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The paper considers the problem of distribution-type planning with priority constraints.
For a given set of requirements and resources with established usage parameters, it is
necessary to construct an assignment plan that satisfies a system of priority constraints.
In this case, two queues of constraints on quantitative and qualitative characteristics are
distinguished, respectively. At the stage of solving the problem with the first queue of
constraints, a basic integer linear programming (ILP) model and a dynamic scheme for its
formation are developed. Within this approach, the original problem is reduced to solving
a sequence of similar problems of significantly smaller dimension, which allows to take
into account the priorities of resource use directly in the construction and guarantees the
convergence of the basic ILP model at the final iteration of the dynamic scheme. At the
stage of implementing the second queue of constraints for the obtained basic solution,
an integral criterion in the form of an upper estimate is introduced, and a modified ILP
model is considered. The model modification procedure is based on the penalty function
method and includes the additional equipment of the constraint system, the objective
function, and the functional space by a subset of auxiliary Boolean variables. It is proved
that the modified model is guaranteed to be solvable and determines the maximal feasible
subsystem of constraints of the second queue for the original problem. Within the analysis
of the operability and efficiency of the proposed approach, a computational experiment is
conducted using real-scale data.
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Introduction

Decomposition approaches are actively researched and applied to solve various
planning and resource allocation problems in conditions of uncertainty and large-scale
dimensionality. The main directions are the development of new decomposition algorithms,
the integration of stochastic models, and parallel computing.

In [1], a new algorithm for constructing schedules for multi-product production for
large-scale problems was proposed, based on a decomposition scheme and supplemented
with heuristic algorithms. Similar decomposition approaches were proposed in [2], where
the planning horizon is divided into a sequence of shorter horizons. In the present paper, a
decomposition approach is proposed for solving the problem of distribution-type planning
with priority constraints.

Resource allocation problems are widespread in various fields, such as economics [3],
organizational management [4], and production planning [5]. At the same time, such
problems are often characterized by the requirement of integer variables, which significantly
complicates the solution process. The extension of the Lagrangian method for the class of
integer resource allocation problems was proposed in [6]. In the present paper, at each stage
of solving the original problem, ILP models are considered. To reduce the computational
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effort of the solution search, a dynamic model scheme is proposed for construction of the
ILP models.

ILP provides a wide class of methods and techniques for solving various planning and
management problems, including transportation and production problems. In [7, 8], ILP
models were proposed for solving applied problems of railway planning and management.
In [9–11], various methods were proposed for solving planning and management problems
in the metallurgical production industry. A robust approach to solving problems in steel
production management was proposed in [12–14]. In the present paper, the steel production
industry is also considered as an application of the obtained results.

In Section 1, the problem statement is provided. In Section 2, the stage of solving the
problem with the first-priority constraints is considered, and a dynamic scheme for the
ILP model construction has been developed, the solution of which determines the subset
of requirements that are guaranteed to be feasible through a fixed subset of resources
with adjacent priorities. In Section 3, the second-priority constraints are introduced into
consideration. A modified ILP model is provided, and it is proven that its solution
corresponds to the maximal feasible subsystem of constraints of the original problem.
In Section 4, the results of a computational experiment using the developed approach are
presented.

1. Problem Statement

Let us consider a general distribution-type planning problem with priority constraints.
Let C = {ci}, i = 1, k — be the set of requirements to be executed, where for each
requirement ci the parameters ωi, ω̂i ∈ R

+ are given, corresponding to the minimum
necessary and maximum permissible volume of execution, respectively. We will assume
that the order of execution of the requirements ci is fixed and determined by the set of
indices i = 1, k.

Denote by T = {tj}, j = 1, n the set of resources available for use. For each resource tj,
we define the parameters µj ∈ R

+, τj ∈ N — the volume of the resource and the priority
of use, respectively. The practical meaning of the priority order of resource use is that
for any t′, t′′ ∈ T , where τ ′ > τ ′′, the resource t′ must be completely exhausted before
the resource t′′ is used. Considering the fixed order of execution of requirements, we will
assume that the resource t′ is used earlier than the resource t′′ if the resources t′, t′′ are
used to execute the requirements ci1 , ci2 ∈ C, respectively, and i1 6 i2.

