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DIFFERENTIAL EQUATIONS OF ELLIPTIC TYPE WITH VARIABLE
OPERATORS AND GENERAL ROBIN BOUNDARY CONDITION
IN UMD SPACES
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In this paper we study an abstract second order differential equation of elliptic type
with variable operator coefficients and general Robin boundary conditions containing an
unbounded linear operator. The study is performed when the second member belongs to a
Sobolev space and uses the celebrated Dore—Venni theorem. Here, we do not assume the
differentiability of the resolvent operators. We give necessary and sufficient conditions on
the data to obtain existence, uniqueness of the classical solution satisfying the maximal
regularity property are obtained under the Labbas—Terreni assumption. Our techniques use
essentially the semigroups theory, fractional powers of linear operators, Dunford’s functional
calculus and interpolation theory. This work is naturally the continuation of the ones studied
by R. Haoua in the UMD spaces and homogenous cases. We also give an example to which
our theory applies.

Keywords: second-order abstract elliptic differential equations; Robin boundary
conditions; analytic semigroup; mazimal regularity; Dunford operational calculus.

1. Introduction and Hypotheses

In a complex Banach space E, we consider the second-order differential equation with
variable operator coefficients

u' () + A(x)u(z) —wu(x) = f(z), x€(0,1), (1)
under the Dirichlet boundary conditions
u(l) = u, (2)
and the abstract Robin boundary conditions
u' (0) — Hu (0) = do. (3)

Here w is a positive real number, do, u; are given elements of E, (A (z)),c(o,) is a family
of closed linear operators whose domains D (A (x)) are dense in F, H is a closed linear
operator in F, and f belongs to L? (0,1; F) where 1 < p < +oo. This article extends
and improves the studies done in [1], where the authors have studied (1) — (3) under the
general Robin homogeneous boundary value conditions, in the framework of UMD spaces,
where we study the existence, the uniqueness, and the maximal regularity of the classical
solution of problem (1) — (3). In particular, we give necessary and sufficient conditions to
obtain a unique classical solution of problem (1) — (3) satisfying maximal regularity. We
consider some fixed wy and we set, for w > wy, = € [0, 1],

A, (x)=A(z) —wl.
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Our aim is to find a classical solution u to (1) — (3), i.e, a function u such that

for a.e x € (0,1), wu(x) € D(A(x)) and
r— A(x)u(z) € LP(0,1; F) (4)
ueW?r(0,1;E),

u satisfies u (0) € D (H) and (1) — (3). Generally, more conditions are needed on f or on
E. Here we will assume that
E is a UMD space. (5)

We recall that a Banach space E is UMD if and only if for some p > 1 (and thus for all p) the
Hilbert transform is continuous from LP(R; F) into itself, see Bourgain [2|, Burkholder [3].
Throughout this work we suppose that the family of closed linear operators (A (x))xe[oﬂ
satisfies

Jwe >0,3C >0:Vz €[0,1], V2> 0, (Ay, () — 2I) " € L(E) and

C

H(Awo (I) - Z])ing(E) < 1—}—2" (6>

This assumption means exactly the ellipticity of our problem in the sense of Krein [4]. It
follows that for x € [0, 1], w > wy the square roots

Qu () = = (= A, (@),

are well defined and generate analytic semigroups (eyQ“(’f))Po not necessarily strongly
continuous in 0 see Balakrishnan [5] for dense domains and Martinez-Sanz [6] for non
dense domains. We will assume, moreover:

3C > 1, 6, €]0,7[: Vs € R, Vz € [0,1], Yw > wp, (A, ())* € L (E) and

|—as @y, < e, (7)

L(E)

AC, a, u > 0: Vo, 7 € [0,1] , V2 > 0, Yw > wy,

Cle—r1]"

[Au (2) (Au (@) = 2D) 7" (Au (2) 7 = Au (1)) [| 1) < Teral (8)

with a +2p — 2 > 0.

This hypothesis is known as the Labbas—Terreni assumption. Operators H and Q. (z)
have to satisfy
3C > 0: Vx € [0, 1], Vw > wy, Y€ € E,

1@ (@) — H)™ = (Qu (0) = H) €]y < Ca el (9)

with a4+ 2 > 2 and the following commutativity conditions
Vz € [0, 1], Yw > wo,

(Qu () (Qu () = H) ™ = (Qu (2) = H) " (Qu (), (10)

and
do € D(Q(0)). (11)
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Remark 1. From (6) we deduce that, there exists 6, € ]0, g[ and ry > 0 such that for
all z belonging to [0, 1], the resolvent of (A, (z)) verifies:

P (Awy (2)) D Hgyry = {2 € C\ {0} : farg 2| < b} U B (0,70),

where B (0,7¢) is the closed ball of radius ry and centered in 0. We denote by I' the
boundary of Ily, ,, oriented from ooe® to coe~.

