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The paper presents a concept for comparing the solvers for the mixed integer linear
programming problems and the software environments that call them. This concept involves
multiple repetition of solving mathematical programming problems with the same initial
data to take into account the fact that the computer operations time can be considered as
random. It is also assumed to solve the mathematical programming problem with the same
structure by varying the initial data to compare the solvers. The comparison is carried out
for a number of practical mathematical programming problems. For example we consider
the portfolio optimization problem with the probability criterion. Solvers CPLEX, Gurobi,
MATLAB, SCIP are used in testing. The features of calling solvers in various software
environments are described. In particular, a modification of the source codes for calling
the CPLEX solver through the Opti Toolbox add-on in Matlab environment is provided.
The components of the time required to obtain a solution for various solvers and software
environments are described and studied in detail. It is shown that the operating time of
the solver itself can be comparable to the time of reading data from files and the time of
forming constraints in a mathematical programming problem.
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Introduction

Mixed integer linear programming problems, in which the criterion function and
constraints are linear in optimized parameters, and the optimization variables themselves
can be either continuous or integer, have many different practical applications. Such
problems are used for modeling and traffic control in transport systems [1–7], portfolio
optimization problems [8,9], facility location problems [10,11], resource allocation problems
[12–15], etc.

A number of commercial and free solvers have been developed to solve mixed integer
linear programming problems. Some of the most popular solvers are CPLEX, Gurobi,
SCIP. The CPLEX solver was used, particularly, in [1–3, 5–8, 11, 13]. The Gurobi solver
was used among other works in [10, 14]. Sometimes [15] articles cover both Gurobi and
CPLEX. The good thing about the SCIP solver is that it allows you to solve even problems
with nonlinear constraints. This solver was used, for example, in [12].

A comparison of different solvers can be found in [16–18]. CPLEX, Gurobi, XPRESS
solvers are analyzed from the point of view of possible mathematical programming
problems that they can solve, as well as the features of the functioning of these solvers
in [16]. Solvers for mixed integer nonlinear programming problems are compared in [17].
The number of problems solved by one or another solver in a given period of time was used
as a quality characteristic. There were 335 such problems in total. At the same time, the
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question of how long it takes for one or another solver to solve this or that problem was
not discussed. Also the question of how much input data influences the speed of obtaining
a solution has not been studied. In addition, the issue of the influence of the software
environment on the speed and optimality of the resulting solution was not discussed. The
reducing of the computation time for solvers available in the early 2000s and late 2010s
was investigated in [18]. It was noted in [18] that, depending on the order of filling the
constraint matrix, the time to find a solution, generally speaking, is not the same. The
influence of initial data on counting time has not been studied. It is not clear which solver
is better.

Note that for testing solvers, you can select some of the problems from [19], however,
the choice of one or another problem encounters the need to search for problems from
various application areas, the importance of which is beyond doubt. In the future, we will
study the portfolio optimization problem from [9], the trajectory correction of the satellite
problem [20], the production planning problem [21], as well as the theoretical problem
with a polyhedral loss function [22].

We develop a procedure for testing the solvers, which includes multiple repetition of
solving the same mathematical programming problem, as well as solving a mathematical
programming problem with the same variables, but different input data in this paper
Components for testing solvers are proposed. These components include both various
time characteristics and characteristics associated with the “optimal” value of the criterion
function produced by the solvers. The study of the work of solvers is carried out taking into
account the fact that they can be launched from various environments. Various features
of launching solvers from different software environments are discussed.

1. General Form of a Mixed Integer Linear Programming Problem

Let the vector of optimized variables have the form u = col(u1, u2, . . . , un), and the
variables with indices from the set I = {i1, i2, . . . , iL} are integer, and the rest are
continuous. Then, in general form, the mixed integer linear programming problem can
be written as

cTu → min
uj1

∈Z,uj2
∈R,j1∈I,j2∈{1,...,n}/I

(1)

under constraints
A1u ≤ b1, (2)