For the case when the given set of resources is not sufficient (in the total volume)
for the execution of the set of requirements, we introduce an additional resource t0 with
unlimited volume µ0 and priority τ0 < min

j
{τj}. In other words, the additional resource t0

can be used, if necessary, as a last resort, when all available resources have been completely
exhausted. In particular, if the additional resource is not used, then µ0 = 0.

Similarly, if the given set of resources is excessive for the execution of the set of
requirements C, an additional requirement c0 with unlimited volume ω̂0 is introduced into
consideration. In this case, we will assume that the requirement c0 is to be executed after all
the requirements ci ∈ C have been completed to the specified volume. Thus, without loss
of generality, all the excessive resources tj ∈ T can be assigned to execute the requirement
c0 in full and in the order established by their priority of use.

For the sake of brevity in the further presentation, let us put C0 = C ∪ {c0} and
T0 = T ∪ {t0}. We introduce the notation:
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S = T0 × [0; +∞) = {(t, z)|t ∈ T0, z ∈ [0; +∞)}

for the set of pairs (resource, volume). Then the distribution planning problem can be
reduced to finding a mapping of the form

f : C0 −→ 2S (1)

with constraints on the parameters of requirement execution, available volumes,
and priorities of resource use. In (1), the assignment of the form f(ci) =
{(tj1, zij1), . . . , (tjk , zijk)} means that for the execusion of the requirement ci, the resources
tj1 , . . . , tjk are assigned in the volumes zij1 , . . . , zijk , respectively. The inverse mapping of
the form f−1(tj, zij) = {ci} is interpreted as the requirement ci, for the execusion of which
the resource tj is used in the volume zij .

Denote by F the set of all distinct mappings of the form (1) and introduce the criterion

t̂(f) =
1

k
·

k
∑

i=1

|f(ci)|+ |f(c0)|

as the sum of the average number of resources used for the execution of each requirement
and the total number of not completed requirements. Then the distribution-type problem
with priority constraints will take the form:

t̂(f) −→ min
f∈F

. (2)

Let us discuss the two groups of constraints associated with the quantitative and
qualitative characteristics of the solution. The first-queue group of constraints is related
to quantitative characteristics and includes the following constraints.

• For the execution of each requirement ci ∈ C, no more than r resources may be used:

|f(ci)| 6 r (3)

for any ci ∈ C (the number of resources used for the requirement c0 is not limited).

• Each resource tj ∈ T can be used for the execution of no more than s requirements:

∣

∣

∣

∣

∣

k
⋃

i=1

{

f−1(tj, zij
)

}

∣

∣

∣

∣

∣

6 s (4)

for any tj ∈ T (the number of requirements for the execution of which the resource
t0 can be used is not limited).

• The total volume of resources used in each assignment satisfies the parameters set
for the corresponding requirement:

ωi 6

n
∑

i=1

{zij |(tj, zij) ∈ f(ci)} 6 ω̂i (5)

Вестник ЮУрГУ. Серия ≪Математическое моделирование
и программирование≫ (Вестник ЮУрГУ ММП). 2024. Т. 17, № 3. С. 87–101

89



V.A. Rasskazova

for all ci ∈ C, where zij 6 µj and

k
∑

i=1

n
∑

j=1

{zij|(tj , zij) ∈ f(ci)} = µj (6)

for all tj ∈ T (the execution volume of the requirement c0, as well as the volume of
use of the resource t0, are not limited).

• For the execusion of each requirement, resources with the same or adjacent priorities
can be used:

|τj1 − τj2 | 6 1 (7)

for all tj1, tj2 ∈ T and ci ∈ C such that (tj1, zij1), (tj2, zij2) ∈ f(ci).

• Resources must be used in order of priority:
{

(tj , zij) ∈ f(ci)

τj = τ
=⇒ {(tj , zij)|τj > τ + 1} ⊆

i−1
⋃

k=1

f(ck) (8)

or, in the case of surplus resources:

{

(tj , zij) ∈ f(c0)

τj = τ
=⇒























{(tj , zij)|τj > τ} ⊆
k
⋃

i=1

f(ci),

{(tj , zij)|τj < τ} ⊂ f(c0),

{(tj , zij)|τj = τ} ⊆
k
⋃

i=0

f(ci)

(9)

and similarly in the case of an excessive total volume of the set of requirements:
{

(tj , zij) ∈ f(c0)

τj = τ
=⇒ {(tj , zij) ∈ f(ci)|τj = τ0} ∩ f(ci+k) = ∅ (10)

for all k > 1.