Equation (1) has been studied by several authors via various approaches. In the
constant case of operators A(x) = A, many authors dealt with partial differential
equations with non-local boundary conditions. We can first refer to the pioneering works
by T. Carleman [7] who in the thirties used singular integral technique to handle an
elliptic equation in which boundary values of unknown function on two different points
are related. This was the starting point of many studies, for example, [8-11]. The next
step was the important paper of Bitsadze and Samarskii [12], in 1969, where the authors
analyzed an elliptic equation with unknown functions on the boundary connecting its
values at some points on the boundary with other points in the interior of the domain.
This problem models some phenomena occurring in plasma physics. Paper [13] gave
rise to many works on non-local boundary value problems using different techniques.
Let us mention a systematic study done by Skubachevskii [12] and Gurevich [14] and
references therein. Yakubov [15] and some others [16, 17| use the operator-differential
equation tools to study some classes of elliptic partial differential equations with non-
local boundary conditions. The Robin condition was treated by M. Cheggag et al [18] in
a commutative framework, when f € LP(0,1;F) with 1 < p < +o00. They considered
that the spectral parameter which appears in the boundary conditions is zero, and gave
interesting results for this problem when E is an UMD space where they proved that
the problem has a unique classical solution u € W??(0,1; E) N L?(0,1; D (A)) such
as u(0) € H if and only if dy, u; are in the interpolation space (D (A),E)%%,p,

(D (A), E) 1, respectively. The same authors, in [19], studied the problem (1) — (3), but

this time, in the absence of the spectral parameter w = 0, in the same commutative frame,
in the same commutative setting and in a Holder space. In other words, they assumed
that f belongs to C?([0,1]; F) with @ € ]0,1[, and under certain assumptions about the
operator A, they studied existence, uniqueness and maximal regularity and then gave some
positive results for this problem. They show that the problem (1) — (3) has a unique strict
solution w € C?([0,1]; E) N C([0,1]; D (A)) such as u (0) € H, satisfying the maximal
regularity property u”, Au € C? ([0,1]; E), if and only if u; € D (A), dy € D (Q) and Qdj,
f(0),—Au; + f (1) are in the interpolation space (D (Q),X), , ., , with Q = —v/—A.
In the variable case of operators A(x), the commutator hypothesis (8) was used for the
first time in Labbas [20] for the same problem but with boundary conditions of Dirichlet
type, in Bouziani et al [21] for transmission conditions and Haoua et al [22] and [1]
for Robin conditions. All these studies were performed in the frame work of hoelderian
spaces. For the bounded interval, a direct method based on Dunford’s operational calculus
has been used in Labbas [20] under some hypotheses on differentiability of resolvent of
operators A, (z). Moreover, the case of differentiability of the resolvent of (A (2)) ¢, Was
used by Da Prato and Grisvard [23], Labbas [20] and Boutaous et al [24] . Also, in these
studies, the boundary conditions considered were of Dirichlet type. However, in Boutaous
et al |24] the authors used the Krein’s approach, under some natural differentiability
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assumptions on the resolvent of the square roots @, () combining those of Yagi [25] and
Acquistapace-Terreni [26].

The organization of the paper is as follows. Section 2, contains some technical lemmas
which will be useful for the study of problem (1) — (3). In Section 3, an heuristic reasoning
is used to obtain a representation of the solution. We obtain an integral equation which
is solved using (8). Section 4 is devoted to the study of the maximal regularity of the
solution; we give necessary and sufficient compatibility conditions to obtain it. In section
5, the existence of the solution is proved using the associated approximating problem.
Finally, in section 6, we provide an example to which our abstract results apply.

2. Technical Lemmas

Lemma 1. There exists C' > 0 such that for each z € I' and r > 0, we have
lz+7|>Clz|,|z+7|>Crlz—7| > C|z|,|]z —r| > Cr,

and ] o
vr>0,Ywelol], [ —2L <™
rlz £z rv
Proof. See |27, Lemma 6.1 and 6.2, p. 564].
O
Lemma 2. Assume that (6) hold. There exists a constant M > 0 and w} > wy such that,
for allw > w* and x € [0,1], operators I + e*?+(*) gre invertible in L (E) and

| eemeen?| <
L(E)

Proof. Let = € [0,1]. Since @, (x) generates a bounded analytic semigroup and 0 €
p(Q, ()), there exist M > 1 and § > 0 such that for any y > 0 and w > 0, we have

vt leie < Me™?

