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The study investigates a parabolic-hyperbolic type differential equation with nonlocal
boundary and initial conditions. The problem is approached using the spectral analysis
method, allowing the solution to be expressed as a series expansion in terms of eigenfunctions
of the associated spectral problem. The existence, uniqueness, and stability of the solution
are rigorously established through analytical techniques, ensuring the well-posedness of
the problem. Furthermore, the study carefully examines the issue of small denominators
that arise in the series representation and derives sufficient conditions to guarantee their
separation from zero. These results contribute to the broader mathematical theory of mixed-
type differential equations, providing valuable insights into their structural properties. The
findings have practical applications in various fields of physics and engineering, particularly
in modeling wave propagation, heat conduction, and related dynamic processes. The
theorems obtained ensure that under appropriate assumptions on the given data, the
problem admits a unique and stable solution, reinforcing its theoretical and practical
significance.
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Introduction

In a rectangular domain A = {(z,£) : 0 <z <1, —a < < f}, we consider the
following parabolic-hyperbolic type equation

oV 0*V
a—f—erq(:r)V:O, f>0,
Weo=q 0
o0°vV o0V
6—5,2—@+Q($)V:0, §<0,

where «, ( are positive real numbers. In the domain A we find the solution V(z, &) that
satisfies the conditions

V(z,6) ew=CA)NCHANCLANC*A)NCEAL),

Vizg,—a)=1(x), 0<z<1, (2)
V;C(O?£) =0, —a<{<p, (3)
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Veo(1,6) = V(1,6 +V(0,§) =0, —a<{<p (4)

where A- = AN{{ <0}, AL = AN{£ > 0}, and ¢(x) is a given sufficiently smooth
function.

In physical problems such as plasma physics, the diffusion process of particles,
models of money accumulation in economics, heat dissipation in a heated thin rod,
one may encounter mixed type differential equations (see [1-5]). Equations of this type
are commonly found in problems related to wave propagation, heat conduction, and
fluid dynamics. Some specific applications include: modelling sound waves in fluid flow,
describing the transport of a quantity with both diffusive and advective properties,
describing the temperature distribution in a material with both heat conduction and fluid
flow, describing the density of traffic with both diffusive and advective effects.

The study of mixed-type equations has been a topic of considerable interest among
authors in the literature, with a multitude of investigations exploring various facets of
Tricomi-type problems. The ongoing pursuit of knowledge in this domain is contingent
upon the specific region and the intrinsic characteristics of the problem under examination
(as evidenced by the extensive literature cited in [6-14]). The Tricomi equation describes
certain types of flow patterns in fluid mechanics, particularly in the study of irrotational
compressible flows. It has applications in aerodynamics, where it helps model the behaviour
of air around certain types of wings and airfoils. The equation also appears in mathematical
physics, where it is used to model various physical phenomena involving wave propagation

and fluid dynamics. In the [2] study, the flow of gas in the channel is expressed by the
2

wave equation 8—151; = aAu and outside the channel by the diffusion equation % = bAu,
where a, b are physical parameters and A is the Laplacian. Continuity is required at the
boundary of the channel. This model expresses a physical process in a two-part space
connected by two equations and conjugate conditions at the boundary.

In [3], the system of first-order differential equations is defined in the intervals [0, []
and [l,00), respectively, depending on the presence or absence of losses in the process
of propagation of electric waves in the semi-infinite line. This system of equations is
reduced to hyperbolic-parabolic type equations with the same conditions. Therefore,
many mathematical models are encountered with mixed type partial differential equations
depending on different processes.

In [15], the motion of the fluid in the electromagnetic field is analysed and it is shown
that it is expressed by the boundary problem for the hyperbolic-parabolic type equation
in multidimensional space.

