MSC 93B05 DOI: 10.14529 /mmp240304

ON THE METHOD OF NUMERICAL SIMULATION OF LIMIT
REACHABLE SETS FOR LINEAR DISCRETE-TIME SYSTEMS
WITH BOUNDED CONTROL

A.V. Simkina', D.N. Ibragimov', A.I. Kibzun'
"Moscow Aviation Institute (National Research University), Moscow, Russian Federation
E-mail: abv1998@yandex.ru, rikk.dan@gmail.com, kibzun@mail.ru

The paper considers the issues of numerical modeling of the limit reachable sets for
linear discrete-time systems with convex control constraints. The method based on the
principle of contraction mappings has been developed. This method is designed to construct
an external estimate of the limit reachable set, which is a significant problem in control
theory and analysis of dynamical systems. The application of the principle of contraction
mappings makes it possible to obtain an estimate with an arbitrary order of accuracy in the
sense of the Hausdorff distance. Moreover, the limit point up to the closure must coincide
with the limit reachable set. The value of the compression ratio depends on the choice of
the norm in the vector space, which, accordingly, influences the Hausdorff distance in the
compact space, as well as the operator norm of the system matrix. To demonstrate the
capabilities of the proposed method, a three-dimensional system with real eigenvalues is
presented as an example. Additionally, an example for constructing the limit reachable set
in the damping system of a high-rise structure located in a seismic zone is provided.

Keywords: linear discrete-time system; limit reachable set; contraction mapping; convex

set; polyhedron estimation.

Introduction

When solving control problems in dynamic systems, it is often necessary to take into
account various limitations associated with the technical aspects of the system under
study. Such limitations lead to the fact that the system can be transferred from a given
initial state to a bounded set of terminal states even with an infinite time horizon. This
fact makes it relevant to study not only the issues of reachability and controllability
of various dynamic systems, but also the development of methods for constructing and
estimating limit reachable and controllable sets for an arbitrary control system. In addition,
controllable and reachable sets can be used in a number of optimal control problems to
form positional control 1] for discrete-time systems.

At the moment, two main directions can be distinguished on this topic: the study
of individual states for controllability [2-5] and geometric methods for constructing
controllable and reachable sets [6-9]. Thus, in the study of nonlinear systems, it is possible
to obtain only general properties of controllability sets 2] or their estimates [8,9]. For
the case of linear equations of dynamics in terms of state and control, it turns out to be
possible to construct more constructive results for various classes of systems: periodic [10],
switchable [3], with positive control [6]. The most rigorous results are formulated for the
case of compact and convex constraints on control values [1,7]|, which even allow the
description of limit reachable and controllable sets [4,5,11]. In [12], for linear discrete-time
systems with scalar control, on which a total 1st-order constraint is imposed, it is shown
that in the case of stable systems it is possible to explicitly find the limit reachable set,
which is a convex polyhedron symmetric with respect to zero. For higher-order constraints,
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the description of the limit reachable and O-controllable sets is obtained by using the
reference half-spaces [13].

A significant disadvantage of these methods is the inability to determine the accuracy
of the estimates in advance. This article examines the development of a fundamentally
new approach to numerical modeling of limit reachable sets based on the principle of
contraction mappings, which was proposed in [11]. It is proved that the closure of the
limit set of attainability is a fixed point of the contraction mapping given in Hausdorff
space. This allows using the simple iteration method to approximate the limit reachable
set with any predetermined accuracy.

1. Problem Formulation

We consider an n-dimensional simreiinast autonomous discrete control system (A, U)

with bounded control:
z(k+1) = Az(k) + u(k),
(1)
z(0) = o, u(k) €U, k € NU{0},

where z(k),u(k) € R™ are vectors of state and control, respectively, Y C R" is a convex
compact set of admissible control values, A € R™*" is the matrix of the system. We take
an assumption that 0 € int U.