Y

see |28, Theorem 6.13, p. 74] and in the case of non dense domains see |29, Proposition
2.1.1, p. 35 and Proposition 2.3.1, p. 55,56]. We can choose k& € N* such that

K1€_2kn15 < 1 < 1.
2
Then I — 29« is boundedly invertible with
H(I - eQ’“Q““)*lH <t
cey ~ 1—-1/2 ’
so 0 € p (I —e*?+@)) since
I = (I—&%®) (420 4 4 2k-DQu@) (] _ HQu()) ™ =

= (I- e%Qw(x))*l (I 4@ 4 4 2E=DQu@) (] — (2Qu@)
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Moreover,

(7 ey Hw

(1 Rl o) - <

7
L(E)
We obtain the result for I + ¢2@«(®) = J — (—¢??«(®)) if we replace @) ¢2Q«(®) by

—e2kQu(@) _2Qw(®) ip the above proof.
O
Lemma 3. Assume that (6) hold. Then there exist constants C > 0, wi > wy such that

for all w > w} and x € [0, 1], we have

-1 C
Q== e < ey

Proof. Using [4, p. 116, 117| and for all z > 0 and z € [0, 1], we have

(Qu(x)—2D) " = (¢T )+ zf)l _
_ ol [ (FAL@ AT (A fwl+sD
_271'@/11 Z—}-\/X d)\_ T 0 S+22 d

Due to hypothesis (6) and Lemma 1, we obtain

oo s
[(Qu (z) — ZI)ilHL(E) < C/O ( L ds <

1+ |w|+s) (s + 22?)
+oo t2
<C dt <
- /0 (I + |w] +82) (2 +22)  —

C T 1+ |wl too 2 C
< - = _at| < .
Ttwl =2 [Jo 14w+ 0o Ptz V14w + 2]

Lemma 4. Assume that (5) — (10) hold. Then there exist constants C' > 0, wi > wy such
that for all w > wi, and x € [0,1], operator Q. () £ H is boundedly invertible and

[(@u 2) & )y <~

%

Proof. See [19, Proposition 7, p. 987].

For w > wj, we also define the linear operator A, (x) by

{ D (A, (7)) = D(Qu ()
Au (7) = Qu (2) — H + 901 (Q,, (2) + H) , x € [0,1],

which will be the determinant of the system of our problem.
Lemma 5. Assume (5) — (7) and (10). Then for all w > w} and x € [0,1], A, (z) is
closed and boundedly invertible with

Ao (@) = (Qu () = H) T4+ M, (@)] 7 (1 = )

50 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2025, vol. 18, no. 1, pp. 46—64




MATEMATNYECKOE MOJAEJIMPOBAHINE

where
M, (z) =2 (I — 220) 7 Q, (x) 2% (Q () — H) ™"
and
[Au (@) = (Qu(2) = H) ™ + (Qu () — H) " W (x),
with
W(z) € L(E), (Qu(x)—H)'W(x)=W (z)(Qu(x)-H)",
and
+o0
W (@) () ¢ (D (Qu(=)")
k=1
Proof. See |22, Lemma 2.5, p. 4].
(I
Lemma 6. From (6) and (8), we have
3C, « M>O:Vx,7'€ [0,1],Vz > 0,YVw > wy
_ _ _ Cle—1"
0. ) (@ (2) =217 (@ ()" = Qu )7y < T
wzthoz+2u—2 > 0.
Proof. See [1, Lemma 4, p. 22].
([

3. Representation of the Solution

Assume that there exists a solution u of (1) — (3 ) satisfying (4). Setting when A, (z) =
A — wl is a constant operator satisfying the natural ellipticity hypothesis is mentioned
above (we will take Q,, = — (—A,)"?). By using the method based on the variation of
constant and Green’s functions, the solution of problem (1) — (3) is (see [18])

() = @ (A7 + (Qu o H) AZ e ] + 27 (Qu+ H) QL / €% f (s) ds—
_;erw (Qw+H) -1 QWQ / (1— swa( )ds—i—el Z)Quw [( (Qw+H) A—1€2Qw)ul_
—AL % dy] — ; (=0Q (Qu + H) AS e Q! / e f (s
_%e(l—x)Q [ (Qw+H)A 1 QQW} Q;l/ (1- swa( )d8+
0
1
+%Q;1/O e(:c—s)wa(S) d8+%Q;1/x €(S_x)wa(8)dS

Bectauk FOYpI'Y. Cepua <«Maremarudeckoe MOAeJIMPOBAHUE 51
u nporpammupoBanues> (Becruuk FOYpI'Y MMII). 2025. T. 18, Ne 1. C. 46-64




Rabah Haoua

Set

~5e07I0) 1= (Qu () + H) (Ao (@) 0] Q21 () [ 179900 5) +

1 [T 1 Lt
45Qula) [ e () dst SQu (@) [ e (5) .
0 x
We can write that:

Lgu@) (7, f) = L@ (z,u" (z) + A, (2) u (7)),

After two integrations by parts and some formal calculus, as in R. Haoua and A. Medeghri
[22], we obtain the following abstract equation:

w+ Paw =G (z, f),

where
Here, for all z € [0,1], w > wf

(o) () = 8 ()0 [ Qu 0P 9 (Qu )77 = Qu ) ™) w () -

_%erw(a:)Kw (z) eQu () / Q. (@3 e(1=5)Qu (@) (Qw (s)*Q - Q. (@*2) w(s)ds —

; (1— ac)Qw(x)K Qw(ﬂ?) / Q 3 SQw (Qw ( ) —2 _ Qw (ZE)_2) w (S) ds +

+; (=000, (1) 20412 / Qu (2)" 179290 (Q, (5)7 = Qu (1)) w (5) ds —

La-maue / Qu (2)? 1799 (Q,, (5)2 — Q, () %) w (s) ds +
! / Qu () €990 (Q,, () = Qu (1)) w (5) ds

7

/ Q. (z)% 5= (2) (Qu (s)” -0, (x)_2)w(s)ds:ZIi (x),

where
Ky (x) = (Qu () + H) [Ay ()] ",
and

GQuie) (do, ur, £) (2) = = Ay (2) Lau () (2, ) = Au (2) %@ [(A, (2)) " dot
+K,, (z) e9@uy] — A, (z) e0=9@ [(T — K, (z) 2@ @) uy — (A, (z))~! e@=@dy] .
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Proposition 1. Assume (5) - (10). Then there exists w > 0 such that
for allw > wj :

<

l\')lH

HPWHE(LP(O,I;E))

Proof. See |1, Proposition 2, p. 25].
O

which leads us to invert [ + P, in the space

N | —

Therefore for all w > Y, || Pull z(1r0.1.8)) <
LP(0,1; F).
We can write for all w > w} and z € [0, 1]

u(z) = Ay (2)7 (I + R.) ™ Gou) (do,us, f) (). (12)

4. Regularity of the Solution

Throughout this section we assume that w > wj.

4.1. Regularity of the Second Member G . (do, u1, f)

For convenience we present the results below in the form of lemmas.

Lemma 7. Assume (5) - (7) and f € LP(0,1; E) with 1 < p < oo. Then for all w > wy
1) t— Q. (z )f (t=9)Qu() f (s)ds € L? (0, 1; E);
2) t— Q, () ftl elsQu@) £ (s)ds € LP (0,1; E);
3) t—Q, (x )f et3)Qu@) £ (s)ds € LP (0,1; E);

4) f Q=) f (s)ds € (D (Q (v)),E)1 and f (1=)Qu(@) f (5) ds € (D (Q (v)), E)1

P ;,p'

Proof. See [30].

We have the following lemmas as in [31]

Lemma 8. Fizx € [0,1], p € ]1,00] and w > wi. Then

1) t— A, (2) Q@ e LP (0,1, E) if and only if ¢ € (D (A (2)),E)1 ;
2) t — Q, (v) e @@y c LP(0,1; E) if and only if o € (D (A(z)),E)1 1

In the following, it is important to note that

(D(A(2),E)1 CD(Q(x) C(D(A(x)),E)

2p P 2_p

This is due to the reiteration property
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= (E.D(A@)), 1 = (EDQE),_1 =

= (E,D(Q (x)))Q_ip = {w €L QYe(E,D(Q (x)))l_ip} -
i) (D(A@).B)1 1, = (EDA@) 1 = (EDQ@)))1 1 =
= (E,DQ@),_1,=(P@Q@), By

Then we obtain the following regularity results of G, (z) (do, u1, f) -
Proposition 2. Assume (5) - (11) and f € LP(0,1; E) with 1 < p < co. Then for all
w > wi, x+— G, @) (do,ur, f) (x) € LP(0,1; E) if and only if
(Qu (0) — H) " do € (D (A(0)), E) 1
up € (D(A(1)), E) 1
2p’p
Proof. Let z € [0, 1] and w > w}. We have
G (do,ur, f) () = Ay () €0 (A, () do + Ay () 1790y
1

1 1 !
—2Qu (1) FEOK, (2) / A f () ds + 5 Qu () 09 / (1=9Qu(@) £ (5 ds—

0 0

1
——@A)A (I (5) s = 5Qu (2) [ I (5) ds 4 R (oo ) =
= A, () e"@ (A, (3:))71 do + A, (x) e1=)Qu@)qy) 4 ZJi () + R (z,do,uq, ),
i=1
where

R (z,do,uy, f) = A, () e"Qu @) ¢ (2) Qo @y — A, (z) e(1-0)Qu(@) ¢ (2) e2@w @)y
1 1
—A, () e(1=7)Qu(2) (A, (x))*l eQw @), + QQw (z) ") | (z) / 6(2_5)Qw($)f () ds+
0

1

1
5 () IO, () / (15100 @) £ (5 ds—

0

1
——Qw( ) e1=0Qu() ¢ () / (=100 (@) £ (5) ds

0

For any & € E, k € N, we have e?=®)¢ € D <<Q (f)k))v S0

Aw (.CIZ') e.Qw(ﬂC)eQw(x)g — e'Qw(a))Aw (33') €Qw($)€’

and s — A, (z)e?9@eRe@¢ is bounded and thus in L (0,1; E). To conclude it
is enough to remark that A, ()R( do,u1, f) can be written as a sum of terms
PA, (z) e@®@eQe@ A (), PA, (z)e17)Q@eQu@ A (1), where P € L (E), £ € E.