Various methods are used to prove the existence and uniqueness of the solution
of initial-boundary problems for mixed-type differential equations. For example, the
maximum principle or integral identities can be used for uniqueness and apriori evaluations
or integral equations can be used for existence. This study demonstrates the existence and
uniqueness of the solution to the boundary value problem (1) — (4) the application of
spectral analysis techniques, as outlined in the studies referenced in [13,14].

1. Spectral Problem

We want to find a non-zero solution of the boundary value problem (1) — (4) in the form
V(z,&) = Z(x)Q(&). Substituting this expression in equation (1) and boundary conditions
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(3), (4) we obtain the spectral problem for Z(x)

—Z"(x) + q(x)Z(x) = AZ(x), ()
Z'(0) =0, (6)
Z'(1)—Z(1)+ Z(0) =0, (7)

and for Q(§), the ordinary differential equation
Q'€ +AQ(§) =0, 0<E<p, (8)
Q")+ =0 —a<{<0, (9)

where A is a complex parameter. The boundary conditions (6), (7) are regular in the
Birkhof sense, even strongly regular (see [16]). The root functions of the boundary value
problem (5) — (7) form a Riesz basis in the space Ly (0, 1). The eigenvalues of the boundary
value problem (5) — (7) are simple and form two infinite sequences (see [16]):

Ah1:(2mﬂ2{1+()(%)},

Ar2 = [(2k + 1)7)? [1 +0 (%)} ,

the eigenfunctions corresponding to these eigenvalues are

1
Zia(x) = cos2kmx + O (E) ,  k— o0,

1
Zio(x) = cos(2k + 1)mz + O (E) , k— oo.

It is known that since the functions Zy(z) = {Z;1(z), Zy2(x)} form a Riesz basis,
there is only one sequence {Y;(x)} biorthogonal to them. This sequence consists of the
root functions of the adjoint boundary value problem, and these also form the Riesz basis
(see [16]). The adjoint problem to the boundary value problem (5) — (7) is as follows:

—Y"(x) + q(2)Y (z) = XY (2), (10)
Y'(0) — V(1) =0, (11)
Y'(1) - Y(1) = 0. (12)

It is clear that the boundary value problem (5) — (7) is not self-adjoint. The
eigenfunctions of the boundary value problem (10) — (12) are

1
Yi1(x) = 2km cos 2kmx + sin 2kmx + O (E) )

Yio(x) = (2k + 1)m cos(2k + 1)z — sin(2k + 1)mx + O (%) .
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2. Uniqueness of the Solution

If A\=p2 (Reuy > 0) is written in the equations (8), (9),

B ape His, £>0,
Qk(f) - { bk CcOS ,U/kg + ¢, Sinlu/k5’ 5 < 0, (13>

is obtained where ay, by and ¢ are arbitrary constants. Since it is V(z,§) € w , it is also
Vie(z, &) = Zp(x)Qr(&) for the solution Vi (x,&) € w. Let us choose the constants ag, by, ¢y
such that

Qr(0+) = Qi(0—),  @(0+) = Q,(0—) (14)

conditions are satisfied. The function (13) satisfies condition (14) if and only if a; = by
and ¢, = —pgag. Then the function (13) is

bre Mk, £>0,

. 15
by, cos pug§ — pby sin g, § < 0. (15)

Qr(§) = {
Consider the following function, where V' (z,£) is the solution of the boundary value
problem (1) — (4):
1
Q) = [ Vol (16)
0

If the function (16) is differentiated once when £ > 0 and twice when £ < 0, the
following equations are obtained from the conditions (3), (4) and (11), (12):

VO = 2 ( / v<x,s>Yk<x>dx) — [ Vil = o)V (. €) Vit -
— 2 / Yi(o)V (2, €)dx = —2Vil©).

Then,

Vi(©) + 1iVi(§) =0, €>0. (17)
Similarly,

V(&) + 1iVi(§) =0, € <0. (18)
Therefore, for A = ui (Repy, > 0), the differential equations (17), (18) and the equations
(8), (9) coincide:

Vi(§) = Qi(€), €€ [-a,fl.