We denote a family of reachable sets by {V(N)}¥_,, where each Y(N) represents a
set of those states into which, by choosing an admissible control, the (1) system can be
translated from the origin in N steps:

{z € R": Ju(0),...,u(N —-1) eUU: z(0) =0,2(N) =z}, N €N,

(0}, N—o @

e - {

It is required to construct the limit reachable set )., i.e. the set of those states into
which the system (A,U) can be translated from the origin in any finite number of steps:

Voo ={x €R": AN € N, Fu(0),...,u(N—-1)elU: x(N)=z,2(0) =0}.

Taking into account (2), the identity is also true
Yoo = |J Y(V). (3)
N=0

2. External Estimation of the Limit Reachable Set Based
on the Principle of Contraction Mappings

We formulate the basic property of the limit reachable sets of the 1 system in the form
of the following theorem:

Theorem 1. For each n-dimensional system (A,U) of the form (1) it is true that Vs is
a convex set.

Proof. Let ', 2? be € V., a be € [0;1]. Then there exists N € NU {0} such that x',2? €
Y(N), i.e. there exist v'(0),u'(1),...,u' (N —1),u*(0),u?*(1),...,u*(N —1) € U such that
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2! (N) = 2!, 2%(N) = 22. According to (1) the formula is true for x(0) = 0:

rt =2 (N) = AV 0) + AV 2ur (1) + ..+ ut (N - 1),
22 = 2%(N) = AN"12(0) + AN "2u2(1) + ... + u?(N — 1),
ar! = Nz_l aAfut (N —k — 1),
(1—a)2? = Nz_l(l —a)AFA(N — k — 1),
k=0
(az1 4+ (1 — )xy) = : Af(au' (N —k — 1)+ (1 — a)u*(N — k — 1)).

Due to the convexity of U the inclusion au'(N —k — 1) + (1 — a)u*(N —k — 1) € U,
k= 0,N—1is true. Then az; + (1 — @)z € Y(N) C YVw. Which means that YV, is

convex.
|

Theorem 1 defines the basic apparatus for working with sets 2. Since )., is convex,
various means of convex analysis can be used for its numerical modeling, for example,
the method of polyhedral approximations. The following lemma is valid, which defines the
structure of the reachable sets of the system (A,U).

Lemma 1. |[1, lemma 1] For each N € N the reachable set (2) of the system (A,U)
satisfies the relations:
N-1
Y(N)=> AU, Y(N)=AY(N - 1) +U.
k=0
Taking into account this representation, the reachable set coincides with the 0-
controllability set up to the replacement of the matrix A by A™!, the set U by A~'U.
Then it follows from [11, lemma 4| that reachable sets will be bounded if and only if all
eigenvalues of the matrix A modulo are strictly less than 1.
We denote the set of compacts in R" by K,,, and the Hausdorff distance [16] by pg:

K, ={X C R": X — compact},

X = sup inf ||z — y||p; inf ||z —
pu(X,Y) maX{mtelg;ngx llps sup inf |12 y!lp},

n
lzll, = 7| D lwlr, p> 1.
k=1
If we consider that U is a convex compact in R™, then every set of the form (2) is also
a convex compact, since it is representable as an algebraic sum of linear transformations
of [14] compacts. Then in the metric space (K,,, py) you can define a mapping 7: K,, — K,
of the following form:

T(y)=AY+U. (4)
Taking into account the lemma 1 and the relation (4), if the mapping 7" or T'o...0 T
M

for some M € N are compressive, the limit of the sequence of reachable sets (2) in space
(K, pr) can be defined by the principle of contraction mappings [15]. Also, the principle
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of contraction mappings makes it possible to estimate the error of approximating the limit
point using the simple iteration method. On the other hand, the limit point up to the
closure by virtue of (3) must match with V.. Let’s formulate this fact in the form of a
theorem.

Theorem 2. Let all eigenvalues of the matriz A € R™ ™ be strictly less than 1 modulo,
the family {Y(N)}S_, is defined by the ratio (2), the set Vo is defined by the ratio (3),
the mapping T has the form (4).