For J3, we consider the following problem:

QW (l‘) _Qw (l‘)@[)(l’) :f(l'), T € (071)7 (13)
¥ (0) = 0.
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Let v be the strict solution of problem (13). Fix x € [0, 1], and set
v(s) = e HL@y (5), se0,a].
Then for each s € [0, x|, we have

v (s) = —@w< ) ele=)Qu(a >w<s>+e<x—s>Qw<x> [Qu ()Y (s) + f(s)] =
Qu () €)@ [Q,, ()" = Qu ()] Qu (8) ¥ () + =) f (5).

Integrating over |0, x[ and applying Q,, () to both sides, we get:

)
Qu (1) (2) = .
/ Qu (1) % Q, (1) = Qu (5] Qu () ¥ () ds +Qu () / IS () ds =

0

/ Qu ()% 2% [Q, (2) = Qu (5)7] Qu (8) ¥ (s) ds+J5 (2);

see |26, p. 56, 57|. Due to [32, Theorem 5.11, p. 59|, we have x —— @, (z)? (z) in
LP(0,1; F) and due to Lemma 7 and Lemma 8, we have

T — /Ox Qw (Z‘)2 z—5)Qu(x [Qw( ) 1 Qw (S)_l} Qw (S)w (S) ds,
in L?(0,1; E). Then x — J;3 (z) is in L? (0, 1; E).

The same technique is used for the other terms. Therefore, due to Lemma 5, we can
write:

Ay () €790 (A, ()" do + A (2) €090y = A, (2) ) (Q, (1) — H) ™ dot
A () 0 (Qu () = H)T W (a) do 4 A, (@) 09y

where W (z) € L (E) and R (W (z)) ¢ (2, D (Qw (x)k>. So

A < ) 2@ (Q,, (x) — H) " do + A, (z) e 70Qw@)y, —

(x)we ( w(@)—H)” Ydo — A, (x )e‘”Qw(m) (Qu (0)—H)’1d0+
A, () eme ( w(0) = H) " dy — A, (0) "9 (Q,, (0) — H) ™' do+
A, (x )e(l 2)Qu(®) gy Aw (1) e(1=2)Qu()y 4

+A, ( ) wa(O) (Qw (O) H) d0+A ( ) (1_$)Qw(1)u1:

= [ VAL (2) (Ay (1) — 2) 7 [(Qu () — H) ™' = (Qu (0) — H) '] dodz—
o [T A @) (e @) - 7 = A0 (A (0) = )] (@ (0) — B dod-
_ L V700 [, ) (A (@) = 2)7 = AL (1) (AL (1) = 2) 7 wadt
+A4,(0) @@ (Q, (0) — H) " dy + A, (1) ety
Using the algebraic identity:

Ay () (Ay () = 2) 7" = A, (0) (A, (0) — 2) ' =
= 2A, (2) (Au (2) = 2) 7 [A (@)™ = A, (0) ] A4, (0) (A (0) = 2)7,
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we obtain:
Ay (2) €790 (Qy (x) — H) " do + Ay, () e Q) =
o [T A @) (A ) = )7 [(Qu o)~ ) = (Qu(0) — H) ] dde—
—QLM, 2 ) (A (@) = 97 [ )™ = 4,07 x

Ay (0) (Ay (0) = 2)™ (Qu (0) — H) ™ dydz — QL eV A (@) (A, (2) — 2) 7
1

T
X [Auw (@) = Ay ()7 A, (1) (Au (1) — 2) 71 uldz:- A, (0@ (Q,, (0) — H) " do+
+A, (1) e(1=2)Qu (1 1=a

1(x) 4+ ag (x) + ag (z) + ag (z) + a5 () .

For a; (x), we have

o 0l € [ e ] <
T

Foo 20d
<c [ emam I ) < Cam 2 o]
0

Then
1 1

1 - 1 o
(/Hm@m&MJpsc(/a&ﬁﬂmM)pwﬂE<+m,
0 0

r—ay(x) € LP(0,1; ).

SO

For the second term, we have:

H@uMEscﬁvwﬂﬁﬁﬁ%W%mx&«n—w%@um—ﬂrwwﬂdms
SCﬁbwc“mﬂjJWA®Vh@%%)W@A@—H)%mewﬂdMé

Ve AL (0) = 2) 7 Qu (0) (Qu (0) — H) ™' Qu (0) dodz| d 2] <
e—co|z\1/2xx_a P )
<c/ 1421102 0)dol <

|2|*
20do

+o0 L Jr N B
<o [T P10 0)dl e £ O Qu(0) il

(%)

1 1
1 P 1 P
(AH@@M@MJ sc(la@”ﬂmm)u@xm%M<+u%

we conclude that:

SC’/|Z\€C°Z
r

8

Then

r—ag(x) € LP(0,1; E).