A2u = b2, (3)

l ≤ u ≤ r, (4)

where A1 ∈ R
m1×n, b1 ∈ R

m1 , A2 ∈ R
m2×n, b2 ∈ R

m2 are some given matrices
(vectors) of the corresponding dimension, where, in turn, m1 is the number of inequality
type constraints, m2 is the number of equality type constraints. The components of
columns l and r are numbers from the extended real axis. Note that, generally speaking,
constraints (3) are redundant, since they can be rewritten in the form of constraints (2)
with modification of the original matrix A1 and vector b1. Constraints (4) are useful for
specifying that some variables are binary, that is, taking the value 0 or 1. Note that if one
or another of the constraints (2), (3) are not required, then the matrices and columns of
these constraints should be set to zero. If there is no constraints from above (or below) on
a component of the vector, then +∞ (−∞) is formally set in the corresponding coordinate
of the vector r (or l).
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2. Solver Comparison Procedure

To compare the work of solvers and the software environments that call them, we will
select a number of practical mathematical programming problems. In each such problem
we will vary the set of input data. Let us describe the procedure for comparing solvers for
some practical problem.

It should be said that the speed of solvers, as well as the speed of reading data from
files, is, generally speaking, not constant. In practice it can be set as a random variable [23].
In this regard, the same experiments are repeated several times in the future. Therefore, on
the same set of input data, i.e. matrices A1, A2, vectors b1, b2 and others, the mathematical
programming problem (1) under constraints (2) – (4) will be solved R times by each solver.
Next, for each solver and for each problem with the same input data, the median time to
obtain a solution is selected (taking into account loading data from files). Thus, for each
solver, a vector is formed from the median time values, from which the average, minimum,
maximum value, as well as the standard deviation are calculated. The dimension of this
vector coincides with the number of input data sets.

It must be said that the solver of a mixed integer linear programming problem may
not find a feasible solution in some predetermined time. Or the solution provided by the
solver is suboptimal due, for example, to limitations on computation time and computer
memory used in the calculation. Therefore, in addition to the time characteristics for each
solver, we present the number of times with the best value of the criterion function.

Let us explain the procedure for calculating this value. Using the same initial data,
the mathematical programming problem is solved Q × R times (Q used solvers × R
repetitions). For each set of initial inputs, the best value of the criterion function obtained
over all solvers and over all repetitions is calculated. Next, for each solver, the number of
cases is calculated when, on the studied set of initial data, the solver generated the best
value of the criterion mentioned above. After that, this number of cases is summed over
all sets of initial data for each solver, which is the number of times with the best value of
the criterion function. Note that each solver runs N × R times.

Since mathematical programming problems are solved numerically, then the solver is
considered to have found the best solution if the value of the criterion on the solution he
generated differs from the best value of the criterion by amount not greater than ε.

3. Solvers Under Consideration

To test the operating time of various solvers (together with the time of reading
supporting files for solving mathematical programming problems), we will use

• CPLEX solver version 12.5.1

– launched from the CPLEX Studio IDE (hereinafter referred to as CPLEX IDE);

– launched from the MATLAB 2014b environment (hereinafter referred to as CPLEX
MATLAB);

– launched using the Opti Toolbox add-on version 2.27 from the MATLAB 2014b
environment (hereinafter referred to as CPLEX OPTI).

• SCIP solver version 4.0.0, launched using the Opti Toolbox add-on version 2.27 from
the MATLAB 2014b environment (hereinafter referred to as SCIP OPTI);
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• MATLAB 2014b’s own solver, called by the intlinprog command (hereinafter referred
to as MATLAB);

• Gurobi solver version 9.5.2, launched from the MATLAB 2014b environment
(hereinafter referred to as Gurobi MATLAB);

• Gurobi solver version 9.5.2, launched from the R Studio 1.3.959 environment with
version R 4.0.2 (hereinafter referred to as Gurobi R).

Of course, the time required to find a solution to a particular mathematical
programming problem by one or another solver may vary from the setting of certain
solver parameters. This parameter could be, for example, the method of searching for a
solution. However, the sets of parameters for different solvers may differ; in this regard,
we will compare “as is”, i.e. using the default values of the solver parameters.

It should also be noted that according to the comments to the source code of the
Opti Toolbox add-on version 2.27, there is a conflict between it and the versions 12.5.0,
12.5.1, 12.6.0 of the CPLEX package and the MATLAB environment version not earlier
than 2013a. Probably, in this regard, without additional actions with the source code, it is
not possible to call the CPLEX solver from the Opti Toolbox add-on - the add-on simply
“does not see” it – despite the presence of the installed CPLEX package, MATLAB has
access to the folders where the file is located, establishing an interface between MATLAB
and CPLEX, as well as copying the specified file to folders, containing the source codes of
the Opti Toolbox add-on. In this regard, the authors of the article made “a modification”
of the OptiSolver method1 so that running the CPLEX solver using the add-on becomes
possible. Potentially, it would be possible to do without launching CPLEX through the
Opti Toolbox add-on, but such launch allows us to make the results of the SCIP and
CPLEX solvers comparable.