Then
1) there exists M € N such that the mapping Tpy = T o...oT is compressive with some

M
compression ratio o € [0;1);

2) Vo is the only fived point of the T in (K, pu);
3) the estimation is true

N

——pu(Y(M). {0}).

Pt (Voo VINM)) <

Proof. The proof follows from [11, theorem 2| when replacing A~! by A and (—A~'U)
by U.
(I
The value of the compression coefficient o from the theorem 2 generally depends on
the choice of the norm in the space R™ and, as a result, on the associated operator norm
of the matrix A. For instance, the following estimates of the value of « are known when
choosing different norms || - ||, in R™ [15]:

n

p = max g |lai;], ag =
1I<ysn 4 1
1=

n n n
DD al o= max dlay| (5)
j=1

i=1 j=1

The methods that allow in the general case to determine at what value M € NU {0} the
Ty mapping will be compressive are currently unknown. However, taking into account the
estimates of (5), the value of M can be determined numerically by sequentially calculating
«a for various values of M € NU {0}. Also, the choice of the norm in the space R" affects
the value of the Hausdorff distance in K,,, which finally determines the structure of the
external estimates of the set V.

Theorem 3. Let all eigenvalues of the matrix A € R™ ™ be strictly less than 1 modulo,
the family {Y(N)}¥_y is determined by the relations (2), the set Voo is determined by
the relation (3), the value M € N is chosen so that Ty is a contraction mapping with
compression ratios ay, s, e € [0;1), which are associated with the norms || - |1, || - |2,
| - oo in the space R™ respectively. Then

Voo CV(NM) +conv{ (0,...,0,7,0,....,00":r e {—R;,R;}, i=0,n—1p,
——

Voo CY(NM) + (¢ x € R":
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Voo CY(NM) + {x € R": max|z;| < Roo},

i=1n

N

R, = max) |zllp, pe€{1,2,00}, N eN.

1 — oy zey(m
Proof. By virtue of clause 3 of the theorem 2

O pa V(M) {0)) = Ry, p € {1.2,50),

p

o (Yoo, VINM)) <

1

Then by virtue of the definition of the Hausdorff distance
Yoo € Voo C YV(NM) + B, (0),

where

Br,(0) = conv ¢ (0,...,0,7,0,...,0):
——

B, (0) ={ z e R™:

i=1n

Bgr..(0) = {x € R": max |z;] < ROO} :
O
The theorem 3 allows you to construct external estimates of the set ), with any
predetermined accuracy.
We demonstrate the theoretical results obtained by using the example of constructing
a limit reachable set for a linear discrete-time system of the form (1).

Example 1. We consider the three-dimensional system (A,U), where

025 0 1
A= 0 -016 0 |,
0 0 0,14

4 2 —2 —4 —2 2 0 0
U=convl (4], [ 4|, 2. [-4]),[-4],l-2].[0],]0
3 -3 0 3 3 0 4 —4

Let us construct for the system (A,U) an estimate of the limit reachable set V., according

to the theorem 3. As the value of the parameter defining the norm in R?, we choose p = 1.

Then

| Al 025 M=1 ||| 11, Ry (N) (0’25)N 11
=q; = = max ||lz|; = =" _11.
! ” " 2ey(M) ! T 1-0,25

We construct an external estimate )., for N = 3:
Voo = V(3) + {z € R : |2y] + |aa| + 73] < Ru(3)} .

The estimate )>oo for N = 3 is shown in the Fig. 1.
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Fig. 1. The reachable set )Y (3) is denoted by a polyhedron, the solid line denotes the
external estimate of the limit reachable set for p =1

3. Contructing Limit Reachable Sets for the Damping System
of a High-rise Structure

As a demonstration of the effectiveness of the method developed in section 2, we
propose a mathematical model of a high-rise structure located in a zone of seismic activity,
and for the selected control system we construct limit reachable sets. As a mechanical
system modeling the vibrations of a high-rise structure, a one-dimensional sequence of
elastically connected material points (floors or sections of the structure) is assumed, one
of which (the base) makes a translational motion generated by seismic action.