The constraints (7) – (10) define the specifics of the considered planning problem
with priorities on the use of resources. The second-queue group of constraints defines the
qualitative characteristics of the solution.

Let for each requirement ci ∈ C the regulatory tolerances for impurity content α be
defined. Denote by αi and α̂i the minimum required and maximum permissible indicators,
respectively. Without loss of generality, we will assume that the regulatory tolerances for
impurity content are measured in specific volume units.

Let for each resource tj ∈ T the volume of impurity content aj also be defined as input
data. Then the second-queue constraints can be formalized as:

ωi · αi 6

n
∑

j=1

{zij · aj|(tj , zij) ∈ f(ci)} 6 ω̂i · α̂i (11)

for all ci ∈ C.
To solve the problem (2) with constraints (3) – (11), a decomposition approach

is proposed, within which the first-queue constraints (3) – (10) and the second-queue
constraints (11) are considered sequentially.
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2. ILP Model with First-Queue Constraints

Let us define for each pair of requirements ci ∈ C, i = 1, k, and resources tj ∈ T ,
j = 1, n, the value xij > 0 as the volume of resource tj used to execute requirement ci. As
characteristic variables, we introduce for each xij the value yij ∈ {0, 1}. We will consider
that yij = 1 if the resource tj is used in the volume xij > 0 to execute the requirement
ci, and yij = 0 otherwise. Similarly, we define xi0 > 0 and yi0 ∈ {0, 1} for the use of
the additional resource t0, as well as x0j > 0 for the use of the additional requirement
c0. Note that the consideration of characteristic variables for c0 is not justified, since the
case of redundancy of the total resource volume is not a constraint of the problem and is
not taken into account in the objective function (2). It is clear that the dimension of the
set {xij} ∪ {yij} is determined by the initial dimensions of C and T . However, due to the
constraints (7) – (10) on the priorities and order of resource use, a significant part of the
variables yij will have to turn into 0. Thus, a connected problem on forming the maximal
subset of requirements, for the execution of which resources with fixed adjacent priorities
can be used, arises. For these purposes, a dynamic solution scheme is proposed.

Considering the introduced notation, the problem (2) with the constraints (3) – (6)
can be formulated as an ILP problem of the form

1

k
·

k
∑

i=1

n
∑

i=1

yij +

k
∑

i=1

yi0 +

k
∑

i=1

xi0 −→ min
x,y

(12)

with the constraints


























































































































n
∑

j=1

xij + xi0 > ωi for all i = 1, k,

n
∑

j=1

xij + xi0 6 ω̂i for all i = 1, k,

k
∑

i=1

xij + x0j = µj for all j = 1, n,

n
∑

j=1

yij 6 r for all i = 1, k,

k
∑

i=1

yij 6 s for all j = 1, n,

xij 6 yij · µj for all i = 1, k, j = 1, n,

xi0 6 yi0 · ω̂i for all i = 1, k,

xij > 0 for all i = 1, k, j = 1, n,

xi0 > 0 for all i = 1, k,

x0j > 0 for all j = 1, n,

yij ∈ {0, 1} for all i = 1, k, j = 0, n.

(13)

Within the dynamic scheme, the solution of the problem (2) with the constraints (3) –
(10) is formed iteratively. At each iteration, a subset of resources with adjacent priorities
and the current requirement to be executed is fixed. Then the constraints (7), (8) are
automatically satisfied by construction. If the total volume of the fixed resources turns
out to be redundant (the additional requirement c0 is used in the solution), then the next
requirement is considered according to the established order. The process continues until
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a shortage of resources is achieved (the additional resource t0 is used in the solution). The
resulting subset of requirements will be maximal from the point of view of their execution
using the fixed subset of resources. Then the constraints (9), (10) can be implemented at
the stage of forming the functional space by excluding the variables of the form x0j for all
resources tj with a higher priority.