For comparability of results delivered by different solvers, it is logical to use solvers
of the same release time. However, Gurobi version 6.5.2, a contemporary one for the
CPLEX environment and solver version 12.5.1, is unfortunately not available for download.
Therefore, the maximum “old” version 9.5.2 is used. Due to the use of “old” version 12.5.1
for CPLEX, the most modern version of Gurobi 11.0.0 is not used. It should be noted
that the developers state that version Gurobi 9.5.2 is supported in MATLAB versions
R2019a-R2022a, however, this solver also works in MATLAB 2014b.

It should also be noted that the Opti Toolbox add-on version 2.27 checks the validity of
the selected solver for solving a particular problem. However, such a check is carried out not
by the type of function being optimized, but by the method of calling the solver. Namely,
if the first parameter of the opti method is specified equal to ’fun’ and although a linear
function is used for optimization, but declared outside the script calling the solver, then
such a superstructure assumes that the problem of mixed integer nonlinear programming
is being solved. Therefore, when calling the opti method, the first parameter was set to
’f’, and the function to be optimized was set inside the script calling the solver.

Note that the solvers used are somewhat outdated. In particular, the CPLEX IDE
software environment, and the corresponding solver alongside it, has received several
updates since version 12.5.1. The use of relatively old versions of the solvers above is
due to problems of obtaining licenses for new software.

1In order to avoid confusion between the mathematical concept of a function and a function as part of
a program/script, hereinafter the word method is used for a function as a part of a program/script.
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For testing we will use a personal computer (Intel Core i5 4690, 3.5 GHz, 16 GB DDR3
RAM) with the Windows 7 operating system installed on it. Note that, generally speaking,
the speed of solvers is influenced not only by the characteristics of the hardware, but also
by the choice of operating system.

3.1. The Portfolio Optimization Problem with a Probability Criterion

First, let us consider the problem of forming a portfolio of securities using a probability
criterion from two risky assets with returns X1 and X2 are components of a random vector
X = col(X1, X2). Suppose that this vector is discrete and has K = 1900 realizations
xk = col(xk

1, x
k
2) with equal probabilities pk = 1/K, k = 1, K2. We will assume that

the desired capital ϕ is equal to 1,1, and the starting capital varies in such a way that
Ci = 2i/N , i = 1, N . Let the capital be fully invested, and “short-sales” operations are
prohibited, then3 for the i case, the matrix A1 and the vector b1 have the form

A1 =
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︸ ︷︷ ︸

K rows and K+2 columns

, b1 =












1
1
1
...
1
1












.

The matrix A2 is a row, and the vector b2 is a scalar, namely:

A2 =
(
1 1 0 0 . . . 0

)
, b2 = 1.

The set I consists of the numbers 3, 4, . . ., K + 2. In addition, l = col(0, 0, 0, . . . , 0),
r = col(+∞,+∞, 1, . . . , 1). The vector of coefficients c of the criterion function has the
form c = −col(0, 0, 1, . . . , 1)/K.

Note that the formulation of the portfolio analysis problem above is a discretized
version of it. At the same time, to model returns in portfolio analysis, continuous
distributions of returns are often used [24–26].

Having chosen N = 1000, we will test the operating time of various solvers for a
certain set of realizations of the random vector X. These realizations can be found in [28].
Of course, to check other solvers or the solvers used in the article, but on other hardware
it is more convenient to use ready-made A1, matrices, however, for only one capital value,
the A1 matrix takes up approximately 10 megabytes of disk space if stored in a matrix in
.xlsx format. In this case, just reading the matrix in MATLAB in this format takes about
8 seconds. If you save the matrix in the internal MATLAB .mat format, then reading

2Note that the choice of exactly 1900 realizations is due to restrictions on the authors’ license to use
the Gurobi package

3The criterion function and the corresponding constraints from [9] in the [9] notation are not given in
this article in order to avoid confusion with the existing notation.
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this matrix takes less than half a second, however, in this case, the comparability of the
results with the CPLEX IDE software environment is lost, since this environment does not
read .mat files. Due to this, only the Excel file containing implementations of the random
vector X is supplied as input to both the CPLEX and MATLAB environments. The rest
of the matrix A1, as well as other matrices and vectors necessary for the calculation, are
generated in the program.