We take an assumption that the mass of the base is much higher than the masses of
other material points, therefore, the influence of the movement of sections of the structure
on the movement of the base can be ignored. In the future we will assume that the masses
of all material points are the same, and elastic and damping bonds are modeled by linear
elements with the same coefficients of elasticity and damping.

The equations of motion of the system under consideration, according to the model
proposed in [17], have the form

(mE(t) = — 2b€1(t) — 2c€1(t) + bEa(t) + c&alt) + Ui (2),

m&(t) = — 2b&(t) — 2c&(t) + b&i—1(t)+
€1 (t) F b€ (t) + i () 4 Ui(t),

L mgn(t) - 2bén(t) - 20§n(t) + bén—l(t) + Cfn—l(t) + Un(t)v

where &; is the coordinate of the 7th material point relative to the base, U; is the control
force applied to the ith material point, m is the mass of the material point, b and ¢ are
the damping and elasticity coefficients of intersectional bonds, respectively.

We assume that the control is relay-based, i.e. U(t) = v, t € [kAt; (k + 1)At) for an
arbitrary £ € N and a fixed sampling step At > 0. Then we can proceed to the following
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equivalent relations:
2(k+1) = Agz(k) + a(k), )
Z(O) = Yo, ﬂ(k) € BlU,

where A; € R¥" is the matrix of the discretized system, BlUy C R*" is the set of
admissible control values, z(k) = (£(kAt)T, £(kAL))T € R?*™ is the state of the system at
the kth step, ®(¢) is the matrix of the fundamental decision system (6). The following
notations are used:

Ay = (AP (0),

B =®(A)d H0)A — A7

a(k) = Buy, k € NU {0}.

We assume that control installations on different floors operate independently of each
other, and only restrictions related to the maximum power of control actions are imposed
on relay control modes . > 0,

uO - {0}10 X [_umax; umax]lo-

For the (7) system, the condition 0 € int BlUy, necessary for constructing limit reachable
sets, is not fulfilled, since the dimension of this set of admissible control values does not
coincide with the dimension of the phase space. For this reason, let us move on to an
auxiliary system of the form (1), doubling the quantization step:

A= A3 U= AyBUy + By, g
z(k) = 2(2k), u(k) = AgBu(2k) + Bu(2k + 1), k € NU{0}. (8)
Taking into account the definition of (3), the limit reachable sets of the (7) and (1) systems
coincide under the assumptions of (8).

Let the height of the building be 10 floors, i.e. n = 10. Also let At = 1, m = 600, 000,
b = 600,000, ¢ = 2,400,000. The parameter values are selected based on the model
described in [17]. We accept umax = 1, because by virtue of Lemma 1 and definition (3),
the limit reachable sets corresponding to different values of uy,., Will be proportional to
each other.

The matrix A has 10 pairs of complex conjugate eigenvalues:

Ao = 0,388 40,8361, A3y = —0,446 + 0,5741,

Asg = —0,498 £ 0,051, Arg = —0,161 £ 0,2651, Ag 10 = 0,042 % 0,1741,
Ai112 = 0,078 = 0,064, Ayz14 = 0,058 & 0,011,

Ais.16 = 0,036 % 0,007, Ai71s = 0,022+ 0,017, Ayg00 = 0,016 & 0,0111.

The matrix A can be reduced to its real Jordan form A € R?°*2° which consists of cells

A; € R?*2 § =1,10, by means of a non-degenerate linear transformation S € R?0x20,
Since all eigenvalues modulo are strictly less than 1, by virtue of [11, lemma 4] the
limit reachable set V,, C R* of the (8) system is bounded and can be estimated from
above as follows: Voo C S (V1o X ... X Vi0,00), Where Y, » is the limit reachable set of
the subsystem (A;, P,S™'U), i = 1,10. Here P; € R**?° denotes the projection matrix on
the plane corresponding to (2¢ — 1)th and (2i)th coordinates: P, = (0 ... O I O ... O).
i—1
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To estimate the sets Vo, ¢ = 1,10, we use the theorem 3. As a demonstration, we

consider ¢ = 1 and perform calculations similar to Example 1. Fig. 2 shows the calculation
results for the following numerical values of the parameters p = 1 and p = oo.