To find the coefficients by in expression (15), let us satisfy the initial condition (2):

1 1
Vi(—a) = / V(z,—a)Yy(z)dr = / U(2)Ye(x)dr = . (19)
0 0
From (15) and (19),
bi[cos ppa + g sin ppa = .. (20)
From relation (20), when
d(k) = cos pra + py sin ppa # 0, (21)
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we have

Vi Py
by = = . 22
P cos ppa+ g sin ppee d(k) (22)

Substituting (22) into the (15), we obtain

e_p“ig
g ¥ cos (k€ — g Sin (g £<0
d(k) ’ ‘

To show the uniqueness of the solution, let us consider ¢(x) = 0, i.e. the homogeneous
case. Let us also assume that condition (21) is satisfied. Then, according to the formulas
(16), (23) and ¥ (z) = 0, for V¢ € [—a, 3],

/0 V(z, &)Yi(x)dx = 0.

Since the sequence {Yj(x)} is a Riezs base in the space Ly(0,1), it is a complete
sequence. Then from the last equation we get V(z,£) = 0 almost everywhere for V¢ €
[—a, B]. Since the function V (x, €) is continuous in the closed region A, V(z,£) = 0 in this
region.

Since the system {Y(z)} forms a basis in Ls (0, 1), it follows that it is also a complete
system i.e. V(z,&) = 0 almost everywhere for any £ € [—«, 5]. Since V (z,£) is continuous
in the closed A region, it follows that V(x,¢) = 0 in A.

Thus, the following uniqueness theorem is proved.

Theorem 1. If there is a solution to the boundary value problem (1) — (4) and the
condition (21) is satisfied, this solution is unique.

Suppose that for a number « and k = p, condition (21) is not satisfied, i.e.
d(p) = cos p,o0 + p,sin p,a = 0.

Then the following non-zero solution of the homogeneous boundary value problem (1) —
(4) for ¢(x) = 0 is found:
—Hp€
R B W,
b, (cos pp€ — p,sin &) Z,(x), £<0,

where b, # 0 is an arbitrary constant. Therefore, if there is a solution to the boundary
value problem (1) — (4), this solution is unique if and only if the condition (21) is satisfied.

(24)

3. Existence of the Solution

Suppose d(k) # 0, and there is such a constant ¢, that the inequality |d(k)| > co > 0
is satisfied. The solution of the boundary value problem (1) — (4) can be represented as
a=Db.

(9
V(z,§) = Z Vi(§) Zi(z). (25)

k=1
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It is clear that the function Vj(§)Zx(z) satisfies the equation (1). In order to show the
existence of a solution to the boundary value problem (1) — (4), it is necessary to show
that this series is uniformly convergent in the closed region A, differentiable once with
respect to & when £ < 0, twice with respect to t when £ > 0 and differentiable term by
term with respect to x. For this, let us obtain evaluations for functions V().

Lemma 1. For all k € Z, the following inequalities are true for & € [—a, 3],
V(O] < Avk [l [VE(E)] < Aok® [ (26)

and for £ € [—a, 0],
V()] < Ask® [ - (27)

Proof. From (23) for £ € [0, 3] we obtain

<

Vil©)] = 'wk el < Atk o,

d(k)

Vi(€)| = “k E il < ALR fi]

Mkl/)k ( )

Similarly, for £ € [—a, 0] we obtain

COS ik — g SIn 1§

|
k) =

Co

[ _
< g 1w < A0l

17 (cos pp€ — pug smukﬁ)' = |2 Vi(&)] < Azk? |9y .

Vi()] = |tx

V(&) = ’dw—l];uk (sin pugt + pug cos pgt)
’ Ui

Here, Z;t (j = 1,2,3) are positive constants. Find the evaluations (26) and (27) from the
inequalities shown above.

