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This work considers the parameter estimation from measurements of the logistic map.
The problem is solved in the context of optimization approach, which assumes minimization
of a cost function that measures the difference between the time series obtained from the
model equation and measurements. Complex dynamics of the logistic map leads to the multi-
extremal optimization problem. It requires using appropriate computational techniques.
This work presents the application of particle swarm optimization in searching for the
global minimum of the cost function.
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Introduction

One-dimensional nonlinear maps are a class of models that describe the dynamics of
time series in many fields. The general form of these models is

zr = f(Tr-1,\), (1)

where x;, is the state variable, A is the model parameter, and £ is the time step. For certain
values of the parameter A the map (1) can generate time series xg, 1, T2, . . . with complex
chaotic dynamics |1, 2].

According to Devaney’s definition [1]|, a one-dimensional map f : X — X is chaotic
on X if f satisfies the following conditions:

1. f has sensitive dependence on initial conditions: there exists 6 > 0 such that, for
any x € X and any € > 0, there exists y € X such that |z — y| < € and }fk(x) — f’“(y)’ >0
for some k > 0.

2. f is topologically transitive: for any pair of open sets U, V C X there exists k > 0
such that f*(U) NV # .

3. Periodic points of the map f are dense in X: there exists at least one periodic point
in any neighborhood of any x € X.

One of the famous examples is the logistic map, which is given by

T — )\l'kfl(l — .CEk,l). (2)

The logistic map is chaotic for A\ € (3,569945...;4] and xy € (0;1). Complex dynamics
of the chaotic maps can be characterized by bifurcation diagram, Lyapunov exponent,
autocorrelation function, power spectrum |2, 3]. From the computational viewpoint,
complex dynamics leads to difficulties in parameter estimation due to the multi-extremal
optimization problem [4].

One of the most common approaches for parameter estimation from measurements is
the least squares method (LSM) and its modifications [4-6]. The LSM is based on the
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minimization of a cost function that measures the similarity between the data obtained
from the model equation (1) and measurements. The goal is to find the global minimum
of the cost function. In this context, many computational techniques from the area of
artificial intelligence [7| were developed in the past decades, such as chaotic ant swarm [§],
particle swarm optimization [9], evolutionary programming [10], differential evolution [11],
gravitational search [12], artificial bee colony [13].

Note that, besides the LSM, there are other approaches, such as recursive estimation
using the modifications of the Kalman filter for nonlinear systems [4], combined state and
parameter estimation [14]. Some approaches use other forms of the cost function [15].

This work is focused on the application of particle swarm optimization (PSO). The
algorithm was developed in the area of swarm intelligence [16] and has become one of the
most widely used optimization techniques [17]. PSO searches for the global minimum of
the cost function using a swarm of particles. Evolution of the swarm is described by the
iterative procedure, which has only a few control parameters, simple implementation and
low computational cost.

In the past decades, PSO was successfully applied for parameter estimation of different
types of chaotic system [9,18,19]. It also has special modifications for chaotic systems
[20-22]. In [23,24] PSO is combined with the local search algorithms. In [25] PSO is used
for real-time estimation.

There are not so many studies, which present the application of PSO for parameter
estimation of one-dimensional chaotic maps, and this topic is studied in the presented
work. This work considers the parameter estimation from measurements of the logistic
map. The main goal of this research is to compare the estimation results for different
combinations of the control parameters.

1. Cost Function

Consider the parameter estimation problem for a chaotic map (1). It is assumed that
the parameter A is unknown and the available data is given by

yk:xk_'_vkak:laQa"'aNa (3)

where y;, is the measurement, vy, is an additive error, and N is the number of measurements.
The problem is to estimate the unknown parameter A from measurements (3). In this
problem statement, the initial condition z is also unknown, since it defines the value of
the state variable z; at time step k:

wi = M@0, A) = [(f(f - f(w0,A) )
—_—

k

Application of the LSM leads to the minimization of the cost function defined as

F(zo,A) = (y1 — f (o, )‘))2 + (y2 — f(f (20, ), )‘))2 +...=
. (4)
k=

(ykz - fk(%, )\))2 .