The same technique is used for the other terms. Finally

z— Go, @) (do,ur, f) (x) € LP (0,1; E),
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if and only if

z— A, (0)e*@0) (Q, (0) — H) "dy € L?(0,1; E),
x s A, (1) e Wy, € [P (0,1; F),

which is equivalent, by Lemma 8, to

(Qu(0) = H) "do € (D (A(0)),E)

)
%7p
up € (D(A(1)), E)1 .
2p’p
O
4.2. Regularity of P,
Proposition 3. Assume (5) - (10). Then for all w > w, we have
P,eLl (Lp 0,1, E),LP(0,1; E)N B (O, L; D gy (g, +oo))) ,
where € 10, + 24 — 2]
Proof. See |1, Proposition 4, p. 28|.
O

Summarizing the above results we obtain the following theorem.
Theorem 1. Assume (5) — (11). Let f € LP(0,1; E), 1 < p < +00 and
(Qu (0) = H)™"dy € D(A(0) , B) 1
e D(A().E)) !

2p P

Then for all w > wy, the equation (12 ) has a unique solution w () = A, () u (+) verifying:
1) Ay (u() € LP(0,1; E);
2) W' € W2 (0,1; E).

Proof. We have

W ()= FO)+Aul) = F )+ [Gouw (dour, ) (1) = (Pow) ()] =
= [f () + Gau (do,ur, f) ()] = (Pow) (-).-
5. The Approximating Problem

In the second section we supposed the existence of a strict solution of problem (1) — (3)
and by using a heuristic reasoning we constructed a representation of the solution. Now
to prove the existence of the solution, we consider the following approximating problem

ul(z) + Ap(2)up(x) — wu, () = f(z), x€]0,1],

ul, (0) — Hu,(0) = dy, (14)
u,(0) = uy,
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where (A4, (2)) ¢,y is the family of Yosida approximations of (A (z)),¢( ) defined by
A, (2) = —nA(z) (A(z) —nl)™", neN.

We use the same arguments as in [20-22], to show that u,, — .

6. A Concrete General Example

Consider the complex Banach space £ = LP (), 1 < p < 400 with its usual norm,
then E is an UMD Banach space. More precisely, €2 is a regular open of R"™, so we set

E(xava) = Z a’ij (%y) DZ-D] + sz (%?J)Dz +C(x7y)7 (%y) € [07 1] X ﬁ?
ij=1 i=1
P(l‘,S,D):Z”}/Z‘(ZE,S)DZ‘—F(S(ZE,S), (ZE,S)G[O,].]X&Q,
i=1
where the coefficients a;j, b;, ¢, 7; and § are functions defined on [0,1] x Q verify the

following hypotheses B
v >0:V(x,y) €[0,1] x Q, V¢ € R”

Re aij (z,y)&& > v €], (15)
1,j=1
V(z,y) € 10,1] x Q
Iy, (x,y) =0 and Y 7, (z,y) v (y) # 0, (16)
i=1

where v (y) is the unit outward normal vector to 99 at y,

a;(z,.), b (z,.), c(z,.) € C(Q) uniformly z € [0,1], (a7)
Vi (2,.), 6; (z,.) € C* (Q) uniformly x € [0, 1],
and there exist o, K > 0 such that for all x € [0,1], y € Q and s € 99
( n
AZEI |aij (z1,y) — aij (z2,y)| +
+Z ‘bl (xlay) - bl (33'2, y)’ + ’C (33'1, y) —C (33'2, y)’ < K ‘.1171 - x2’0 )
n’iil (18)
> v (@1, 8) = i (w2, 8)| + |6 (21, 8) — 6 (22, 8)| < K |21 — 23],
i=1
> [Diyi (1, 8)[ + D2 | Did (22, 5)] < K.
| k=1 k=1
Now consider the following concrete problem
([ J%u _
@ (x,y) —f-E(l',y,D)U(ZE,y) —wu(x,y) = f(I,y), (x,y) € [07 1] X Q7
I'(x,s,D)ulo2 =0, (x,s) €[0,1] x 02, (19)
2 (0,) — au (0,5) = 0
— —au =
ax 7y 7y b
L u(1,y)=0.
58 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming

& Computer Software (Bulletin SUSU MMCS), 2025, vol. 18, no. 1, pp. 46—64



MATEMATNYECKOE MOJAEJIMPOBAHINE

We define the family of closed linear operators A (z) for all x € [0, 1] by
{D(A()):{UGWQP(Q):F(x,s,D)u:O, s € 00}, (20)
(A(z)u) (y) = (E (2,9, D)) u(y).

Let us define the linear operator H by H = al, where o > 0.

Then problem (19) is a particular case of problem (1). To apply the results obtained
in the previous section we must show that the family {A (z)},c,, and operator H verify
hypotheses (5) — (10).

