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Kolmogorov—Arnold Network (KAN) is an advanced type of neural network developed
based on the Kolmogorov—Arnold representation theorem, offering a new approach in the
field of machine learning. Unlike traditional neural networks that use linear weights, KAN
applies univariate functions parameterized by splines, allowing it to flexibly capture and
learn complex activation patterns more effectively. This flexibility not only enhances the
model’s predictive capability but also helps it handle complex issues more effectively. In this
study, we propose KAN as a potential method to accurately estimate the state of charge
(SoC) in energy storage devices. Experimental results show that KAN has a lower maximum
error compared to traditional neural networks such as LSTM and FNN, demonstrating that
KAN can predict more accurately in complex situations. Maintaining a low maximum error
not only reflects KAN’s stability but also shows its potential in applying deep learning
technology to estimate SoC more accurately, thereby providing a more robust approach for
energy management in energy storage systems.

Keywords: state of charge (SoC); Kolmogorov—Arnold networks; energy storage; neural

network.

Introduction

The Kolmogorov—Arnold Network (KAN) has emerged as an advanced method in the
field of machine learning, particularly for addressing complex nonlinear problems. The
development of KAN not only enhances the capabilities of predictive models but also
improves the learning and representation abilities of neural networks, enabling them to
efficiently handle nonlinear relationships in complex data. This has led to the application
of KAN across various fields, including renewable energy, transportation, and electronics,
particularly in predicting the State of Charge (SoC) of energy storage devices.

Accurate prediction of SoC plays a crucial role in optimizing energy usage, effectively
managing remaining energy, extending battery life, and improving system reliability [1,2].
Furthermore, the ability to predict SoC helps prevent sudden power outages, ensuring
continuous and safe operation.

In large systems such as smart grids, predicting SoC supports the efficient distribution
of energy, aiding in cost reduction and minimizing energy waste [3|. In recent years,
machine learning methods have become powerful tools for predicting and managing stored
energy levels. Neural network models like Feedforward Neural Networks (FNN) and Long
Short-Term Memory (LSTM) have been widely adopted due to their ability to learn
nonlinear relationships and process sequential data [4,5].

However, these networks have certain limitations, such as reliance on linear weights and
the requirement for large amounts of data to achieve high performance. Specifically, while
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LSTM can retain long-term information, it still faces challenges regarding computational
complexity and result interpretability. Consequently, the application of the Kolmogorov—
Arnold Network (KAN) [6] for estimating the State of Charge (SoC) has shown great
potential in enhancing predictive models in this domain.

The structure of this paper is organized as follows: the next section will explore the
theoretical foundation of this study. This will be followed by a description of the network
architecture and a detailed analysis of the Kolmogorov-Arnold Network (KAN) used for
estimating the State of Charge (SoC). Section 4 will provide a comprehensive overview
of the dataset utilized in this research, while Section 5 will present the results and key
insights derived from the findings. Finally, we will conclude by summarizing the main
points and suggesting potential directions for future research.

1. Theoretical Foundation

Kolmogorov—Arnold Network (KAN) represents a new neural Network architecture
designed to replace traditional Multi-Layer Perceptrons (MLPs). It was inspired by
the Kolmogorov—Arnold representation theorem |7, 8] whereas MLPs is inspired by the
universal approximation theorem [9].

The Kolmogorov—Arnold representation theorem states that every multivariate
continuous function f which depends on x =[xy, 23, ..., x,], in a bounded domain, can be
represented as the finite composition of simpler continuous functions, involving only one
variable. Formally, a real, smooth, and continuous multivariate function f(z) : [0,1]" - R

can be represented by the finite superposition of univariate functions
2n+1 n

fl@) = [z, ) = Z CDq(Z Da.p(Tp))- (1)

Here &, : R — R amd ¢,, : [0,1] — R are the so-called outer and inner functions,
respectively.

2. Network Architecture

Regarding the architecture of KAN, a KAN layer can be defined as & =
{gp}: P=1,2,... 04, q=1,2,... N4, where the functions ¢,, are parametrized
functions with learnable parameters. This structure allows KAN to capture complex
nonlinear relationships in the data more effectively than traditional Multi-Layer
Perceptrons (MLPs).

