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Nonlinear conjugate gradient algorithm is highly effective for optimization due to its
low storage requirements and simple structure properties. Expanding on the Barzilai and
Borwein conjugate gradient method, we propose a three-term conjugate gradient method
with a restart procedure for unconstrained optimization. This method ensures global
convergence under standard assumptions and employs a standard Wolfe line search. To
evaluate its performance, we carry out comprehensive numerical experiments for large scales
to address challenges in unconstrained optimization and image restoration. The numerical
results prove that the new method is more effective compared to other classical methods.
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Introduction

The conjugate gradient (CG) method is one of the most prominent approaches
for solving unconstrained optimization problems with high-dimensional variables. The
unconstrained optimization problem of the form is the following:

min f(x), (1)

TER™
where f : R"™ — R is continuously differentiable and its gradient is indicated by g(z). The
CG method for solving (1) is an iterative method that generates iteration numbers and
search directions (dy), which are given by

Tht1 :l'k—i-Oékdk, k= 1,2,3,..., (2)
— if k=0

dy={ % L (3)
—gk + Brdi—1 itk > 1,

where xy; is the new iteration number, z; is the current iteration number, «y is the step
size, g is the gradient, and [ is the CG coefficient that differentiates the classes of CG
methods.

The positive scalar oy, is commonly referred to as the step length, typically determined
by inexact line search technique. One such technique is the Wolfe line search conditions,
which includes two criteria:

1. The sufficient decrease condition:

2. The curvature condition:

|9 di| < —0195 dy. (5)
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These conditions ensure that the step length «ay, yields a sufficient reduction in the objective
function value while maintaining a favorable directional derivative. Here, the parameters
0 and oy satisfy 0 < § < o7 < 1. Different choices for the conjugate parameter result in
various conjugate gradient methods. These include the following classical CG-Methods,
each defined by its respective conjugate parameter formula:

1. Hestenes—Stiefel (HS) method (1952) [1]:

9k, 9k — Gik—
fsz <k k k 1) ‘ (6)
<dk717 gk — gk71>

2. Fletcher-Reeves (FR) method (1964) [2]:

pr_ A9k 9r)
b <9k—1,gkz—1>' (7>

3. Polak-Ribiere-Polyak (PRP) method (1969) [3]:

PRP __ <gk,9k - gk71>
p = : (8)
<gkz—17 gk—l)

4. Conjugate-Descent (CD) method(1987) [4]:

cD _ (9K, 9r)
P gk dier) ©)

5. Liu-Storey (LS) method (1991) [5]:

LS <gk7 9k — gk71>
F (9/#17 qu) ( )

6. Dai-Yuan parameter (DY) method (1999) [6]:

DY <9k7 9k:>
— . 11
k (dr |, gk — gr_1) (11)

The most important characteristics of CG methods are their global convergence and
numerical performances. The methods mentioned above form two classes. The FR, CD,
and DY methods have excellent global convergence, but not so good practical behavior.
On the contrary, the HS, PRP, and LS methods have superior numerical performances,
but they may not always converge.

As a notable extension to classical CG methods,the three-term CG methods have been
the subject of considerable research focus. In Nazareth [7], the first three-term nonlinear
CG-method is presented. In this paper we modified the direction which was proposed by
Zhang [8], which is a modified version of the Polak-Ribiere-Polyak (PR) method, denoted
as ZPR and defined by the following iteration formula:

G 1

PR k YR—

dy = —gr + By, “dr—1 — 5 Yk—1- (12)
| gr—1ll
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1. Derivation of a New Three-Term CG Method

In this section, we introduce a new three-term conjugate gradient (CG) method
designed for solving optimization problems. This method utilizes a customized vector
denoted as y;, which adjusts based on the Barzilai and Borwein step size a5 [9].

We define y;_, as a modified version of y,_; given by:

. 1
Y1 = BB (]- - e)ykz—l‘ (13)
g
2
Here, 0 is a parameter within the range (0,1) and af? = HTW;H
Vp—1Yk—1
The expression for y; _; can be further simplified as:
T
* kalyk—l
Y1 = (1 = 0) 7 ——5 Y—1. (14)
[vk-1l]

Now, we substitute y,_; with y;_; in the third term of the equation (12): we obtain a new
search direction termed as new:

drev — T 3 Td _ UTi _ ] 15
9r_19k-1 9r_19k-1 ||Ukz—1H

When the condition g{'d;_; = 0, the search direction outlined in equation (15) converges
to the Polak—Ribiere—Polyak (PRP) method.

1.1. The New-CG Algorithm

Step 1: Choose an initial point zy in R", a tolerance € > 0, set dp = —gg, and initialize
k= 0.

Step 2: If the norm of the gradient ||gx|| is less than or equal to €, terminate; Otherwise,
go on to the next step.

Step 3: Estimate oy using equations (4) and(5).