Let T ′ = {tj |τj = τ or τj = τ − 1} be the subset of resources with fixed adjacent
priorities and available volume parameters {µ′

j}. Let cN ∈ C be the current requirement to
be executed, with volume parameters ω′

N , ω̂′

N . In particular, for the initial iteration of the
solution, the value N = 1, the volume parameters correspond to the original parameters
µj , ω1, ω̂1 and τ = max

j
{τj}.

Everywhere further in the description of the algorithms, the symbol ⊲ denotes a
comment to the main text in the corresponding line.

Algorithm 1. Dynamic scheme

Require: T ′, cN , C
Ensure: C ′ – a subset of requirements that can be executed using the resources T ′

1: C ′ = {cN}
2: N ′ = 1 ✄dimension of the set C ′

3: Solve the problem (12) with constraints (13) for the set of requirements C ′ and the set
of resources T ′

4: If yi0 = 1 for some i ∈ 1, N ′ then
5: C ′ = C ′ \ {cN} ✄exclude from the set C ′ the requirement added in the previous step
6: N = N − 1
7: Go to step 18
8: Else 9: If N 6= k then
10: N = N+1 ✄include the next requirement in order with the original volume parameters
in the set C ′

11: C ′ = C ′ ∪ {cN}
12: ω′

N = ωN

13: ω̂′

N = ω̂N

14: N ′ = N ′ + 1
15: Go to step 3
16: Else
17: Go to step 18
18: Return C ′

In Algorithm 1, the ILP problem (12) is solved multiple times based on the results
of checking the condition in step 4. However, the dimensions of the problem for each
call are extremely small and increase by no more than one requirement at a time. This
approach allows us to consider only the significant variables of the model, which can lead
to a potential speedup compared to solving the problem for the full-scale functional space
and the extended system of constraints taking into account the conditions (7) – (10).

Theorem 1. Let T ′ = {tj|τj = τ or τj = τ −1} and C ′ is a subset of requirements formed
as a result of running Algorithm 1. Then for T ′ and C ′, there exists a solution to the
problem (2) with constraints (3) – (10).
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Proof. By condition of the theorem, a subset C ′ is the result of running Algorithm 1.
Thus, for T ′ and C ′, there exists a solution to the problem (2) with constraints (3) – (8).
In this case, the constraints (3) – (6) are satisfied directly within the ILP model, taking
into account (13), and the constraints (7), (8) are satisfied by the definition of the set T ′.

Let us consider the solution of the problem (12). Note that according to condition 4
of Algorithm 1, yi0 = 0 for all i ∈ 1, N ′ (the resource t0 is not used). Thus, the following
holds:

∑

tj∈T ′

µj >
∑

ci∈C′

ωi. (14)

Case 1. Let x0j = 0 for all j|τj = τ (the additional requirement c0 does not use
resources with a higher priority). Then the constraints (9), (10) are satisfied, and the
theorem is proved.

Case 2. Let x0j > 0 for some j|τj = τ . Then, in view of the relationship (14), there
exists a solution of the form











xi0 = 0 for all i ∈ 1, N ′ − 1,

xN ′0 > 0,

x0j = 0 for all j|τj = τ,

(15)

such that the constraints (13) are satisfied. At the same time, the solution (15) also satisfies
the constraints (9), (10) of the problem (2), and thus the theorem is fully proved.

✷

From Theorem 1, it follows that the solution of the problem (2) with constraints (3) –
(10) can be obtained as the solution to the problem (12), (13) with additional constraints
of the form (15) for T ′ and C ′, constructed according to Algorithm 1. Let us describe the
Algorithm 2 of general approach to solving the problem for the original T and C.