To fully harness the power of KAN, deeper network architectures have been created.
A KAN with depth L is constructed by stacking L KAN layer. The configuration of this
deeper KAN is defined by an integer array [ng, n1, ..., n.| where n; indicates the number of
neurons in the [ layers. Each [" KAN layer, takes an input of dimensions and produces
an output of n;.; dimensions, transforming the input vector accordingly z; € R™ to
Ti41 € R™+1 [6]

Graa () dra2() - Pram (4)
Groa () di22() - dram (4)
Ti41 = ) (2>
\ ¢l,nz+171 () ¢l,m+1,2 () o ¢l7m+1,nz () |
o
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where ®; is the function matrix corresponding to the I* KAN layer and the KAN is
essentially formed by combining multiple KAN layers

KAN(z) = (®p_10Pp 90...0P)x. (3)
The network depth, defined by the number of layers, allows it to capture more complex
patterns and relationships within the data. Fach KAN layer processes the inpu = through a
series of learnable functions ¢, , enabling the network to be highly adaptable and resilient.
The Kolmogorov—Arnold (KAN) representation theorem allows for the creation of new
neural network architectures by replacing conventional linear weights with univariate B-
spline-based functions, which act as learnable activation functions. These B-splines are
represented through the basis functions N; ;(t). The Oth-order basis function N;(t) is
defined as follows [10]:

Nip(t) = {1

Higher-order basis functions NN; ;(t) are calculated using the recursive formula:

of i <t<ti1 and t; <t
0 otherwise.

(4)

t—t, -
Nij(t) = ———Nyja(t) + ——— Ny ja(t), (5)
tivj — 1t tivj+1 — tiqa

where j = 1,2, ...,p. The B-spline curve is defined by the following equation:

C(t) = 3 Piip(t) (6)

is call B-spline.

This method provides greater adaptability in creating the architecture of the neural
network and improves the KAN model ability to learn and represent data, allowing it to
better handle nonlinear relationships within intricate datasets.

3. Kolmogorov—Arnold Networks for SoC Estimation

Let us consider the application of the KAN network to the SoC estimation problem
using the Panasonic NCR18650PF Data Normalized Li-ion Battery dataset. The dataset
includes five inputs variables: Temperature, Voltage filtered at a frequency of 0,5 mHz,
Current filtered at a frequency of 0,5 mHz, Voltage filtered at a frequency of 5 mHz,
Current filtered at a frequency of 5 mHz, with and the State of Charge (SoC).

The connection between the inputs and the State of Charge (SoC) can be represented
by a multivariable function as follows [11]:

SoC ~ F(T; Vo5, Cos; Vs Cs), (7)

where T is temperature, V; 5 is voltage filtered at a frequency of 0,5 mHz, Cy 5 is current
filtered at a frequency of 0,5 mHz, V5 is voltage filtered at a frequency of 5 mHz, C5 is
current filtered at a frequency of 5 mHz.

According to the Kolmogorov—Arnold theorem, this multivariable function can be
expressed as a composition of univariate functions that depend independently on individual
features:

X = f(¢T(T) + ¢V0,5(V075) + ¢Co,5 (CO,5> + ¢V5 (V:”)> + ¢Cs (C5>>7 (8>

where X is the representation of univariate functions that reflect the influence of each
input variable, ¢r is the function representing the influence of T, ¢y, ; is the function
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representing the influence of Vo5, ¢, ; is the function representing the influence of Cy s,
¢y, is the function representing the influence of Vj, ¢¢, is the function representing the
influence of Cs.

More generally, the relationship can be extended across multiple functions:

Y = Z fp(¢Tp (T) + ¢Vp,0,5(%15) + ¢Cp,0,5 (00,5) + ¢Vp,5 (‘/5) + ¢Cp,5 (05))7 (9>
p=1

where Y is the sum of multiple nonlinear functions that describe the general relationship
between the input variables and the State of Charge (SoC) value to be estimated, m is
the number of functions f, that aggregate the input factors, f, is nonlinear functions. ¢
is the univariate functions depend on each input variable, T', V5, Co 5, V5, C5 is the input
variables.

SoC

Fig. 1. KAN network architecture for State of Charge (SoC)

The process of building a model to estimate SoC using KANSs is carried out through
several steps, as illustrated in Fig. 2. First, the data is meticulously prepared, including
data validation, cleaning (removing NAN values), and normalization. Then, the dataset is
divided into two parts: 80% for training and the remaining 20% for testing.

To improve signal quality and reduce noise, we applied additional filters to voltage and
current at frequencies of 0,5 mHz and 5 mHz within the dataset. This not only smooths
the data but also enhances prediction accuracy.
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The model architecture is built upon the Kolmogorov—-Arnold Networks (KAN)
architecture, combined with carefully selected activation functions to enhance the accuracy
in predicting the State of Charge (SoC). As illustrated in Fig. 1, the values of each variable
are flattened and stacked into inputs, which are then processed through L layers of the
KAN network to produce the estimated SoC result. The training and validation process
focuses on optimizing the B-spline functions and network parameters with the goal of
minimizing prediction errors and improving model performance. In particular, the B-spline
functions are trained according to a detailed process as described in the diagram on the
right.