Let us choose R = 3. Undoubtedly, more than 3 repetitions allows you to better smooth
out the results. However, as will be shown later, one of the solvers is quite slow. The
components of the resulting time are the duration of loading data from a file, generating
a vector of criterion function coefficients, matrices and constraint vectors, as well as the
work of the solver itself. Let us set the permissible deviation ε equal to 5 · 10−4.

Table 1

Comparison of solver performance for the first pool of examples in the portfolio
optimization problem

Characteristics

Solver CPLEX
IDE

CPLEX
MATLAB

CPLEX
OPTI

SCIP
OPTI

MATLAB
Gurobi

MATLAB
Gurobi

R

Minimum median
operating time, [s]

0,766 0,493 0,567 0,514 0,514 0,594 0,058

Average median
operating time, [s]

1,561 1,07 0,987 3,218 24,998 0,693 0,156

Maximum median
operating time, [s]

11,468 50,067 4,385 9,153 1241,763 0,913 0,457

Standard deviation of
median operating time, [s]

1,07 1,95 0,653 2,797 95,28 0,066 0,072

Number of times
with the best value of

criterion function, [units]
3000 3000 3000 3000 3000 3000 3000

As follows from Table 1, the worst results in terms of average operating time and
standard deviation are produced by the built-in MATLAB solver. Noteworthy are the
differences in the timing characteristics of the CPLEX solver invoked in different ways.
This is, in particular, due to the fact that depending on the method of calling the solver,
the parameters (solution method, permissible number of iterations) of its operation may
differ. The best results in terms of minimum, average, maximum time, standard deviation
are obtained by the Gurobi solver. On the same data set, the best values of the criterion
function for all solvers for any of the three repetitions are the same. In this case, depending
on the set of inputs, the time to obtain the optimal solution changes by several times, and
sometimes by by several orders.

It is obvious that the work time of the solvers depends not only on the amount of
the investor’s starting capital Ci, but also on the realization of the vector of returns.
Therefore, let us analyze the performance characteristics of solvers for other values of vector
of returns. We will assume such returns to be subject to a truncated normal distribution
with parameters 0,1; 0,12 and 0,1; 0,152 respectively. The truncation rule can be found
in [27]. Realizations of the vector of returns can again be found in [28]. We will again vary
the starting value of capital. The results of such testing are presented in Table 2.

As can be seen from Table 2, on average, the median time when calling CPLEX
using the Opti Toolbox add-on is almost three times less than when calling it directly
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Table 2

Comparison
of solver performance for the second pool of examples in the portfolio optimization problem

Characteristics

Solver CPLEX
IDE

CPLEX
MATLAB

CPLEX
OPTI

SCIP
OPTI

MATLAB
Gurobi

MATLAB
Gurobi

R

Minimum median
operating time, [s]

0,755 0,47 0,533 0,491 0,508 0,576 0,055

Average median
operating time, [s]

2,703 1,52 0,665 1,09 29,426 0,625 0,11

Maximum median
operating time, [s]

1117,81 481,93 4,041 15,681 3556,663 4,516 4,167

Standard deviation of
median operating time, [s]

36,586 16,395 0,446 1,916 204,408 0,206 0,216

Number of times
with the best value

of criterion function, [units]
3000 3000 2991 3000 3000 3000 3000

from Matlab. This is due, in particular, to the fact that in a number of cases a limit is
reached on the number of iterations, branching vertices of the algorithm, and memory, the
boundaries of which are set automatically. However, when calling CPLEX from the Opti
Toolbox add-on, the solver in some cases does not find the optimal solution.

Comparing the results in Tables 1 and 2, we notice that the average median time for
some solvers has increased, and for others it has decreased. The common thing is that
for both types of return distributions, the Gurobi solver works most consistently in terms
of the range of the median time, as well as it has the smallest standard deviation of the
median time in relation to other solvers.