Algorithm 2. Problem with First-Queue Constraints

Require T0, C0

Ensure {f(ci) = {(tj , zij)}} – solution of the problem (2) with constraints (3) – (10)
1: µ′

j = µj for all j = 1, n, and ω′

i = ωi, ω̂
′

i = ω̂i for all i = 1, k
2: Start with N = 1 and τ = max

j
{τj}

3: While T 6= ∅ or C 6= ∅

4: Fix cN and T ′ = {tj|τj = τ or τj = τ − 1} with parameters µ′

j and ω′

i, ω̂
′

i

5: Execute Algorithm 1 for T ′, cN and C

6: Solve the problem (12) with constraints (13), (15) for C ′ and T ′

7: Return f(ci) for all ci ∈ C ′, i = 1, k
8: If yN0 = 1 then ✄the additional resource t0 is used in the solution (requirement cN is
not fully executed)
9: Set C ′ = C ′ \ {cN} and adjust ωN

10: Else
11: Set N = N + 1 ✄move to the next requirement
12: If x0j = 0 for all tj ∈ T ′

13: Set τ = τ − 2
14: Else ✄not all resources with priority τ − 1 are exhausted at the current step of the
solution
15: For all tj ∈ T ′|x0j > 0 and x0j 6= µ′

j do
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16: Adjust the available volume µ′

j

17: Set T ′ = {tj|τj = τ − 1} and τ = τ − 1
18: Set C = C \ C ′ and T = T \ T ′

19: If T = ∅ and C 6= ∅

20: Set f(ci) = {(t0, ωi)} for all ci ∈ C

The result of running Algorithm 2 is the solution of the problem (2) with the first-
queue constraints (3) – (10). The obtained solution will be called the basic solution of
the resource-constrained planning problem with priorities. Note that the satisfaction of
the first-queue constraints is the primary goal from a practical point of view. In other
words, the satisfaction of the second-queue constraints should not reduce the quantitative
characteristics achieved for the basic solution. In this regard, a decomposition approach is
proposed, in which the involvement of the second-queue constraints is implemented as a
separate stage.

3. ILP Model with Second-Queue Constraints

Taking into account the notation adopted in (11), as well as the ILP model (12), (13),
let us introduce an additional set of constraints for the technological parameter α of the
form

ωi · αi 6

n
∑

j=1

xij · aj 6 ω̂i · α̂i for all i = 1, k. (16)

Note that the relations (16) can be defined similarly for any arbitrary number of
technological parameters.

Let M̂c be the total number of resources tj ∈ T ′ involved in the execution of
requirements ci ∈ C ′ as a result of running Algorithm 2. To implement the condition
related to the quantitative characteristics of the basic solution, we introduce an upper
bound

k
∑

i=1

n
∑

j=1

yij 6 M̂c. (17)

Then, the ILP model (12) with constraints (13), (15) – (17) defines the solution of the
problem (2) with constraints (3) – (11) for T ′ and C ′, constructed according to Algorithm 1,
and the value of M̂c, set according to Algorithm 2. At the same time, it is clear that the
model may be infeasible for a number of natural reasons related to the initial values of aj
for the available resources tj ∈ T ′ and αi, α̂i for the requirements ci ∈ C ′ to be executed.

Following the principles of the penalty function method, let us introduce Boolean
variables ζi ∈ {0, 1} for all i = 1, k and modify the ILP model (12), (13), (15) – (17) as
follows:

1

k
·

k
∑

i=1

n
∑

j=1

yij +

k
∑

i=1

yi0 +

k
∑

i=1

xi0 + A ·
k

∑

i=1

ζi −→ min
x,y,ζ

(18)

with constraints (13), (15), (17) and

ωi · αi − A · ζi 6
n

∑

j=1

xij · aj 6 ω̂i · α̂i + A · ζi (19)

for all i = 1, k, where A ∈ R
+ — some positive number, fixed for each instance of T ′, C ′.
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Theorem 2. Let T ′ and C ′ be formed as a result of running Algorithm 1, and M̂c be set
according to Algorithm 2. Then, there exists a value A ∈ R

+ such that the solution to the
problem (18) with constraints (13), (15), (17) and (19) is guaranteed to exist for the given
T ′, C ′ and M̂c.

Proof. According to the conditions of the theorem, T ′ and C ′ are formed as a result of
running Algorithm 1. Then, as a result of running Algorithm 2 for the given T ′ and C ′, a
solution to the problem (12) with constraints (13), (15) will be constructed. Let us denote
it as x = (xj1i1 , xj1i2 , . . . ) and y = (yj1i1 , yj1i2 , . . . ), and note that for any ζi, the solution
x, y also satisfies the constraints (13), (15), (17) of the problem (18).