1

Fig. 1 shows the cost function for parameter estimation of the logistic map (2). In this
example, the true value of the parameter is A\* = 3,8, the initial condition is z§ = 0, 3,
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and the number of measurements is N = 30. The mesh with steps Az = 1072, A\ = 1072
is used to plot the surface shown in Fig. 1. It seems visually that the cost function is not
smooth and has only a few local minima, which are candidates for the global best. In fact,
the function (4) is differentiable, and there are many local minima near the true solution.
This fact is clearly seen in Fig. 2, where the mesh steps Az = 107>, A\ = 107%. Note that
in the presented example there are no abnormal changes in the cost function due to the
small number of measurements.

There are a few reasons why the cost function becomes multi-extremal:

1. Chaotic map is very sensitive to the initial condition and parameter (due to this
property, the initial value approach may also lead to an incorrect estimation [7]).

2. Dynamics of the state variable and measurement errors is very similar.

3. For a small number N of measurements, the difference in the cost function value at
the global and some local minima is very small.

In order to use PSO, consider the cost function (4) in general form. Let

p=[m A"

be the vector of the unknown variables. In this way, the cost function can be written as

Fp) =" (s — f*(p))".

k=1

2. Particle Swarm Optimization

Consider the minimization problem of the cost function F(p), where p € R" is the
vector of the unknown variables, and n is the dimension of the search space. PSO searches
for the global minimum using a swarm of m particles that updates from iteration to
iteration. Each particle is described by its position p;; € R" and individual velocity
v;; € R", where 7 is the particle index, j is the iteration index. Each particle moves in
the search space to find a better solution and saves the best position p; € R", which can
be interpreted as a possible local minima. The best position p € R™ among all particles
in the swarm is considered as a possible global minimum of the cost function. The idea of
PSO is shown in Fig. 2and the following steps represent the evolution of the swarm.

Step 1. Updating the velocity of each particle:

Vi =w;v;j_1+cri(pi — pi,j—l) + cor2(P — Pij—1)

where w; > 0 is the inertia weight, ¢, ¢ > 0 are acceleration coefficients, and 71, ry € [0; 1]
are uniformly distributed random numbers (the values are generated by the function rand
of Matlab). Usually the inertia weight decreases linearly as follows [9, 19]:

Wmaz — Wmin

X.
M j?

Wj; = Wmax —

where W,qz, Wmin are the maximum and minimum values, respectively.
Step 2. Each particle moves to the new position:

Pij = Pij-1+ Vij.
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Fig. 1. Cost function for parameter estimation of the logistic map
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Fig. 2. Cost function near the true solution
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Step 3. If the new position is better than the best position, then the last one is
updated:

F(pij) < F(p:) = Pi=Dpij-
Step 4. If the best position of the particle was updated in the previous step, then try
to update the global best position:
F(p;)) <F(p) = p=p:

The listed steps represent the evolution of the swarm from iteration 7 — 1 to iteration
7, and they are repeated until the maximum number M of iterations is reached.
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Fig. 3. Calculation of the particle position

3. Numerical Simulations

Consider the parameter estimation from measurements of the logistic map (2). In the
test problem, the true value of the parameter is A* = 3,8, and the initial condition is
xy = 0,3. The number of measurements is N = 30. The measurement errors are pseudo-
random numbers with normal distribution, zero mean and standard deviation o = 0, 05.
The values of v, are generated by the function randn of Matlab. The corresponding cost
function is shown above in Fig. 1.
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In the simulations, four different combinations of the control parameters are studied.
The control parameters are the acceleration coefficients c¢q,c, and the maximum and
minimum values wW,,qz, Wmin Of the inertia weight. The studied combinations are given
in Table 1. The first combination is recommended by many authors [9,19]. In all cases the
number of particles is m = 100, and the maximum number of iterations is M = 200. The
initial swarm is generated randomly in the search set P = X, x A, where Xy = [0;0, 5] and
A = [3,5;4] are the intervals of possible values of the initial condition zy and parameter
A, respectively. The estimation results are presented in Table 2 and Table 3.