3.2. The Problem of Correcting the Scalar Terminal State of a Satellite
with a Geostationary Orbit

Next, we consider the problem of adjusting the scalar terminal state of a satellite
with a geostationary orbit from [20]. Control in [20] formulation is understood as the
magnitude of the corrective impulse communicated to the satellite depending on the range
of deviations in which the value of its current deviation is. The control in [20] formulation
is sought in the class of piecewise constant controls, therefore for this problem

A1 =




















t1(1 + y11) Z − (ϕ− zi) 0 0 . . . 0
t1(1 + y21) 0 Z − (ϕ− zi) 0 . . . 0

...
...

. . .
...

t1(1 + yK−1

1 ) 0 0 0 Z − (ϕ− zi) 0
t1(1 + yK1 ) 0 0 0 0 Z − (ϕ− zi)
−t1(1 + y11) Z − (ϕ+ zi) 0 0 . . . 0
−t1(1 + y21) 0 Z − (ϕ+ zi) 0 . . . 0

...
...

. . .
...

−t1(1 + yK−1

1 ) 0 0 0 Z − (ϕ+ zi) 0
−t1(1 + yK1 ) 0 0 0 0 Z − (ϕ+ zi)




















︸ ︷︷ ︸

2K rows and K+1 columns

,

Вестник ЮУрГУ. Серия ≪Математическое моделирование
и программирование≫ (Вестник ЮУрГУ ММП). 2024. Т. 17, № 3. С. 57–72

63



A.N. Ignatov, S.V. Ivanov

and, in addition, b1 = Z ·col(1, 1, . . . , 1), A2 = (0, 0, . . . , 0), b2 = 0, c = −col(0, 1, . . . , 1)/K,
l = col(ulow, 0, . . . , 0), r = col(uup, 1, . . . , 1). In the notation above
– y11, . . . , y

K
1 are realizations of some random variable with a given distribution law, K is

the number of such realizations;
– t1 is the parameter which characterizes the influence of the corrective action on the
deviation value, t1 > 0;
– ulow and uup are some acceptable limits for the value of the correction impulse;
– ϕ is permissible absolute value of the deviation.
Also zi = 0.5(zi + zi+1), zi+1 = z1(1 − 2i/N), i = 1, N . Finally, Z =
|t1|max{|ulow|, |uup|}(1 + max{|y11|, . . . , |y

K
1 |}). The set I consists of the numbers 2, 3,

. . ., K + 1.
We choose z1 = −3, t1 = 1, uup = −ulow = 10, ϕ = 1, 15 as in [20]. The reader can

find realizations, or rather pseudorandom numbers, from the normal distribution law with
parameters 0 and 0,52 in [28].

Let us put K = 500, N = 50. Let us compare the work of solvers for the above structure
of matrices A1, A2, vectors b1, b2, as well as other vectors. Let us do 3 repetitions of solving
the same mathematical programming problem with each solver (R = 3). Thus, each solver
will solve 150 optimization problems. Let us choose the permissible deviation ε equal to
10−3.

Table 3

Comparison of the performance of solvers for the correction of scalar terminal state of a
satellite with a geostationary orbit problem

Characteristics

Solver CPLEX
IDE

CPLEX
MATLAB

CPLEX
OPTI

SCIP
OPTI

MATLAB
Gurobi

MATLAB
Gurobi

R

Minimum median
operating time, [s]

0,76 0,39 0,428 0,403 0,427 0,447 0,016

Average median
operating time, [s]

1,034 0,5 0,517 0,905 22,908 0,512 0,076

Maximum median
operating time, [s]

1,533 0,871 0,866 1,837 430,21 0,593 0,159

Standard deviation of
median operating time, [s]

0,231 0,125 0,116 0,489 66,38 0,05 0,054

Number of times
with the best value of

criterion function, [units]
150 150 150 150 150 150 150

Analyzing Table 3, we again come to the conclusion that even a small change in the
set of initial data (in this case, the value zi) significantly affects the speed of obtaining the
optimal solution. The fastest solver is Gurobi, launched from R Studio. At the same time,
the average median time when calling the CPLEX and Gurobi solvers from MATLAB is
less for CPLEX.

3.3. Quantile Optimization Problem for a Polyhedral Loss Function
and Discrete Distribution of Random Parameters

Now consider the quantile optimization problem for a polyhedral loss function and
a discrete distribution of random parameters from [22]. As for the previously discussed
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problems, it is potentially possible to write the matrix A1 and the vector b1 in general
form. However, this kind of notation will require a lot of additional explanations, so this
type of matrix A1 and vector b1 are omitted from the article. The given vector and matrix
for the data in example in [22] can be found in [28]. At the same time in contrast to the
single level of confidence probability α = 0,7, used in [22], we will examine confidence levels
from 0,5 to 0,9 in increments of 0,1. Thus, in the future, 5 matrices A1 are considered and
N = 5 is obtained. Moreover, these matrices differ from each other in only one row.