Let us set ζi = 0 for all i = 1, k. If all the constraints (19) are satisfied in this case,
then the theorem is proved. Consider the case when the constraints (19) are violated for
some i ∈ 1, k. In this case, let us set ζi = 1 and A = ω̂i · α̂i. Then, the lower bound in (19)
becomes < 0, and the upper bound is doubled. If the constraints (19) are still not fully
satisfied (in terms of the upper bound), then the value of A can be increased accordingly.

The described procedure is repeated until the constraints (19) are satisfied for all
i = 1, k. Thus, the theorem is fully proved.

✷

The proof of Theorem 2 is built on the principles of iterative selection of the value
A ∈ R

+ until the constraints (19) are satisfied for all requirements i = 1, k. However, from
the point of view of practical implementation of the ILP model (18) with constraints (13),
(15), (17) and (19) for solving the problem (2) with constraints (3) – (11), such an approach
turns out to be quite inflexible. In this regard, let us consider a predictive rule for a
guaranteed selection of the value A ∈ R

+ of the form:

A =

k
∑

i=1

ω̂i · α̂i +

n
∑

j=1

µj · aj , (20)

where ω̂i, α̂i and µj , aj are given parameters of the requirements ci ∈ C ′ and resources
tj ∈ T ′, respectively.

Theorem 3. The solution to the problem (18) with constraints (13), (15), (17) and (19),
where A ∈ R

+ is defined according to the rule (20), corresponds to the maximal feasible
subsystem (MFS) of constraints of the form (16).

Proof. Let us denote the solution of the problem (18) as x = (xi1j1 , xi2j2 , ...), y =
(yi1j1, yi2j2 , ...) and ζ = (ζi1j1, ζi2j2 , ...).

Case 1. Let the original system of constraints of the form (16) be feasible. Then, the
optimal value of the functional (18) is achieved when ζi = 0 for all i = 1, k, and the
theorem is proved. Denote the corresponding solution as xopt, yopt and ζopt. In this case, it
is clear that for ζopt, the condition |{ζi = 1}| = 0 holds.

Case 2. Let the constraints (19) be violated for some i ∈ 1, k for xopt, yopt. Following the
logic of the proof of Theorem 2, let us set ζi = 1 accordingly. Then, due to (13) and (20),
the constraints (19) will be guaranteed to be satisfied for all i = 1, k. Denote the obtained
solution as xopt, yopt and ζ ′. For ζ ′, also denote N1 = |{ζi = 1}| and N0 = |{ζi = 0}|.

Note that the number N0 determines the dimension, and {ζi = 0} — the form of
the feasible subsystem of constraints (16). In this case, an increase of the number N0 is
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equivalent to a decrease of the number N1 and leads to a violation of the constraints (19)
directly by construction. At the same time, a decrease of the number N0 (or an increase
of the number N1) is meaningless, as it leads to an increase in the functional (18) with
fixed xopt, yopt and contradicts the condition of maximality of the feasible subsystem of
constraints (16). We obtain that N0 = max

ζi
N and N1 = min

ζi
N , where N = |{ζi = 1}| for

an arbitrary solution ζ of the problem (18).
Thus, the solution of the form xopt, yopt and ζ ′ defines the MFS of constraints (16),

and the theorem is fully proved.

✷

From Theorem 3, it follows in particular that the application of the rule (20) when
choosing A allows one to form the MFS of the constraints (16) in the form of xopt, yopt
and ζi = 1 for such i ∈ 1, k, where the corresponding constraints (19) are violated. This
approach does not guarantee the optimality of the functional (18), but in a number of
practical cases, it can significantly increase the speed of solving the original problem as a
whole.

4. Computational Experiment

Based on the results presented in Sections 2 and 3, we will describe a general scheme
for solving the distribution-type planning problem with priority constraints.