Step 4: Compute the next iteration point xj using equation (2), and update the gradient
gx and function value fj.

Step 5: Determine the search direction dj using equation (15).

Step 6: Check if ||gx|| is less than or equal to €; if true, stop; otherwise, go to 2.

Step 7: If the termination condition is not met and certain convergence criteria are
satisfied (such as (k= n )or (|gf gr_1] > 0,2||gx/|*) , return to Step 3; otherwise, Increment
k by 1 and go back to Step 3 for the next iteration.

2. Convergence Analysis of the New CG Method

This section presents the convergence analysis of the new CG method. The descent
condition (downhill condition) is given by the following equation:

grd, <0, Vk>0, (16)
and sufficient condition
T 2
Grde < —cllgell”,  VE =0, (17)
where ¢ > 0.
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2.1. Global Convergence of the New Method

To investigate the convergence of the new method, it is necessary to describe the key
assumptions and lemma that supply the Zoutendijk condition.

Hypotheses (H):

1. The starting point & is where the set O = {z : 2 € R", and ¢(z) < ¢(Z)} is closed
and bounded, ¥ (x) is continuously differentiable in some neighbourhood N of O, and its
gradient Vi (x) is Lipschitz continuous, which implies that there exists a constant ¢ > 0
such that:

IV (z) = V@)l < Cllz—gll, Vi,geX. (18)
2. Uniform convexity characterises the objective function v (z), and there exists a
constant v > 0 such that:

(Vo(z) = V(@) (@ —9) <qllz —gI°, vz, gen. (19)

There is a constant > 0 such that | V¢ (z)]| < n, VZ € X, under these hypotheses (H)
on ¢ (x). Furthermore, we provide a helpful lemma that Zoutendijk basically established
[10].

Lemma 1. Given an initial value of &, Hypotheses (H) must be met. Consider every
method in (2), assume that (15) defines a collection of conjugate directions, and that the
step size ay, meets the typical Wolfe requirements of line search (3) and (4). In case

1
_— = OO7 20
2 TP 20)

then, the following
Tim inf([g,])) = 0 (21)

holds.

Theorem 1. Let the sequences of x, and dj, be generated by algorithm 1.1, then the new
direction satisfies the descent condition:

dige < 0. (22)
Proof. By mathematical induction, it will be proved, at k =1, d; = —g; , we have

digi < —|g:]* < 0.

Now assume that di _,gr_1 < —||gk_1]|* is true for all & > 0, and prove it is true at k.
To prove this, let us start with the update for the conjugate gradient direction in (15):

T T T
i Yr—1 I dr—1 Vp_1Yr—1
dp = —gr + —F——dp_1 — (1 =0 Yr—1- 23
AL L R | P (23)
We multiply (23) by g}
T T T
T T 9L Yk—1 9. di—1 Vp_1Yk—1 T
9ed = =959+ 57— gpdp—1 — (L — 0 Ik Yk—1- 24
A vt L Sy L (24)
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If the search direction is obtained through exact line search, then equation (24) satisfies
the descent direction and implies that if gf dr_, = 0, then

gidi = —gj gx < 0. (25)

On the other hand, if dj, is not obtained through exact line search, then consider the
two terms of Polak-Ribiere (PR) update and achieve descent direction. Thus, we have:

9L Yk
— i gk + Tkig/?qu <0.

9i—19k—1

Now, we need to prove the third term of (24)

T T
o) dr—1 Vg_1Yr—1 T

(1 - 9) (g yk71>
91?_1%—1 HUICAHQ g

is positive, using hypothesis 2.1to get
(98 yk-1) > gp di—1.
So, we have

(!J;;;F?chfl)2 U}?—1yk71
91?—1%71 |[vr—1]|?

T T
gkdkfl Vip_1Yk—1 1
QY1 < (1—106
o719 oy 2 v < (1 =0)

(1-9)

Since (1 —#) > 0, using the Wolfe conditions (4) and (5) and lipichize condition, we
have v{_,yr_1 > 0 and (g} yx_1)? > 0. Therefore, we can express:

(91?%4)2 01{_1%4
91?-191:71 k-1

Therefore, the new direction (15) satisfies the descent condition.

(1—-10) > 0.