O

Applying Lemma 1, the series (25) can be bounded from above by the following
numerical series with the first-order derivative in the closed domain A and the second-
order derivative in the appropriate domains A, and A_ according to evaluations (26),

(27):
43K . (28)

Now let us obtain evaluations for 1.

Lemma 2. Ify(z) € C*[0,1] and ) (1) 4+ (0) =@ (1) = 0, p+)(0) =0, i=0,2,
then,

4)
My,
_ k
wk - 4 0 ke Z+7 (29>
|1k
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where

> 2
> < 1@ (30)
k=1

Proof. Consider the integral (19):

Vi(—a) = /o V(z,—a)Yy(z)dz = /0 U(x)Yy(z)de = 1y,

According to the (10), we have

Yy = /w )Y (x dﬂf—m |2/ () [V (2) + q(2)Yi(z)) do =

:_|,U«k:‘2/0 ¢($)Y];’($)dl'+ ‘Mk|2/0 Qﬁ(l‘)q(x)yk(l-)dx

Integrating the last equation twice, from conditions (2) — (4), we find

k:mw/w “d“wW/w (z)dz.

Considering the asymptotic expression of yy in this equation, we obtain

|9e] < Wk , M >0. (31)

S 2

As a result of comparable operations,

v = - Wﬁ/w Dl “*uﬁ/w (@)¥i(e)de =

1 4 2
= IO+ S

Therefore,
2 Cl 4
21 < 25 1v) (32)

where C,C; are positive fixed numbers. Substituting inequality (32) for (31) yields

inequality (29), in accordance with the conditions of the lemma where v (z) € C[0, 1].

Therefore, based on the theory of Fourier series, the series Y -, W,Efl)\ is convergent and
inequality (30) holds true.

O

Under the conditions of Lemma 2, the series (28) is upper bounded by the numerical

series
x

1«
A5y Il (33)
k=1
Then, due to the convergence of the series (33), by Weierstrass criteria the series (25) and
its derivatives are absolutely and uniformly convergent in A, and A_ regions, respectively.
Therefore, the sum of the series (25) is V(z, &) € w, so the equation (1) is satisfied.
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Theorem 2. The solution to the boundary value problem (1) — (4) exists and is unique
and is defined by the series (13).

If do(p) = 0 for a number o and a number k = p = ki, ko, ...,k (0 < kg < ko <
. <k < ko, ki, (i = 1,m) and m being a fixed natural number), then the necessary and
sufficient condition for the boundary value problem (1) — (4) to be solvable is to satisfy
the equality

1
W = / (@) Vi(@)de =0, & =k, ko, oo o, (34)
0
In this case the solution V(z, &) is defined by the following series:

k1—1 km—1 [e%s)

V=Y 4+ D>+ > | OZx)+ > AV, (x,8). (35)

k=km—14+1  k=km+1

In the last term the number p takes the values ki, ko, ..., ky,. The number A, is an arbitrary
constant and the function V,(x,§) is expressed by the formula (24) such that if the upper
limit is less than the lower limit in the sum symbol on the right-hand side of equation
(35), this term is set equal to zero.

Theorem 3. Let q(x) € C[0,1], ¥(z) € C*0,1], V(1) — D (1) + @ (0) = 0 and
YD (0) = 0. Then, for every k = 0, kg, if do(k) # 0, the boundary value problem (1)
— (4) has only one solution, which is determined by the series (13). If do(k) = 0 for
any k = ki, ko, ..., km < ko, then the boundary value problem (1) — (4) has a solution if
and only if condition (34) is satisfied, and this solution is defined by the series (35) and
V(z, &) € CHA)NC(A)NC2(AL).

4. Stability of the Solution

Theorem 4. Suppose that the conditions of Theorem 3 are satisfied and dy(k) # 0, k=
0, kg. Then the inequality

Hv(x7€>HC(Z) <A W”(@Hcm,n

is true for (13) solutions of the boundary value problem (1) — (4), where the constant
A > 0 does not depend on (x).

