug. Thus, the function wg is even in z,, and thereby wuq,, (¢,2’,0) = 0.
Similarly, uy,, (t,2', H) = 0 and u; is an even function in the variable x, with respect to
the point x,, = H. A solution to our problem is sought in the form v = ugYy + u1?;. The
function v meets the boundary conditions in G, i. e. the Dirichlet condition on 992 x (0, H)
and the Neumann condition on the planes z,, = 0 and x,, = H. Inserting v in the equation,
we have Lv = ¢gLug + [L, Yolug + 1 Luy + [L,1)uy = g + [L, olue + [L, 11]uq, where
[L,;]b = L(;b) — 1;Lb. The function g must satisfy the equation

g+ V(g) = fv V(g) = [quvz)O]uO + [quvz)l]ul‘ (17>

Estimate the norm ||V (g)||z,)- By definition, [L,¢p|ux = L(¢Ypur) — Yplu, =
—20nn ke, Ukzy, — CnnWChape, T Anke,tr (K = 0,1). We have the embeddings W, (G) C
L (G) (g0 < np(n—p) for p < n and arbitrary for p = n), W (G) C Ls(G) for p > n [22].
Let, for example, p < n. In this case (see (8))

1

V(e <Y el + callanl Lol L, o G0 CzZHWHWl ey (18)
k=0

The case p > n is treated by analogy. The interpolation inequality HUHW,}(G;C) <

CHUH%E(G;C)HquL/pZ(Gk) and the estimate (16) yield

V()2 < cslMNT2lglle,c), t € 10,7, (19)

where the constant ¢, is independent of A > A\g and ¢ € [0, 7. Fix ¢ € (0,1). Increasing the
parameter )\ if necessary, we can assume that cz|A|7/2 < ¢. In this case the equation (17) is
uniquely solvable and a solution satisfies the estimate ||g||c(o,r1:,(c) < callflleqom;z, @)
cqs = 1/(1 —q). Moreover, the function v = w1ty + us1)s is a solution to the initial problem
satisfying the estimate (12). The first part of the theorem results from the Fredholm theory.
(I
Next, we discuss the generalised solvability of the problem (6), (7) in the case of
9,9i = 0. Denote by W, 5(G) the space of functions in W) (G) satisfying those boundary
conditions in (7) that have a sense. Therefore, if Ru # u, Rou # u, and Rju # u then
W, 5(G) = W} (G). Denote by W, 4.(G) 1/p+1/q = 1) the dual space to W, 5(G) with
respect to the duality pairing defined by the inner product in Ly(G). The adJ01nt problem
to the problem (6), (7) with the homogeneous data is written as:

L'v=F, }?v|5 =0, }?iv(x',ri) =0,7=0,1, (20)

where Rv = Rv +a@ - v if Rv # v and Rv = v if Rv = v, R(ﬂ) = Rov + a,v if Ryv # v
and Rov = v if Ryv = v, Riv = Ryv + anv if Ryv # v and Ryv = v if Rjv = v. Here
a-v=>y .

Denote by W, 5(G) (1/p+1/q = 1) the dual to W, .(G) with respect to the duality
pairing defined by the inner product in Ly(G), where Wq 5+ (G) is the space of functions
in W,/ (G) satisfying those boundary conditions in (20) that have a sense. The condition
on the data are as follows:

aij € O([()?T]’ Wolo(G))v oc C([OvT]v Wolo(S))v O-i(x,) S C([OvT]v Wolo(Sz))v 1=0,1, (21>
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where the last inclusions are fulfilled when Ru # u or R;u # wu for some ¢ = 0,1,
respectively;

ag € C([0,T]; Lg, (@), a; € C([0, T|; W, (G)) (@ > max(n,p,q)), i=1,...,n, (22)

where ¢ = p/(p — 1), p € (1,00). Define a generalized solution to the problem (6), (7) in
the case of h, g; = 0. Let, for instance, Ru # u and R;u # u (i = 0,1). By a generalized
solution to the problem, we mean a function u € C([0, T]; W, 5(G)) such that

/Z AijUs,Pr; + (Z a;t,, + apu)p dxr + /chp ds — /oougo dz’ + /chp dx' =
=1

g =l 5 So S

_ /f(t,x)go(t,x) dz, Y € C([0,T]; W' 5.(G)), ¢ € [0,T).
G

Similar definitions are introduced in the remaining cases.