Proposition 4. Under hypotheses (15) — (17), the family {A (x)}

| defined by (20)
verifies hypotheses (6) with w = w (p), k = C (p), and § = @o.

z€[0,1

Proof. This is an immediate consequence of the following result.
O
Theorem 2. Under hypotheses (15) — (17), there exists py € |7/2,7[ and w = w (p) > 0
such that for every
VZEZ:{ZG(Czarg\z—w\ < o},

W

and x € [0, 1], the problem

E(z,,D)u—zu=feLPl(Q)),
[ (z,.,D)u=geWl/rr(9Q),

has a unique solution u (z,.) € WP (Q). Moreover there exists C' (p) > 0 such that

1/2
|z = wlllull ooy + 12 = @ [ Dull oy + 1D?ull oy <

. 1/2
<CO oy + it o, (171 Nl + 1Dl

where w = g on 0.

Proof. For the demonstration of this result see in [33,34].

(|
Proposition 5. We assume p > n and the hypotheses (15) — (18). Then the family
{A(2)},cp01) defined by (20) verifies hypotheses (8) where w = w (p), (a1, ) = (0,1),
(g, p2) = (1+1/p,1/2) and (as, p3) = (1/p, 1).

Proof. Let 0 < 1 < x5 < 1, we have

A@)—w) AE)—2D" [A@)—w]) " —(A@)—w) "] =
= A@)—w) A @)—2)" [A@)—wl" (Aw@)—w)—I] (A @) —wl =
= A@)—2)" AE)—wl) (A @) —wl) —(A @) —w) A @) —2)" A @) —wl " =
= (A (xy) —z])_l (A (o) — 21 + zI —wl) (A (x9) —w])_l—
—(A @)=zl + zI—wl) (A (xy) —,z])_1 (A (x9) —w])_l =
= A@)—2)" AE)—2) A)—w) —A@)—2z) A@)—2)" Aw)—wl) " =
= [A@)—2D" A@)—2D)—1] (A @) —wl
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Let f € LP(Q) and set v = (A (z2) —wI) ™" f, u = (A(zy) — 2I) 7" (A (x3) — 2zI)v. We
must estimate [|u — ||, ). We have

{E(ZEQ,y,D)U—WU:f, QGQ,

[ (29,8, D)v =0, s € 092, (21)

and
E(l‘l,y,D)U—ZU:E(l‘g,y,D)U—ZU, QGQ,
[ (z1,8,D)u =0, s € 010,

therefore u — v is solution of the following problem

{ E (z1,y,D) (u—v) = 2 (u—v) = E (23,9, D)v — E (21,9, D)v, yeQ,
[ (z1,8,D)(u—v)=[T(x2,8,D) =T (x1,8,D)]v=g s € OfL.

Now, let ®,, ., (.) € D () satisfy

CI)$17$2 (y) =1if d (y, aQ) < ($2 - $1) /27

CI)$17$2 (y) =0 if d (y, aQ) > ($2 - fl) )
d

0Py, y)'g C k=12 ..m
Y T2 — Ty

Applying estimate (2) in the previous Proposition by taking w = ®,, ,, (.) g (which verifies
w = g on Jf) by construction), we then obtain

2] lu = vll oy < C (p) [IE (2,9, D) = E (21,9, D)] 0| o) +

(22)
+ ‘2‘1/2 Hq);m,m () gHLP(Q) + ||D¢)x1,w2 () g”LP(Q)]'

From our assumptions, we have

IE (22,5, D) = E (21,9, D) 0]l () < K (22 = 21)" [0l 2y < K (22 = 20) 1 fl ooy -

The estimate of the two last terms in (22) needs some technical details in the two cases:

p > n and p < n. The following lemma treats the first case.
O

Lemma 9. Assume that p > n. Set
Qpyy ={y€Q: d(y,00) < 29 — a1},

then we have

| 0@l < 0= a) ol

JI"2 Tl

S [ D0l €l el

JI"2 1

Proof. Since p > n, we have W? (Q) C L*> () from which we deduce

Z / Dot () dy < (2 ) (meas 06) 3 (max | Dio (9)])” < C (22 = 21) [0l -

a:g x] =1
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In the same manner we get the first estimate. Going back to (22), it follows
1/2 1/2
(212 @002 () 9l oy < 2172 IIIT (22,9, D) = T (1,9, D)) 0]l gy <

< |2 [Z/ i (2, 9) = % (1, 9)I” [Div ()" dy +

“72 1

1/p
+ o, \6<x2,y>—6<x1,y>|p|v<y>|pdy] <
1/p

< KJel (22— ) (Z/ D)y + [ \v(y)\pdy) <

1 1+1 1/2 141
< K |2 (2 —21)" /pllvllwz,p(m < K |2 (g = 20) 7| fll o

Q)

and
HD(I)M,:EQ ( )gHLP(Q) HD(I)M x2 () [F (.Tg,y, D) - F (xlaya D)] /UHLP(Q) S

SHD{ o () 32 (7 (22,9) — WI’WDZ‘“} !