According to [22] in the notation of this article A2 = (0, 0, . . . , 0), b2 = 0. In addition,
the set I consists of the numbers 11, 12, . . ., 18, l = col(−∞, . . . ,−∞

︸ ︷︷ ︸

10 items

, 0, . . . , 0
︸ ︷︷ ︸

8 pieces

,−∞),

r = col(+∞, . . . ,+∞
︸ ︷︷ ︸

10 items

, 1, . . . , 1
︸ ︷︷ ︸

8 items

,+∞). Vector c = col(0, . . . , 0
︸ ︷︷ ︸

18 items

, 1).

Let us do 11 repetitions of solving the same mathematical programming problem with
each solver, i.e. R = 11. Let us fix ε = 10−5. We will write the results of the experiments
in the Table 4.

Table 4

Comparison of the performance of solvers for the quantile optimization problem for a
polyhedral loss function and a discrete distribution of random parameters

Characteristics

Solver CPLEX
IDE

CPLEX
MATLAB

CPLEX
OPTI

SCIP
OPTI

MATLAB
Gurobi

MATLAB
Gurobi

R

Minimum median
operating time, [s]

1,539 0,634 0,686 0,66 0,695 0,667 0,022

Average median
operating time, [s]

1,798 0,65 0,691 0,703 0,698 0,671 0,026

Maximum median
operating time, [s]

1,975 0,659 0,701 0,729 0,703 0,673 0,027

Standard deviation of
median operating time, [s]

0,16 0,01 0,006 0,027 0,003 0,003 0,002

Number of times
with the best value of

criterion function, [units]
55 55 55 55 55 55 55

The best results for all studied characteristics, according to Table 4, were again
demonstrated by the Gurobi solver, called from the R environment. The next in terms
of average median running time is the CPLEX solver, called directly from MATLAB.
Moreover, all solvers called from MATLAB for the problem under study give comparable
results. At the same time, the time characteristics obtained when calculating using the
CPLEX IDE environment are noticeably worse.

3.4. Bilevel Production Planning Problem

Next, consider the bilevel production planning problem from [21]. We will again vary
the level α from 0,5 to 0,9 in increments of 0,1 (i.e. N = 5). The matrix A1 and the vector
b1 can be found in [28]. Also A2 = (0, 0, . . . , 0), b2 = 0. The set I consists of the numbers
151, 152, . . ., 310, l = col(0, . . . , 0

︸ ︷︷ ︸

312 items

,−∞), r = col(+∞, . . . ,+∞
︸ ︷︷ ︸

150 items

, 1, . . . , 1
︸ ︷︷ ︸

160 items

,+∞,+∞,+∞).

Vector c = col(0, . . . , 0
︸ ︷︷ ︸

312 items

, 1).
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Let us do 11 repetitions of solving the mathematical programming problem on the
same input data with each solver, i.e. R = 11. We will write the results of the experiments
in the Table 5. Let us set ε = 10−5.

Table 5

Comparison of solver performance for the bilevel production planning problem

Characteristics

Solver CPLEX
IDE

CPLEX
MATLAB

CPLEX
OPTI

SCIP
OPTI

MATLAB
Gurobi

MATLAB
Gurobi

R

Minimum median
operating time, [s]

2,45 1,014 1,045 1,607 60,48 1,056 0,148

Average median
operating time, [s]

2,657 1,024 1,054 1,697 1426,1 1,066 0,158

Maximum median
operating time, [s]

2,745 1,03 1,061 1,794 2491,4 1,077 0,173

Standard deviation of
median operating time, [s]

0,127 0,009 0,008 0,077 1138,8 0,008 0,011

Number of times
with the best value

criterion function, [units]
55 55 55 55 33 55 55

If for the portfolio optimization problem the CPLEX solver, called through the Opti
Toolbox add-on, did not always find the optimal solution, then for the production planning
problem the built-in MATLAB solver has this property. When comparing the CPLEX and
Gurobi solvers called directly from MATLAB, the CPLEX solver wins quite a bit in terms
of average median running time.