Theorem 2. Let the conditions (21), (22) hold and let f € C([0,T}; W, 5(G)) and h, g; =
0. Then if a solution to the problem (6), (7) is unique in the class W, 5(G) for every
t € [0,T] then a solution u to this problem exists for every t and u € C([0,T]; W, 3(G)).
There exists a parameter \g > 0 such that, for all X > \g, there exists a unique solution
u € C([0,T}; W, 5(G)) to the problem (6), (7) satisfying the estimate |lullcqoriwia) +
/\HUHC([O,T};WI;E(G)) < 0Hf||w,;g(c;); where the constant c is independent of \.

Proof. The proof is carried out along the same lines as those in the previous theorem.
Instead of the results in [24], we refer to Theorems 12.2, 14.2 |26].

([l
Corollary 1. Let f =3, qi(t)0(z —vy;) (v; € G, and 0 is the Dirac delta-function) and
q;(t) € C([0,T]). Assume that the condition (22) holds and

ai; € C([0, T); WL(Q)), o+a-v € C([0,T); WL(S)), oi(x)+a, € C([0,T); WL(S;)), (23)

where the last inclusions are fulfilled when Ru # w or Ru # w for some i = 0,1,
respectively. Then f € C([0,T7; ijé*(G)) with q € [1,n/(n — 1)), where ¢ = p/(p — 1),
p € (1,00), and if a solution to the problem (20) is unique in the class W, p.(G) for
every t € [0,T] then there exists a unique solution v to the problem (20) such that
v e C(0,T]; W, . (G)).

Remark 1. It is sometimes possible to take €2 with a Lipschitz boundary. For example, if
n = 3 and Q = (a,b) x (¢,d) then all statement of Theorems 1-2 are valid whenever
the operator L agrees with the operator M in (4). We only must take into account
that additional consistence conditions can appear at the points x1 = a,b, 29 = ¢,d. The
remaining statement are of the same form.

2. Existence and Uniqueness Theorems

Under consideration is the inverse problem

n n
Lu=— E aﬂfj(aij(tvx)uiri) + § :ai(tvx)uﬂfi +a0(t7x)u+)‘u - f? (24>
1,j7=1 =1
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Ru‘F = h: Rlu(ta xla H) = gl(ta x/>7 R()U(t, xla O) = g(ta .T/), u(ta yz) = %(t)a (25)

where i = 1,...7, Ryt = Gpptiy, + oou, and g = > ., ¢;(t)®;(a") + go (P; is a collection
of linearly independent functions on €2 and the functions ¢;(t) are unknowns). The adjoint
problem to the problem (6), (7) is written as

L*v=f, Ru|lg=0, Ro(t,a',r;) =0, i=0,1. (26)

Fix p > n/2, p # 2. Next, let the conditions (9), (10), (22), (23) hold. Assume also

that @, € W, P(Q) for all j. If Ru = w and p > 2 then we suppose that ®;(z')|gq =
0, ¢ =1,2,...,7r. The consistency conditions are written as follows: for every t € [0,T],
if Ru=wu and Ryu = w then h(t,2', H) = g1(t,2')|sq; if Ru = u, Rju # u (i = 0,1) and
p > 2 then R;h(t,2',0) = ¢;(t,2")]9q (i = 0,1); if Ru # u, Ryju = u, and p > 2 then
R(t, 2", r))g1(t, 2")|aq = h(t,2’,r1). Under the above conditions, there exists a function
® € C([0,T]; W2(G)) such that R®|g = h, Ri®(z',71) = g1, Ro® = go [25, Theorem 7.3].
Making the change of variables u = v + ®, we arrive at the problem

Lv=— Z Ou, (aij(t, 2)vs,) + Z a;(t,x)vy, +ao(t,z) v+ v =f, z€G,  (27)

ij=1 i=1
Rulr =0, Ryv(t,2',r;) =0, Rov(t,2’,0) qu (2, (28)
v(t,y;) = ¢,(t) — ®(t,y;) = wj, i=12,...,r (29)

Let v € C([0,T];WZ(G)) be a solution to this problem. The condition p > n/2 ensures
the embedding W2(G) € W, (G), with ¢o > n. In this case ¢y € (1,n/(n — 1)), with
76 = qo/(qo — 1). If the conditions of Corollary 1 are fulfilled then there exist solutions
v; € C([0,T]; W;&B*(G)) to the problems (26), with f = 0(z —y;) € C([0,T7; W L (@)).
It is not difficult to justify multiplying (27) by v; and integrating by parts that