Table 1
Combinations of control parameters of PSO
Control Combination
parameter 1 2 3 4
c1 2 0,5 0,2 0,05
Co 2 0,5 0,2 0,05
Winaz 0,8 1 1 1
Winin 0,4 0,9 0,9 0,96
Table 2
Comparison of the estimates of the initial condition x
Combination of control parameters
j 1 2 3 4
50 0,28463885 0,26943005 0,29992404 0,29999780
100 0,29063151 0,26936041 0,29928637 0,29895155
150 0,29970289 0,30074711 0,29928637 0,29930475
200 0,29977539 0,30074256 0,30075355 0,29930475
Table 3
Comparison of the estimates of the parameter A
Combination of control parameters
j 1 2 3 4
50 3,90726872 3,80379671 3,80363632 3,80451150
100 3,86885450 3,80711139 3,80307440 3,80635968
150 3,80887617 3,79946499 3,80307440 3,80298607
200 3,80792517 3,79879552 3,79940143 3,80298607

Fig. 4 shows the evolution of the cost function value through iterations. In all cases
the best cost function values belong to the interval [0,08;0, 12], and the final estimation

errors have the same order of precision:

107 < |of — 2] < 1072,

1073 <

A — 5\’ <1072

Thus, all considered combinations of the control parameters provide similar results.
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Fig. 5. Comparison of the trajectories of the swarm center. Each figure shows the final
part of the trajectory: 150 < j < 200 for combinations 1 and 2, 100 < j < 200 for
combinations 3 and 4
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However, for each combination, the searching for the global minimum has different
dynamics. To show this difference, consider the motion of the swarm center:

1 m
P; = - Z Pij-
i—1

Comparison of the trajectories is shown in Fig. 5. The first trajectory is very irregular, and
the other have a spiral-like shape. In addition, decreasing of the acceleration coefficients
leads to smoothing of the trajectory. Such trajectory of searching increases the chance to
find the global minimum. It is promising since the cost function has many local minima
near the true solution. Note, that the obtained results are valid not only for the presented
simulations.

Conclusion

This work considers the parameter estimation from measurements of the logistic map.
The most common solution technique for this problem is the LSM. The main difficulty
of the LSM is that the cost function has a large number of local minima. This multi-
extremal optimization problem was solved using PSO. The algorithm has only a few
control parameters, simple implementation and low computational cost. The presented
study proposes values of the control parameters that are different from the recommended
ones. This provides searching for the global minimum by taking into account the properties
of the cost function. Further research will be related to the comparison of PSO with other
techniques.
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INTPUMEHEHVE METO/JIA POA YACTUIL JAJI4d OHIEHNUBAHUN A
ITAPAMETPA KBAJIPATNYHOTI'O OTOBPAXKEHU A

A.C. Ileaydvro, FOxuO-YpaabcKuii roCy1apCTBEHHbIN YHUBEPCUTET, I. e Isa0nHCK,
Poccuiickas Peiepartiust

B pabore paccMmaTpuBaercs 3a/iata OINEHIBAHUS [TapaMeTPa KBaIPATHIHOTIO OTODparKe-
HUSI [0 3aIlyMJIEHHBIM U3MepeHusiM. Perienne 3a/1a9u OIeHUBaHUS B pPAMKaX OMTHMU3AIA-
OHHOTO II0JIX0JIa OCHOBAHO HA MUHUMUBAINHU TIeJIeBOH (DYHKIMH, KOTOPAasl OIPEJIEsIsieT pas-
HOCTH MEXKJIy peajim3arueil MOJeJIbHOrO yPaBHEHUsI U U3MEPEHUusIMU. BeiiecTBIe CII0XKHOM
JIMHAMUKU KBaJIPATHIHOIO OTOOparKeHUs IejieBasi (DYHKIUSI sIBJISETCST MHOTOIKCTPEMaJIb-
HOI, 9TO NMPUBOJIUT K HEOOXOIMMOCTU MPUMEHEHHUsI COOTBETCTBYIOIINX BBIYUC/IATETHBHBIX
ajropuT™MoB. B jaHHON paboTe mcciielyeTcs MpUMeHEeHne MeTOJa POsi YaCTHUIL JJIsl TOMCKA
100 IbHONO MUHIMYMa, TIeJIEBOM (DYHKITA.

Karoueswie caosa: keadpamuunoe omobpasicenue; OUEHUBAHUE NAPAMEMPOS; UEAEBAA
PyHKUUS; MEMOOD DPOA HACTIUL,
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