Analyzing the results in Tables 1 – 5, we come to the conclusion that the built-in
MATLAB solver and the SCIP solver are inferior to the CPLEX and Gurobi solvers.
Additionally, using the CPLEX solver in conjunction with the Opti Toolbox add-on does
not always result in an optimal solution.

4. Detailed Runtime Information for Some Solvers

As can be seen from Tables 1 – 5, solving the same problems with the same solvers
called from different environments does not take the same time. In this regard, we will take
a closer look at the time it takes to find a solution for some solvers and some environments.
To do this, we select the problem of adjusting the orbit of the satellite for K = 1900, i = 1,
R = 21, use the Gurobi, CPLEX solvers and calculate
• median time for loading data from files;
• median time of constraint formation;
• median time of searching for a solution by the solver himself.

The calculation results will be entered into the Table 6.
First, we note that in CPLEX IDE, when reading Excel files not in the main method,

it is not possible to divide the time between actually reading the data and generating a
model for subsequent solution. If the file with the source data is stored in .csv format and
the file is read in the main method, then the preparation time for solving the problem is
significantly reduced. These times are recorded in the CPLEX IDE∗ column. Moreover,
regardless of the environment from which the CPLEX solver is called, the time required
to solve the actual mathematical programming problem is approximately the same. The
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Table 6

Comparison of the work of solvers in the correction of the scalar terminal state of the
satellite problem

Characteristics

Solver CPLEX
IDE

CPLEX
IDE∗

CPLEX
MATLAB

Gurobi
MATLAB

Gurobi
R

Median time
to load data from a file

0,789
0,03 0,333 0,333 0,01

Median time of
constraints formation

0,01 0,064 0,173 0,022

Median time to search for
a solution by solver itself

1,31 1,4 1,139 0,238 0,244

same property is observed for the Gurobi solver, called from MATLAB and from R Studio.
At the same time, the time for reading data and generating a model in R Studio is much
faster than in MATLAB.

Comparing the operating time of the solvers themselves, we conclude that Gurobi is
more efficient than CPLEX. However, we repeat, the comparison is not entirely “fair”,
because the version of the Gurobi solver is more modern than the version of the CPLEX
solver used.

Conclusion

In this work, a study of the operating time of various solvers was carried out for a
number of practical problems of mathematical programming. It was found that even a
small change in input data can lead to a significant decrease/increase in operating time.
For all practical problems, it turned out that the Gurobi 9.5.2 solver is faster than the
CPLEX 12.5.1 solver in terms of average median running time. A study was conducted
of the running time components of solvers called from various software environments. As
part of this study, it was revealed that a significant part of the work time can be caused
by reading the initial data from the file, and not by the work of the solver itself.
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СРАВНЕНИЕ РЕШАТЕЛЕЙ ЗАДАЧ СМЕШАННОГО
ЦЕЛОЧИСЛЕННОГО ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ
И ВЫЗЫВАЮЩИХ ИХ ПРОГРАММНЫХ СРЕД

А.Н. Игнатов1, С.В. Иванов1

1Московский авиационный институт (национальный исследовательский универси-
тет), г. Москва, Российская Федерация

В работе приводится концепция сравнения решателей задач смешанного целочис-

ленного линейного программирования и вызывающих их программных сред. Эта кон-

цепция предполагает многократное повторение решения задач математического про-

граммирования с одними и теми же исходными данными для учета того, что время
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выполнения операций компьютером можно рассматривать как случайное. Для срав-
нения решателей также предполагается варьировать исходные данные при решении
задачи математического программирования той же структуры. Сравнение проводится
для ряда практических задач математического программирования. Например, рас-
сматривается задача оптимизации портфеля ценных бумаг с вероятностным критери-
ем. В тестировании используются решатели CPLEX, Gurobi, MATLAB, SCIP. В работе
разбираются особенности вызова решателей в различных программных средах. В част-
ности, описывается модификация исходных кодов для вызова решателя CPLEX через
надстройку Opti Toolbox в среде Matlab. Детально описываются и исследуются ком-
поненты времени получения решения для различных решателей и программных сред.
Показывается, что время работы самого решателя может быть сравнимо со временем
чтения данных из файлов и временем формирование ограничений в задаче математи-
ческого программирования.

Ключевые слова: смешанное целочисленное линейное программирование; реша-

тель; сравнение; программная среда.
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