/Rov(t ', 0)v;(t, 2',0) da’ + 1;(t) /fvj dz,

Q

where the right-hand side is the value of the functional f on the function v;. The boundary
condition (28) leads to the system

r

Zqi/cbi(x')vj(t,x',O)dx':/fvjdx—g/;j(t), j=1,2,...,m, (30)
G

=1 Q

which can be written in the form

Aa = ﬁ, E = /f’l)l dx — sz(t), Q5 = /(I)j?)i(t, 33'/,0) dz’. (31)
G Q
Assume that
det A # 0Vt € [0,7], vi(t) € C(0,T]) (i =1,2,....7). (32)
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The matrix A has the entries a;; = f ,v;(t,2',0) da’. Thus, to solve the inverse problem,
Q
we need to determine the functions v; and to solve the system (31).

Theorem 3. Assume that the conditions (8) — (10), (22), (23), (32) and the consistency
conditions hold, p > n/2, and a solution to the problem (6),(7) from the class W2(G)
is unique for every t € [0,T]. Then there exists a unique solution wu,qy,qo, .- .,q, to the
problem (24),(25) such that uw € C([0,T];W(G)), ¢ € C([0,T]) (i = 1,...,7). If the
conditions of the theorem hold and there exists a segment [t1,ts] (t1 < t2) such that
det A = 0 Vt € [t1,ta] then a solution to the problem (24),(25) is not unique in the class
C(0. TEW2(G).

Proof. First of all, we note that the duality arguments allow to show that if a solution to
the problem (6),(7) from the class W7?(G) is unique for every ¢ € [0,7] then a solution to
the problem (26) from the class W 5.(G) is unique for every ¢ as well. In this case we can
construct the functions v; (j = 1,2,...,r) to the problem (26) with f = §(x —y;) and the
former part of the theorem results from the fact that the system (31) is uniquely solvable.
Next, we recover the function v as a solution to the problem (27), (28), and determine the
function v = v + ®. Demonstrate that a solution v to the problem (27), (28) meets (29).
The definition of a generalized solution to the problem (27), (28) and the properties of the
functions v; imply the equalities

/(annvxn (t,2",0) + oou(t, 2',0))v;(t, 2", 0) dz’ + v(t,y;) = /fvj dz,
Q G

subtracting which from the equalities (30), we justify (29).

Now, assume that det A = 0 V¢t € [t1,ts]. Take t° € (t1,t2) Let 7(A(tg)) = 8 < r. In
this case, either there exists a neighborhood about ¢ in which r(A(t)) = 5 < r (the rank
of A(t)) or in any neighborhood there exists a point ¢! such that 8 < r(A(¢')) < r. In
the latter case, choose t' € (t1,t2) such that 5 < r(A(t')) < r. Repeating the arguments
finitely many times, we can find a point t* € (¢;,t,) with a neighborhood U C (t;,,) such
that 7(A(t)) = fo < r in U. Without loss of generality, we can assume that the matrix
lying at the first Sy columns and rows has the rank g, and its determinant does not vanish
in U. Instead of the system (31) with the matrix A = {a;;}, we take the system

Bo T
Zaijqj == Z Q54
=1

Jj=Bo+1

Take arbitrary functions ¢; (j = fo+1,...,7) of the class Cj°(U). The remaining functions
{q;} are solution to this system. These functions belongs to the class C'(U) and are
compactly supported in U. Extending them by zero on the segment [0,7] and solving
the direct problem (27), (28) with these functions we determine a nontrivial solution to

the homogeneous problem.

O
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3. Numerical Algorithm

We take n = 3 and G = 2 x (0, 7). We examine the problem (3) — (5), where the
boundary conditions are of the form

Calay|s, = 9(t,x), uls, =0, uls =0, Q—Z% (). (33)

Let Ym = (Y1im, Y2m, Ysm)- The finite element method is employed. Divide the domain G
into tetrahedra and construct the corresponding piecewise linear basis {@;(z)}Y,. The
nodes of the grid are denoted by {p;}X,. For convenience, we assume that the points
Ym are the nodes p;,, (m=1,2,...r) of the grid. An approximate solution has the form
v =" Ci(t)pi(x) and the functions Cj(t) are solutions to the system