The final stage involves evaluating and fine-tuning the model based on key metrics such
as R-squared, RMSE, MAE, and MAX (Maximum Error). The final results are visualized
by comparing the predicted values with the actual values, allowing for a comprehensive
assessment of the model performance.

Prepare data
Data collection, preprocessing, and splitting the
dataset into training and testing sefs

'

Formation of feature vectors
Identify the necessary features to capture the

complex relationships in the data
Randomly initialize the parameters of
l B-spline for each function at each layer
Model Architecture
Design the KAN architecture and use activation
- . Pass the mput features
functions to improve the accuracy of SoC
- through each layer of the
predictions
l network to obtam predictions.

Training and Validation
Optimize the B-spline functions and network
parameters to minimize prediction error and evaluate
the model's performance

:

Evaluation and Fine-Tuning
Evaluate the model's performance based on the
following metrics: RMSE, MAE, MAX_Error, and
fine-tune the model

!

Visualize the results \

Compare the predicted values with the actual values

Calculate loss with
Tespective to ground truth
Backpropagation time

Update weights
for the B-spline

Repeat and
Train

'y

Training KAN with B-splines

Fig. 2. Diagram of the training process using KAN networks
4. Dataset Description

This paper studies two types of Li-ion batteries from the Mendeley dataset: the
cylindrical Panasonic NCR18650PF [12|, commonly used in energy applications, and the
pouch Turnigy Graphene 65C [13], known for its high-power output capability. Both types
of batteries are used to train and test predictive models such as FNN, LSTM, and KAN,
in order to evaluate the effectiveness of these methods in estimating the State of Charge
(SoC) and performance-related parameters of the batteries.

The dataset is divided into two parts: training data and testing data, both within
the temperature range of —10°C to 25°C. This allows the model to be trained and tested
under various real-world conditions. The training data uses mixed battery configurations,
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including samples from Panasonic (Mix 1-4, US06) and Turnigy (Mix 1-8, US06), while
the testing data uses other configurations such as Panasonic (LA92, NN) and Turnigy
(LA92, HW) [14]. As illustrated in Fig. 3, the battery parameters are presented to assist
the analysis and provide an objective dataset view.
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0.4

0.2

0.0

0 1000 2000 3000 4000 5000 6000 7000

Fig. 3. Battery parameters chart
5. Results and Discussion

By using the KAN network model [15], we train and predict the State of Charge (SoC)
for the Panasonic NCR18650PF Li-ion battery dataset. We then compare the predicted
SoC results to those obtained from Feedforward Neural Networks (FNN) and Long Short-
Term Memory (LSTM) methods, as shown in Table. For this comparison, we employ
evaluation metrics including R-squared, RMSE, MAE, Maximum Error (MAX), Pearson
Correlation Coefficient (R), and Spearman Correlation Coefficient (r). The findings
indicate that while the KAN model excels in controlling maximum error, its accuracy,
as measured by R-squared, RMSE, and MAE, is slightly lower than that of the LSTM
model. Nevertheless, the KAN network exhibits strong predictive capability, supported by
high Pearson and Spearman correlation coefficients.

Table
Error table of FNN, LSTM and KAN network models

Index FNN LSTM KAN network
R-squared 0,9382887175 | 0,9466769676 | 0,9350891130
RMSE 0,0593053601 | 0,0551275993 | 0,0608233635
MAE 0,0448270916 | 0,0400778923 | 0,0474486669
MAX Error 0,3506530296 | 0,2745016737 | 0,2647641933

Pearson Correlation

Coefficient (R)

0,9691410083 | 0,9741125442 | 0,9676746864

Spearman Correlation

Coefficient (r)

0,9739220118 | 0,9790702756 0,973298463
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Conclusion

The experimental results show that the KAN Network outperforms traditional models
like Feedforward Neural Networks (FNN) and Long Short-Term Memory (LSTM) in
predictive accuracy, particularly in its ability to maintain a lower maximum error. However,
to fully leverage the potential of KAN while minimizing the risk of overfitting, it is essential
to carefully optimize the model’s architecture and activation functions. This factor becomes
even more critical when working with limited datasets or more complex modeling scenarios.
Moving forward, we plan to further explore KAN in conjunction with other neural network
architectures such as LSTM and RNN; as well as integrating KAN with various traditional
neural networks. This approach aims to develop a hybrid model that achieves the highest
performance in estimating the state of charge (SoC) in energy storage systems.
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METO/I, HEMPOHHBLIX CETEN KOJIMOT'OPOBA — APHOJIbIA
JJId OIIEHKU COCTOSHUSA 3APATA JINTUN-NOHHEBEIX BATAPEN