Proof. Let (x,&) € A be an arbitrary point. In the interval [0, 1], |Zx(z)] < M; > 0. From
the inequalities (26) and (31), according to the Cauchy—Schwarz inequality, we have

0o 0o
V(&) < D Vi@l Ze(@)] < My Y Arklan] <
k=1 ) k—ll
00 1 @ 00 1 2 00 @1 2 .
<My EW’“ <My (D e ST ) < M ll¢" (@)l 01

k=1 k=1 k=1
where M;, j = 1,2,3 are positive constants. -
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PEIIIEHUNE JN®PEPEHIIMAJIBHBIX YPABHEHUI
ITAPABOJIMYECKOTI'O-T'NITEPBOJINMYECKOI'O TUITA
METOA0M CIIEKTPAJIbHOI'O AHAJIN3A

Kapaxan Juncesep', Mamedose Pecudozay’
Xappancknit yansepcurer, r. [Hamnsrypda, Typroma
Urnpipeknit ynusepeutert, T. Urnpip, Typuus

B pabore ucciaeayerca muddepeHmaboe ypaBHeHRE TapadoIo-THIEPOOJITIECKOTO
THUIA C HEJIOKAJHHBIMA TPDAHUYIHBIME U HAYAJbHBIMU ycJoBusiMu. s perieHust 3ajadu
HCIIOJIB3YeTCsl METO/I CIIEKTPAJIBHOIO aHAJIN3a, [TO3BOJIAIOIINN BBIDA3UTh PEIIEHNe B BUJE
Pa3JIOXKEHUsI B Psif] 10 COOCTBEHHBIM (PYHKIIUASIM COOTBETCTBYIOIIEH CIIEKTPAJIbHON 32 1a1H.
CyiecTBOoBaHUE, €IMHCTBEHHOCTh W YCTONYHUBOCTH PEIIEeHUs] CTPOrO YCTAHABJIMBAIOTCS C
[TOMOIIIHIO AHAJIUTUIECCKUX METOJIOB, 9TO 0OECIIeInBaeT KOPPEKTHOCTH 3aadn. Kpome Toro,
B HWCCJIEJIOBAHUN TINATEIHHO PACCMATPUBAECTCS MPODJIEMa MAJIbIX 3HAMEHaTeJell, BOSHUKA-
IOMUX TIPU HPEJICTABICHUN B Psil, ¥ BBIBOJATCS JOCTATOYHBIE YCJIOBUsI, TAPAHTUPYIOIIIE
UX OTJeJIeHWe OT HyJisl. DTU Pe3y/bTaThbl BHOCIT BKJaJ B OoJjiee IMIMPOKYK MaTeMaTHde-
CKYIO Teopuio JuddepeHInalbHbIX yPABHEHII CMEITaHHOI0 THUIIA, IIPEeI0CTAB/IsIsS IEHHY O
nHbOpMAaIHIo 00 UX CTPYKTYPHBIX cBoficTBax. [TosryueHnbie pe3ysibTaThl UMEIOT TPaKTHYIe-
CKOE TIPUMEHEHNE B PA3JNIHBIX 00JacTaX (DU3NKU U TEXHUKHU, B YACTHOCTH IPU MOJIEJIU-
POBAHUU PACIPOCTPAHEHUsI BOJIH, TEILIONPOBOHOCTH W CBI3AHHBIX C HUMHU JUHAMIIECKIX
rporieccoB. [loJjryueHHbBIE TEOPEMBI TAPAHTUPYIOT, UYTO IIPU COOTBETCTBYOMINX IIPEIIIOJI0KE-
HUSIX 110 38JJaHHBIM JAHHBIM 33J1a9a JOIyCKAET €IUHCTBEHHOE M yCTOMYMBOE PEIIeHne, ITO
YCUJIUBAET €€ TEOPETUIECKYIO U MPAKTUIECKYIO 3HAYNMOCTb.
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