N 3
Zaika - F7 Qi = /Z Cj t € @kzac (:Ozac + b; (t -r)(pkx QOZ) + AP P; dl‘ (34>
k=1 j=1

where F = F) — PR ¢ (O F; and F; = ([ @00 (/,0)da’, ..., [ oy (a!,0)da)T, Fy =
Q Q
((f,¢1),---,(f,on))T. Thus, the system can be written in the matrix from
AC =F. (35)

Let e; be a basis vector whose jth coordinate is equal to 1 and the remaining coordinates
vanish. Define the vector @; = (A*)7'e;, (j = 1,2,...,r), where A* is the transposed
matrix. Find the quantities ¢;. To this end, multiply the equation (35) scalarly by v, and
use the conditions (3) which in our case have the from Cj; = 1);. We derive that

r
<F07U]>_77Z)jzzqz<ﬂaﬁj >, j:1727”‘7T7

where the brackets < -,- > stand for the inner product in RY. The vectors ¢ can be
determined from this system. The vector C is a solution to the system (35).

The matrix with entries < F;,UJ > is a discrete analog of the matrix A in (32). In
the case of a regular family of finite elements, it is possible to prove the convergence of
the entries < F},ﬁi > to the corresponding entries of the matrix A (see Theorems 3.1.5,
3.1.6 |27]). This means that if the condition (32) is fulfilled then the determinant of A in
(34) also does not vanish for sufficiently small partition of the domain.

4. Numerical Realization

In this section we present the results of numerical experiments for some collections
of the data. To determine the accuracy of calculations, we take given functions c, 5, a,
f and the function g depending on the known functions ®; and ¢; (see (5)). Solving the
direct problem (4), (5) we can find a solution u to this problem and thereby the quantities
u(t,y;) =; (i =1,2,...,r). Next, using this data we can solve the inverse problem (3) —
(5), and find a solution u and the functions ¢;. Comparing the initial functions ¢;, u and
the results of calculations, we can estimate the convergence of the algorithm.
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The characteristics of the computer are as follows: Processor: Intel(R) Xeon(R) CPU
E5-2678 v3 @ 2.50GHz (2 two processors); RAM: 64.0 GB; OC: Windows 10 Pro x64.

For brevity, we only display graphics and tables with the results of calculations g¢;.
Assume that all coefficients in the equation (4) are known. Every experiment consists of
the following steps: definition of the points {y;}/_, and the functions ¢;, ®; (i = 1,2,...,7);
defining the parameters of a grid; converting all used functions into arrays in accordance
with grid nodes and the time step; solving the direct problem (4), (5), constructing the
functions ¢;(t) (i = 1,2,...,r) and adding random noise to the values of these functions;
solving the inverse problem (3) — (5); comparing the initial data and the results of
calculations of the functions ¢; and w.

Consider the results of calculations for the first group of data. Our domain is a cube
with the unit edge, whose diametrically opposite corners have the coordinates (0;0;0) and
(1;1;1).

The first group of the data. Let » = 3 and let the points y; have the coordinates:
(0,25;0,75;0,25), (0,75;0,5;0,75), and (0, 5;0,25;0,5). The functions ¢; are the functions
q =2t+1, g = (t—1)?, and g3 = t3+3. The number of the time steps is equal to M = 10.

1) Since the problem is three-dimensional, it is necessary to partition the domain
into tetrahedra. Let us denote the steps in spatial variables by Az, Ay, and Az. Let us
construct a grid on part of the boundary x3 = 0 consisting of right triangles with legs
equal to Az and Ay. Next, we duplicate this layer by raising it to Az and connecting the
points, thus obtaining rectangular tetrahedra of the height Az with a right triangle at the
base. We employ three grids Zy, Z;, and Z5 with the number of nodes N equal 729, 2197,
and 9261, respectively.

2) Next, we define the arrays of nodes on the faces of the cube. Note that we use the
homogeneous Dirichlet condition on all faces except for the lower face of the cube.

3) The time step is equal to 7 = T'//M. Introduce the coefficients as follows: a =
(t+Dx(z+y+2z+1), 0 =t+Dx(x+1D)3 b=+ x(y+1)2% by = (t+1)*(2+1)%
cn=(@+1)/t+1),cu=0C+D*x@x+12% cn=(y+1)/(t+1),c33=(2+1)/(t+1).
Next, we define the right-hand side f = 1, the functions g and g;.

4) The functions ®; in our calculations are actually a partition of unity on the lower
face of the cube, we divide the boundary z3 = 0 into r parts according to the following
rule: the nodes of the 7th subdomain are closer to the ith point y; than to all other points.
So ®; = 1 on some collection of nodes and vanishes at the remaining nodes.