M.X. Jao', ®@. JIw?, .H. Cudopog'>*

'pKyTekuit HAIMOHAILHDBIH HCC/Ie/I0BATEILCKIN TeXHUYecKnil YHIBEPCUTET,

r. pkyrck, Poccuiickaa Peneparius

[lenrpanbubii 10:KubIH yHuBepeuTer, r. Yanma, Kuraiickas HapomHas pecrrybamka
3SUuctuTyT cucreM suepretuxu mMenn JI.A. Mesentoesa CO PAH, r. VpkyTck,
Poccniickas @eneparust

4X apOuHCKIiT TOJNTEXHITYCCKIH YHUBEPCUTET, T. XapOnH,

Kuraiickass HapoHas peciybmka

OcHOBHasI 1IeJIb CTATHU — AJAITAllAs U IPUJIOXKEHNe HeWpOHHBIX ceTeil Tuma KoJmo-
ropoBa — ApHosbja B asiekTposneprerure. Heiipocern KosimoropoBa — ApHosbna siBiis-
FOTCsl HOBBIM IIOJXOJOM B 00JIACTH MAIUHHOIO OOYYEeHWsl, OCHOBAHHOM HA KJIACCUYECKUX
pe3yIbTaTax Teopuu NpudmKennit. B oTimdauu oT TpaIuiinoOHHBIX HEHPOHHBIX CeTell, ceTn
Kosmoroposa — ApHoJibl1a 3a1€fiCTBYIOT YHUBapUAHTHBIE (DYHKINH, ITapaMeTpPU30BAHHBIE
CIUIATHAMU, ITO IIO3BOJISIET TUOKO YJIABJIMBATD U U3yYIATh CJI0KHbIE AKTUBAINOHHbBIE TI1abJI0-
HbI Oosiee 3 dexkTuBHO. Takast apxuTeKTypa HeifipoceTeil M03BOJISeT CYIEeCTBEHHO YLy YlllaTh
UX IPOTHO3UPYIOIILYIO CIIOCOOHOCTH. B JaHHOM HCCJ/I€I0OBAHNN IPEJJIATAETCS UCIOJIB30BATh
cetn Kosimoroposa — ApHoJibla B 3ajlade OIEHUBAHUsI yPOBHSI 3apsijia B JIMTUHA-MOHHBIX
HAKOIUTE/IsIX. JKCIEPUMEHTAJbHBIE PE3Y/IbTAThI HA TECTOBBIX 0a3axX JaHHBIX IIOKA3bIBa-

10T, 9TO HeiipocereBble Mojien KosmoropoBa — ApHOIBIA JIEMOHCTPUDPYIOT MEHBIITYTO

Bectauk FOVYpI'Y. Cepusa <Maremarndeckoe MOAeJIMPOBAHUE 29
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MaKCHMAaJbHYIO OMIUOKY 10 CPABHEHHUIO C TPAJAUIMOHHLIMU HEADOHHBIMHU CETSIMU, TAKIMU
kak LSTM u FNN, 49ro mokasbiBaeT BBICOKHI MOTEHIHAJ HCIIOJIH30BAHUST HEHPOCETEBOM
MOJIEJIM B CJIOXKHBIX CUTYAIUSX 3KCILIyaTalMy HaKOIUTeseh sHepruu. [lommepkanue Hu3-
KO MaKCUMAaJIbHOM OIMUOKHU He TOJIBKO OTparkaeT ycroiunsocThb Heiipocereit Kosmoroposa
— ApHoJIbJIa, HO JE€MOCTPUPYET IIOTEHIMAJ B IIPUMEHEHUN TEXHOJOTUH riryboKoro obyde-
Hus Jyist 60Jiee TOYHON ONEHKM yPOBHS 3apsijia, IpelocTaBisis 60jiee HaJeXKHbBIA OIX0 K
VIIPABJIEHUIO CUCTEMAMU XPAHEHUs SHEPIUN.

Kumouesvie caosa: cocmosnue sapada (SoC); cemu Koamozoposa — Aproawvda; nakonu-

MEeAU IHEP2UL; HETUPOHHAA CEMD.
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