Fig. 2. The external estimate of the limit reachable set for p = 1 is denoted by a solid
line, the external estimate for p = oo is denoted by a dashed line

Conclusion

We developed the method in the paper for numerical modeling of the limit reachable

sets of linear discrete-time systems with bounded control. The set of admissible control
values is assumed to be a convex compact containing the origin. For the case of a limited
limit reachable set, a method is proposed for constructing its external estimate based on
the principle of contraction mappings with any predetermined accuracy in the shape of a
polyhedron, which allows the modeling process to be implemented numerically.
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O METOJAE YNCJIEHHOTI'O MOJAEJINMPOBAHUA ITPE/IEJIBHBIX
MHOKECTB JOCTU>KUMOCTU 14 JIMHEMHBIX JMCKPETHBIX
CUCTEM C O'PAHNYEHHDBIM VIIPABJIEHVEM

A.B. Cumxuna', /J.H. Ubpazumos', A.U. Kubsyn'
"MockoBckuii aBHaMOHHbBIN HHCTHTYT (HAIMOHAJBHBIN HMCCIEI0BATEILCKII YHUBEPCH-
ter), 1. Mocksa, Poccuiickas @ejeparius

B manmmoit pabore pazpaboTaH MeETOM s JIMHEHHBIX AUCKPETHBIX CHCTEM, KOTOPBI

OCHOBaH Ha IPUHIAIE CXKUMAIOIUX 0TOOparKeHuil. ITOT METOH NpeIHa3HAYeH st II0-

o4
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CTPOEHUs BHEIIHEeH OIEHKH IIPeJIe/IbHOI0 MHOXKeCTBa JOCTUKUMOCTH, YTO fABJIAeTCd 4acToit
3aj7adeil B TeOpun yIPAaBJIEHUS U aHAJIU3e JUHAMUYECKHX cucreM. lIpumenenve mpuuim-
[1a CoKAMAIONIIX OTOOPaKeHUil MO3BOJIAeT 00ECIIeYnTh BOZMOXKHOCTD IIOJIy9€HUs OIEHKH C
[IPOM3BOJIBHBIM IIOPSIIKOM TOYHOCTH B CMBICJIE paccTosiHust Xaycaopda. C apyroit cropoHsI,
IpejieJibHasl TOYKA C TOYHOCTBIO JIO 3aMbIKAHUS JIOJIKHA COBIIACTH C IIPE/IEIbHBIM MHOXKe-
CTBOM JIOCTUKAMOCTHU. 3HaUeHre KOI(DMUIINEHTA C2KATHSI 3aBUCUT OT BHIOOPa HOPMBI B IIPO-
CTPAHCTBE BEKTOPOB, YTO, COOTBETCTBEHHO, BJIAsET HA 3HAUEHUE PACCTOSHUSA Xaycmopda
B IIPOCTPAHCTBE KOMIIAKTOB U OIEPATOPHYIO HOPMY MATPHIBI CUCTEeMBI. s memoncrpa-
MY BO3MOXKHOCTEN IIPEJIO?KEHHOI'0 METO/a IIPEJICTABJIEH IIPUMED TPEXMEPHOIl CUCTEMBI C
JIEHCTBUTE/IbHBIMU COOCTBEHHBIMU 3HAYEHUSIMU. TaK2Ke IMPEJICTABJIEH IIPUMEDP MPUMEHEHUS
METO/Ia JIJIsl 3314491 ITOCTPOEHUS IIPEEIbHOI0 MHOXKECTBA JIOCTUKUMOCTHU B CUCTEME JIEMII-
dbupoBaHUs BHICOTHOI'O COOPYKEHHs B 30HE CEHCMUIECKON aKTHUBHOCTH.