5) Next, we solve a direct problem (4), (5), as it was described in the previous section.
The next step is constructing the functions ¢; = u(t,y;) (i = 1,2,...,7). To add a random
perturbation, we employ a uniformly distributed random variable noise € (—§;0) (6 €
[0, 1]) with zero mean, so 1000 is a deviation in percents. The resulting functions are of
the form ;(j7) = ¢i(j7)(1 + noise(j7)). For the first group of the data we take § = 0.

6) Introduce the calculation errors as follows: the equality £, = max;(max; |¢’ (iT) —
qf |) defines the calculation error for the functions ¢; (the numbers qﬁ are the result of
calculations, qf ~ ¢(ti), j = 1,...,7); the error of calculations of a solution u is defined
as g, = max;; |u;; — u(p;, 7j)|, where i = 1,2,...,N and j = 1,2,..., M. Let 7, be
execution time of the algorithm, including the time for solving the direct problem, in
seconds.

The results of calculations for the three grids (the case of ¢ = 0) show that the
graphics of the initial and the constructed functions actually coincide, so we do not
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display the results. The quantities ¢,, €,, and 7, for the above three grids are as follows:
(2,4e714,9e715.1.67), (4,97, 1,4e711,11,9), (5,6e714,1,3e711,373, 3).

For the second group of experiments, we take only one point y; and add 1,
5 and 10 percent noise. The number of nodes of the grid is equal to 1331. Changing
the coordinates of the point y; with the step 0.1 from (0,1;0,1;0,1) to (0,9;0,9;0,9),
we obtain practically identical result and the average parameters are as follows: £ =
5,55e10 gavr = 3 82¢~16 ravr = 3 92 The largest error achieves at the point y; =
(0,5;0,5;0,5). In the next table we take y; = (0,5;0,5;0.5). The Table 1 shows the

dependence of the errors on the functions ¢; and a random noise. Next, we take M = 100

0

D2F X v

[
0.4 A ) G
06 1) I‘\I.'- \

08 VTV R

1.2 z 3
0 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 1. The results of calculations of ¢; with 25% noise

and § = 0,25. The results are displayed on Fig. 1 for the function ¢; = sin(w(¢ 4+ 1)). In
this case ¢, = 0,24, ¢, = 0,091, 75, = 32,8. The calculation shows that the algorithm is
stable with respect to the noise.

Table 1
The results of experiments for the second group of the data

No ) q; Eq Eu Ts

1 0,01 log(t + 1) 0,0061| 0,0033]| 3,41

2 0,05 log(t + 1) 0,0185| 0,007 | 3,46

3 0,1 log(t + 1) 0,0581| 0,031 | 3,44

4 0,01 ettt 0,044 | 0,24 | 3,65

5 0,05 ettt 0,217 | 0,09 | 3,3

6 0,1 ettt 0,398 | 0,19 | 3,33

7 0,01 | sin(w(t+1)) | 0,0091| 0,0037| 3,46

8 0,05 | sin(w(t+1)) | 0,037 | 0,015 | 3,25

9 0,1 sin(m(t + 1)) | 0,089 | 0,032 | 3,34

For the third group of experiments, we use an array of 8 points {y;} and the
corresponding functions ¢; below. We also slightly change the mesh construction area by
stretching and compressing it by 2 times relative to the X and Z axes, respectively. Let’s
set the random noise to 5 percent. The results are exhibited in Table 2 and on Fig. 2.
According to the results of computational experiments, it is clear that the calculation error
increases as the coordinates of the overdetermination point move away from the lower face.
The results shows good convergence of the algorithm as a whole.
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Table 2
The results of experiments for the third group of the data
No Y qi 5qi
1 (0,2;0,1;0,45) | sin(w(10t+1)) — 16 | 2,44
2 (0,6;0,3;0,35) (t—2)?+16 1,39
3 (1;0,5;0,25) (t—1)3—12 1,32
4 (1,4,0,7:0,35) | log®(0,1t +1)—8 | 4,53
5 (0,2;0,9;0,05) 2t + 12 0,72
6 (0,6;0,7;0,15) —10t -1 0,31
7 (1,8;0,1;0,05) —cos(m10t) + 8 0,93
8 (1,4;0,3;0,15) —e2 105 1 4 0,97
25 T T T T T T T T
20 F PO Ve S
. ) L ) 1
10 F i
i ﬁ*wm\‘r ’ﬁy‘—*uw%:#_c;f" o T *\.N\m
5 - -
; _—-.—_._.:_ "\__“-—“:-"l-—-_u__\,-_‘__.l____‘_“ |
S —a
2 MH_H‘—“———,_\_ : h"'"‘--:_‘:._%x ; 4
-5 Hm“*m_?_m_ A - .-l\_\'-‘-._\_\_'-‘
A0+ et ' m_‘h"‘_“—,-.h__h__‘___h
"'\foﬂ._v_;‘\vﬁ*—/‘r-‘u—_."“fﬂ\t“/\“/: L\j\"_-\_”\"’\ﬁ-“w'/“‘\f—‘fm\."J-q\.
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Fig. 2. The results of calculations of ¢; with 5% noise