Algorithm 3. General scheme for solving the distribution-type planning problem with
priority constraints

Require T0, C0

Ensure {f(ci) = {(tj, zij)}} – the solution of the problem (2) with constraints (3) – (11)
1: Set µ′

j = µj for all j = 1, n, and ω′

i = ωi, ω̂
′

i = ω̂i for all i = 1, k
2: Start with N = 1 and τ = max

j
{τj}

3: While T 6= ∅ or C 6= ∅

4: Fix cN and T ′ = {tj|τj = τ or τj = τ − 1} with parameters µ′

j and ω′

i, ω̂
′

i

5: Execute Algorithm 1 for T ′, cN and C

6: Solve the problem (12) with constraints (13), (15) for C ′ and T ′

7: Establish M̂c

8: Establish A according to the rule (20) for C ′ and T ′

9: Solve the problem (18) with constraints (13), (15), (17), (19) for C ′, T ′, M̂c and A

10: Return f(ci) for all ci ∈ C ′, i = 1, k
11: Execute lines 8 – 18 of Algorithm 2
12: If T = ∅ and C 6= ∅ then
13: Set f(ci) = {(t0, ωi)} for all ci ∈ C

Algorithm 3 was implemented in Python 3.11 using the open-source PuLP library for
solving ILP problems. The use of the PuLP library within the computational experiment
is dictated by the low dimensionality of the arising ILP problems, which is ensured by the
application of the proposed decomposition approach. In general, for solving the arising ILP
problems, an efficient heuristic algorithm for solving NP-hard combinatorial optimization
problems from [15] can be used.

The computational experiment was based on the problem of planning production
processes in the mixer department of the converter shop of a metallurgical enterprise.
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Pig iron ladles (PIL) with molten pig iron coming from the blast furnace shop need to
be poured into pig iron casting ladles (PIC) for further transportation and processing in
the converter shop. Each PIC can hold up to 300 (tons) of pig iron, and each PIL — up
to 100 (tons). In terms of the distribution-type planning problem, the set of PICs acts
as the requirements to be executed. The resources for execution the requirements is the
set of incoming PILs, where the priority of use is determined by the order of their arrival
in the mixer department. The planning problem is to distribute the incoming resources
among the requirements, taking into account the constraints on the resource volumes and
the technological features of the implementation of the production process. In particular,
for the parameters r and s of the model (18), the values r = 2 and s = 4 were chosen due
to the ratio of the volumes of requirements and resources.

The test data for the computational experiment covers a one-year period and fixes the
actual production scenario. The optimized scenario is formed using the developed software.
The key performance indicator of the solution is the average number of PICs for which 3
PILs are used for execution. For the actual scenario, the average number of PICs using 3
PILs for execution is 40%. Consideration of this criterion is related to the fact that the
use of 3 PILs in each execution ensures the timely and rhythmic return of the PILs to the
blast furnace shop. As a result, an increase in the turnaround of rolling stock in the mixer
department leads to an increase in the overall production quality in terms of the execution
of the integrated production plan in the converter shop.

The results of the computational experiment conducted for one month within the
considered period are presented in Table 1, where
• the “Day” row indicates the calendar day in the month under consideration,
• the “Number of PICs” row indicates the number of PICs to be executed (the number of
requirements) in the corresponding day,
• the “Avg. number of PILs” row indicates the average number of PILs (the number of
resources) used to execution each requirement in the corresponding day,
• the “Avg. number of PILs (month)” row indicates the average number of PILs used to
execution each requirement in the month under consideration.

Table 1
September 2020

Day 1 2 3 4 6 7 10 11 12 15
Number of PICs 18 19 19 15 22 33 13 15 36 18
Avg. number of PILs 3.5 3.6 3.3 3.5 3.6 3.5 3.3 3.1 3.6 3.6
Day 17 18 20 21 22 23 26 27 30
Number of PICs 38 20 19 17 17 28 2 15 10
Avg. number of PILs 3.5 3.4 3.3 3.5 3 3.3 4 3.6 10
Avg. number of PILs (month) 3.47

As can be seen from Table 1, in the optimized scenario, an average of 3.47 resources are
used to execute each requirement. Thus, for the month under consideration, the number
of PICs using 3 PILs is 52%. A similar experiment was conducted for each month in the
annual period. The overall results for the period are presented in Table 2, where the rows
indicate the number of requirements for which 3 and 4 resources, respectively, are used in
the optimized scenario.
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Table 2
Computational Experiment

Month 4 5 6 7 8 9 10 11 12

3 PILs 62% 46% 44% 32% 37% 52% 56% 65% 61%
4 PILs 38% 54% 56% 68% 63% 48% 44% 35% 39%

According to the results presented in Table 2, the application of the developed approach
leads to an increase of up to 51% on average for the number of requirements using 3
resources. In this regard, the high efficiency can be expected in other applications in the
class of distribution-type problems with priority constraints. In particular, a computational
experiment for arbitrary values of the parameters of model (18), as well as a comparative
analysis of the results based on the performance criterion, define the directions for further
testing.