Karouesvie caosa: duckpemnas cucmema; npedesvHoe MHOHCECMBO JOCTIUNCUMOCTU,
NPUHUUN, COHCUMAGNOUUT 0OMOOPAHCEHUL; BDINYKAOE MHONCECTNEO; NOAUIOPANLHASL ANNPOKCU-

MAYUA.

JIureparypa

1.

10.

Noparumos, . H. O 3amade OGbicTpoieiicTBusT [jTsT KJIacca JIMHEHHBIX aBTOHOMHBIX OECKOHEU-
HOMEDPHBIX CHCTEM C JIMCKPETHBIM BPEMEHEM, OIPDAHUYEHHBIM yIIPABJIEHUEM U BBIPOXKICHHBIM
oneparopom / JI.H. 6parumos // Apromaruka u tesemexanuka. — 2019. — Ne 3. — C. 3-25.

Colonius, F. Controllability Properties and Invariance Pressure for Linear Discrete-Time
Systems / F. Colonius, A.N. Joao Cossich, J. Alexandre Santana // Journal of Dynamics
and Differential Equations. — 2022. — Ne 34. — P. 5-28.

Ge, S.S. Reachability and Controllability of Switched Linear Discrete-Time Systems / S.S. Ge,
Sun Zhendong, T.H. Lee // IEEE Transactions on Automatic Contr 1. —2001. — V. 46, Ne 9. —
P. 1437-1441.

Heemels, W.P. Null Controllability of Discrete-Time Linear Systems with Input and State
Constraints / W.P. Heemels, M.K. Camlibel // 47th IEEE Conference on Decision and
Control. — Cancun, 2008. — P. 3487-3492.

Kaba, M.D. A Spectral Characterization of Controllability for Linear Discrete-Time Systems
with Conic Constraints / M.D. Kaba, M.K. Camlibel // SIAM Journal on Control and
Optimization. — 2015. — V. 53, Ne 4. — P. 2350-2372.

Benvenuti, L. The Geometry of the Reachability Set for Linear Discrete-Time Systems
with Positive Controls / L. Benvenuti, L. Farina // STAM Journal on Matrix Analysis and
Applications. — 2006. — V. 28, Ne 2. — P. 306-325.

Darup, M.S. On General Relations between Nullcontrollable and Controlled Invariant Sets
for Linear Constrained Systems / M.S. Darup, M. Monnigmann // 53rd IEEE Conference
on Decision and Control. — Los Angeles, 2014. — P. 6323-6328.

Tounmun, T1.A. O mOCTpOEHNH HEBBITYKJIBIX AIIIPOKCUMAIUN MHOMKECTB JOCTHKUMOCTH
kycouno-ymueiinbix cucreM / I1LA. Tounmun // duddepennmanbubie ypapenus. — 2015, —
T. 51, Ne 11. — C. 1503-1515.

Kuntsevich, V.M. Attainability Domains for Linear and Some Classes of Nonlinear Discrete
Systems and Their Control / V.M. Kuntsevich, A.B. Kurzhanski // Journal of Automation
and Information Science. — 2010. — V. 42, Ne 1. — P. 1-18.

Liao Fucheng. Optimal Preview Control for Linear Discrete-Time Periodic Systems
/ Liao Fucheng, Sun Mengyuan, O. Usman // Mathematical Problems in Engineering. —
2019. — Ne 2. — P. 1-11.

Bectauk FOVYpI'Y. Cepusa <Maremarndeckoe MOAeJIMPOBAHUE 55
u nporpammupoBanues> (Becruuk FOYpI'Y MMII). 2024. T. 17, Ne 3. C. 46-56



11.

12.

13.

14.
15.

16.

17.