Conclusions

Using theoretical results on well-posedness of the problem, we construct a numerical
algorithm for recovering the surface flow on the lower face with the use of point observations
of the concentration. It is based on the conventional methods (in our case FEM and
difference schemes). The results of numerical experiments are presented. The obtained
results reveal the accuracy, efficiency, and robustness of the proposed algorithm. It is
stable under random perturbations of the data.
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BOCCTAHOBJIEHUE IIOTOKA HA I'PAHUILIE
9KOCUCTEMA-ATMOC®EPA

E.". Cagonos', C.T. ITamxos'
'TOropckuit rocyapeTsennnlii ynusepenTet, I. XanTel-Mancniick,
Poccuiickas ®@enepariust

Mur paccMaTpuBaeM MOJEJ/IN TEILJIOMaCCOIIEPEHOCa B KBa3UCTallUOHAPHOM CJjly4dae, T.e.
BCe KOS(i)(bI/IL[I/IeHTbI 1 JaHHBbIE 3aBUCAT OT BpEMEHH, HO IIPOU3BO/Hasd II0 BpEMEHU B ypaB-

HeHuu orcyrcrByeT. Vccnenyercs obparHas 3aa4a BOCCTAHOBIEHUS IIOTOKA HA TDAHUIE
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00JIacTu 1O 33[AHHBIM 3HAYEHUSAM DeIlleHusi B HAOOpe TOYEK, JIEXKAINUM BHYTPH OOJIACTH.
IloTox mrmerca B Buje KOHEIHOTO oTpe3Ka psga Pypbe, ¢ HeM3BeCTHBIME KOddburmerHTa-
M. 3a/iada ornpejiesieHust KO3 UIUEHTOB CBOJUTCS C MOMOIIBIO CIIEIUATBHBIX PENeHi
COIPsI?KEHHON 3aJladn K cucTeMe ajirebpamdeckux ypaBHeHuil. VcxomHoe ypaBHeHHe pac-
CMATPUBAETCS B IUJINHIPUIECKON IIPOCTPAHCTBEHHON 06/1acT. DTO BBIOOD ClIEJIaH B CHJLY
TOrO, YTO ITOT CJIy4ail, KAK IIPABUJIO PACCMATPUBAETCS B IPUJIOKeHusX. /loka3ana Teope-
MBI CyIIIECTBOBAHUS U €IMHCTBEHHOCTH PeIlneHuil npsamoit 3amadn. [losydennbie pe3yabTraThb
HCIIOJIB3YIOTCS B JIOKA3ATEIbCTBE COOTBETCTBYIONINX PE3YIHLTATOB Jjisi 00paTHOil 3a1a4n. B
TPEXMEPHOM CJIy4Yae CTPOUTCS YUCJEHHBIH aJIfOPUTM ¥ IPUBOJISITCS PE3YJIbTATHI UUCTIEH-
HBIX 9KCIIepuMeHTOB. [loKa3bIBaeTCst, YTO AJITOPUTM YCTOWYHB K CIyIalHBIM BO3MYIIIEHUSM
JaHHbIX. VcIoib3yercst MeTo)i KOHEYHBIX 3JIEMEHTOB. Pe3y/ibTaThl MOI'YT OBITH HCIIOJIB30BaA-
HbI, HALIPAMED, B 33/[a9aX OIPE/IEJIEHUS TOTOKOB IIAPHUKOBBIX I'a30B U3 IIOYBbBI II0 JAHHBIM
3aMepaM KOHIECHTPAIUA.

Karouesvie caosa: obpamnas 3a0a4a; napabosureckoe ypashenue; nomok; meniomac-

coneperoc.
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