Conclusion

The paper proposes a decomposition approach for solving a distribution-type planning
problem with priority constraints. The proposed approach includes two stages. At the
first stage, the problem with first-queue constraints related to quantitative characteristics
is considered. For its solution, a basic ILP model is proposed. In order to reduce the
dimension of the basic ILP model, a dynamic scheme is developed. It is proved that the
resulting subset of requirements is maximal in terms of feasibility using resources with
fixed adjacent priorities.

At the second stage of the decomposition approach, the second-queue constraints
related to the qualitative characteristics of the solution are introduced. Based on the
solution obtained at the first stage, an upper bound on the number of resources used is
formed, and an additional group of Boolean variables is introduced. It is shown that for
the proposed modification, there is a value of the coefficient for the additional Boolean
variables such that the extended ILP model is guaranteed to be solvable. In addition, a
rule for selecting this value is formulated such that the solution of the modified model
determines the maximal feasible subsystem of the original planning problem with second-
queue constraints.

The proposed approach is synthesized into a general solution scheme and implemented
in Python 3.11. A computational experiment is conducted on an example of a distribution-
type problem in the field of process planning in the mixer department of a metallurgical
plant. The results of the computational experiment demonstrate the feasibility of the
proposed approach and the potential to improve the objective by 10% in terms of the
turnaround of the rolling stock.

Further development of the obtained results is related to testing the developed
approach in the class of problems with random parameters of the basic model, as
well as to analysis in terms of performance. In addition, it is of interest to consider
stochastic formulations, where the qualitative characteristics of input data (requirements
and resources) are random variables.
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ДЕКОМПОЗИЦИОННЫЙ ПОДХОД В ЗАДАЧЕ ПЛАНИРОВАНИЯ
РАСПРЕДЕЛИТЕЛЬНОГО ТИПА
С ПРИОРИТЕТАМИ ОГРАНИЧЕНИЙ

В.А. Рассказова, Московский авиационный институт (национальный исследова-
тельский университет), г. Москва, Российская Федерация

В статье рассматривается задача планирования распределительного типа с при-
оритетами ограничений. Для заданного множества требований и ресурсов с установ-
ленными параметрами использования необходимо построить план назначений, удо-
влетворяющий системе приоритетных ограничений. При этом различают две очереди
ограничений на количественные и качественные характеристики соответственно. На
этапе решения задачи с первой очередью ограничений разрабатывается базовая мо-
дель целочисленного линейного программирования (ЦЛП) и динамическая схема ее
формирования. В рамках такого подхода исходная задача сводится к решению после-
довательности аналогичных задач существенно меньшей размерности, что позволяет
учитывать приоритеты использования ресурсов непосредственно по построению и га-
рантирует сходимость базовой модели ЦЛП на финальной итерации динамической
схемы. На этапе реализации второй очереди ограничений для полученного базового
решения вводится интегральный критерий в форме верхней оценки и рассматрива-
ется модифицированная модель ЦЛП. Процедура модификации модели опирается на
метод штрафных функций и включает дооснащение системы ограничений, целево-
го функционала и функционального пространства подмножеством вспомогательных
булевских переменных. При этом доказано, что модифицированная модель гаранти-
ровано разрешима и определяет при этом максимальную (по включению) совместную
подсистему ограничений второй очереди для исходной задачи. В рамках анализа рабо-
тоспособности и эффективности предложенного подхода проводится вычислительный
эксперимент с использованием данных реальной размерности.

Ключевые слова: теория расписаний; целочисленное линейное программирование;

дискретное производство; система планирования производственных процессов; де-

композиционный подход.
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