=1 (@)
1D @ () (6 (@2:9) = 6 (@1,8)) 2] ooy <

< %HDk s ()0 (@2,5) = 3 21,90) Dl +

+,§:1 1Dk Pa oo () [(8 (22, y) — 6 (21,9)) U]l 1oy +

f;l [P0z () Di [(vi (22,y) — 71 (21, 9)) Div]ll 1oy +

+]§i1 ||¢)x1,x2 () Dk: [(6 (x% y) -0 (‘rh y)) U]HLP(Q) +

f;l chétl,m () [(% (372: y) - i (3717 y)) DkDiU]HLP(Q) +

4 ,§ @210 () (5 (22,9) = 8 (21,)) Dio] | ey -

Using our hypotheses and the previous Lemma, we deduce

1Dy a5 () gHLP(Q) <

1/p
- J
<K To— T D (y)|P d +/ v (y)|P d <
(.55 @ )(Z . powbins [ wfd
< K (o= 20 [olhwsney < K (2 =20 Pollaniey < K (22 =) [l

Therefore
K

[ = ol o) <

o 1/2 1+1 1
] [(902 — 1)+ |2 (@ — 2)"TP (20 — 1) /p] 11l o

Then assumption (8) is satisfied with w = w(p) and (a1, 1) = (0,1) , (a9, pe) =
(1+1/n71/2)7 (043,,11,3) = (1/%,1) if p <mn, (alvul) = (0 )7 (0527M2) = (1+2T 1/ )
(as,ps) = (r,1) if p=mn and r < 1/2n.

O
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JANOOEPEHIIMAJIBHBIE YPABHEHU A SJIJINIITUYECKOI'O TUITA
C IIEPEMEHHBIMI OIIEPATOPAMMU 1 OBIIIVUM I'PAHNYHBIM
YCJIOBUEM POBMHA B ITPOCTPAHCTBAX UMD

Pabax Xaya, Yuusepcurer Mocraranem, r. Mocraranem, AJnKup

B nanHOit pabore nzydaercst abcTpakTHOe qud hepeHnmaIbHOe ypaBHEHNEe BTOPOTO IO~
PSIIKA SJIIUIITHYECKOrO TUIIA, C ITEPEMEHHBIMU OIIePaTOPHBIMU KOI(MPUIIUEHTAMI U OOIIIM
IPAHUYHBIM yCJIOBHEM PoOMHA, KOTOPOE COIEpPKUT HEOrPAHUYEHHbIH JIMHEHHBIN OItepaTop.
UcciremoBanne MpoBOAUTCS B CIydae, KOTIa BTOPOii WieH HpuHaeskuT npocrpaactey Co-
OoJieBa 1 UCIOIB3yeT 3HaMeHuTyio Teopemy Jlope — Bennu. B mcciaemoBanun me mpemmo-
naraercsa audHepeHnnpyeMocTh Pe30JbBEHTHRIX OmepaTopoB. IIpuBoasaTCcs HEOOXOIUMbBIE
U JIOCTATOYHBIE YCJIOBUsI HA JAHHBIE, JIJIT TOTO YTOOBI MOJIyYUThH CYIIECTBOBAHUE, €I1H-
CTBEHHOCTh KJIACCUIECKOI'O PEIeHNs, KOTOPOe YIOBJIETBOPSET CBOMCTBY MaKCUMAaJIbHON pe-
TYJIAPHOCTH, TOJIYIeHHOTO B mpeanosoxkennn Jlabbaca — Teppenn. Mcmoab3yembre METOIBI
110 CYIIIECTBY OCHOBAHBI HA TEOPHUH MOJTYTPYII, IPOOHBIX CTEIEHIX JTUHEHHBIX OIEPATOPOB,
dyukmonagbaoM ucaucaenun Jlamdopaa n reopun naTepnoasaiun. Pabora saBisieTcs mpo-
Jo/KeHneM pabot, usydeHHbix P. Xaya B nmpocrpanctBax UMD u OfHOPOIHBIX Cirydasix.
[TpuBenen npumep, K KOTOPOMY IIPUMEHUMA, JAHHAS TEOPUS.

Karouesvie caosa: abcmparmuoie aasunmuneckue ouddeperuuansvhoie YpasHerus 6mo-
D020 MOPAJKA; 2PAHUNHBIE YCA08UA PobuHG; GHAAUMUNECKAA NOAY2DYNNG; MAKCUMANOHAS
PE2YAAPHOCTD.

Pabax Xaya, jabopaTtopus 9UCTON U MPUKJIATHON MaTeMaTuku, yuupepcurer MocTta-

ranem (r. Mocraranem, Aykup), rabah.haoua@univ-mosta.dz.
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