Bepennakosa, A.B. O MeToze IOCTPOEHNs BHEIIHUX OICHOK IIPEJIeIbLHOI0 MHOXKECTBA, YIIPAB-
JISEMOCTH JIJIT JIMHEHHO JMCKPETHON CHUCTEeMBI ¢ OrpaHmdeHHbiM ympasiaenueMm / A.B. Be-
pengakosa, JI.H. U6parumos // Asromarnka u rejnemexanuka. — 2023. — Ne 2. — C. 3-34.

Uoparumos, JI.H. O cpoiicTBax npeebHBIX MHOYKECTB YIIPABJISIEMOCTH JIJIsI KJIAaCCa HEYCTOM-
YHUBBIX JINHEIHBIX CHCTEM C JIUCKPETHBIM BpeMeHeM u [q-orpanndenusivu / [I.H. U6parumos,
A.B. Ocokun, A.H. Cuporun, K.M. Cemaso // U3Bectusi poccuiickoii akajemun Hayk. Teo-
pusi u cucreMbl yrupasienusi. — 2022. — Ne 4. — C. 3-21.

N6parumos, JI.H. O HEKOTOPBIX CBOWCTBAX MHOXKECTB OTPAHUYEHHOI YIPaBISIEMOCTH JIJIsi
CTalluOHapPHbBIX JIMHEHBIX JUCKPETHBIX CHUCTEM C CYMMapHBIM OI'paHUMYCHHEM Ha YIIpaBJie-
ure / JI.H. U6parumos, A.H. Cuporun // V3Bectust poccuiickoii akagemun Hayk. Teopust u
cucrembl yupasiaerus. — 2023. — Ne 6. — C. 3-32.

Pokademnap, P. Bemykaistit anamus / P. Pokademnap. — M.: Mup, 1973.

Kommoropos, A.H. Daementsl Teopun dhyuknuit n dysxiponaasaoro anammsa /| A.H. Kos-
moropos, C.B. ®omun. — M.: @uzmaraur, 2012.

Kponogep, P.M. ®paxraibl u xaoc B quHamudeckux cucremax / P.M. Kponosep. — M.: TTocr-
mapket, 2000.

Bamamgun, /1.B. CuaTes 3aKOHOB yIIpaB/IeHUs] Ha OCHOBE JIMHEHBIX MATPUIHBIX HEPABEHCTB
/ 1.B. Bajganmaun, M.M. Koran. — M.: @usmariut, 2007.

Amnacracus Bsaecirapona Cumkuna, kadeapa <Teopust BeposgTHOCTEH U KOMIIBIOTEP-

HOe Mojie/inpoBanues, MOCKOBCKUil aBUAIIMOHHDI WHCTUTYT (HAIMOHATIBHBINA MCC/IeI0Ba~
resibekuii yausepcurer) (r. Mocksa, Poceniickast @eneparnust), abv1998@Qyandex.ru.

Hamuc Hamnesuu MoOparumon, KamaujgaT (pU3NKO-MaTeMaTUYeCKUX HayK, Kadepa

<Teopust BepoATHOCTEH M KOMIBIOTEPHOE MOJEIUPOBaHKe>, MOCKOBCKHI aBHAIMOHHBII
UHCTUTYT (HAIMOHAJILHBIN uccaeaoBaTebekuii yausepcurer) (r. Mocksa, Poccniickas @e-
Jepanus), rikk.dan@gmail.com.

Angpeit UanoBua Kubsys, 10KTOp (DU3MKO-MaTeMaTHIeCKuX HayK, JOIEHT, Kade-

pa <Teopus BeposgTHOCTEl U KOMIIBIOTEPHOE MOJIEINPOBaHNes>, MOCKOBCKUI aBUAIIMOHHDII
HHCTUTYT (HAIMOHAJBHBIN nccaeoBaTebeKkuii yauBepeurer) (1. Mocksa, Poccuiickas @e-
Jepanus ), kibzun@mail.ru.

Hocmynuana 6 pedaxuyuro 14 man 2024 e.

o6

Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2024, vol. 17, no. 3, pp. 46-56