O
Theorem 2. Let the sequences of xp and dy be generated by algorithm 1.1, then the new

direction satisfies the sufficient descent condition:

dige < —cllgell*. (26)

Proof. From the above theorem, we have

T T
G dp—1 Vi_1Ye—1 7
9 Yk—1- (27)
911 gn-1 [ve—1][> 7

grdp < —(1-9)

Tdp_1 Vi Yk—1
9) 9 %%k—1 Yk—1

ol 1on1 Ton1IP g,{yk,l > 0, so we suppose that

From the same theorem, (1 —

— (-6 grd vl yka

T
9r Yk—1
91 gn— o] Pl |gwl 27575

so (27) becomes
gk di < —clgull*. (28)
-
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Theorem 3. Suppose that assumption 2.1 holds. If xy, is obtained by algorithm 1.1, then

we have
lim (inf ||gx||) = 0. (29)
k—oo

Proof. Taking the norm of both sides of(15), we have

Tq vi. Yk—1
Mdkfl_(l_g) R e | Sy (30)
= Gi19k—1 |vr-1l]

Apply preliminary Cauchy—Schwarz and triangle inequities to simplify (30), and obtain

1zl = 1] = gr +

T T
gty p di—1 Vi 1Yk—1
T [l || + (1 — 0) A

[l < || = gkl + |7 5
gk,lgk_1 9r_19k-1 ||Ukz—1H

Mlye—all. (31)

Since gfdy_1 < d}_yr_1, from Lipschitz condition |lyr_i|]] < Ll|jvg_1]] and using
|VY(2)|| < n, we have

new Ll gr |l lve—1 | 1wl k-1 [[ve—1 [ lyn—1]]
Hdkz || < n+ W + (1 - 0)( Hgkz—1||2HUkz—1H2 )|Hyk—1H7 (32>

/ LHngHkalH LQHQkHHdkfl"Hkalu
new|| 1 0 33

from (4) and using the form dkl — Gk, We get |l gr_1]]* < Mdg 1Yk—1. Thus, rewrite (33)
as
ok L2\ gilll| -1 [l o1

ooy L v
Jagee) < o Sl g g ) 6

dT 1 k 1 dgflykfl
from the (5),
. dacLm||vg_1]] daLn||dg—1 ||| vg—1 ]
Il < m+ = = (1= ) ) (35)
dj_1Yr—1 dk 1Yk-1

Since di_,yp_1 > 01%7 using this form in (35) we get

oo L*n||di—1 ||| vg—1 ]|
+ (1 — 9)(—=
== oo ?

S L||vg—1]|

01““!«—1“2

1=l < m +

)- (36)

Given
fogall = 1741 — 2l
Suppose
M = max{||xps1 — zx|| : Tpy1, 26 € R"}
s0, (36) becomes

da2InM dai LPnM?
Ay < A —0)(—— L), 37
I < o+ 2o 4 (1 ) (R (37)
Suppose,
daiLn dai L2n
= 1—6)(——-
8 77+ O'1M +( )( o1 )7 (38)
=l < -
So, 7y is a positive real number. Therefore, we can write
1
Z new* (|2 — Z PR
= Hd 1>~ =
By using lemma, we get limy_,, inf ||gx|| = 0, which completes the proof.
o
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3. Numerical Results and Discussion

We present here a series of numerical results concerning the new method applied to
a collection of 45 functions with 450 test problems. A solver is run on a collection of p
problems to obtain benchmark results. Important details, including the number of function
evaluations and processing time, are noted. In order to assess and contrast the performance
of the set of solvers S on a test set P, we present the idea of a performance profile in this
section. We take for granted that we have n, problems and n solvers. While the concepts
below can be applied to other performance metrics as well, our focus is on the computation
time. We define each issue P and solver S as:

T,s = computation time required to solve problem P by solver S.

We utilize the performance ratio to compare solver s’ S performance on problem P with
the best performance of all solvers on this problem.

Tp.s
min{r,;:s € S}

Tps =

It is assumed that for every P, S a parameter ry; > r,, s is selected, and that r, ; = ras only
occurs if solver S is unable to solve problem P. We shall demonstrate that the performance
evaluation is unaffected by the selection of ;. While a solver S performance on a particular
problem could be interesting, we would like to get an overall evaluation of the solver’s work.
If we clarify
Py(1) = iSize{p eP:r,s <t}
Ny

If a performance ratio r, , is within a factor 7 € R of the best achievable ratio, then the
probability for solver s € Sis Py(7).The performance ratio’s (accumulative) distribution
function is denoted by the function ps (Dolan and MorI'k, 2002) [11]. The code for this
new method is written in FORTRANO95 using the specified initial points. The results
are presented in the following figures by applying the performance profiles of Dolan and
More [11] to demonstrate the algorithm’s efficiency. Compared to the standard HS and
PRP parameter in the conjugate gradient method, the new method (NEW) demonstrates
greater efficiency in terms of the number of iterations (NI) and function evaluations (NF)
as shown in the Figs. 1 and 2 respectively.

Performance profile based on NOI: 1.332000e-01 Performance profile based on NOF: 1.332000e-01

Hs Hs
0.2 ——FPR 0.2 PR
—=— NEW == NEW

Fig. 1. Performance profile based on NI Fig. 2. Performance profile based on NF
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4. Application to Image Restoration

Image restoration is an important area of study in the realm of image processing that
has lately drawn interest from research groups because of its numerous applications in the
security and health sectors [12]. Improving photos from a deteriorated version — usually,
the noisy and blurry images — is the process of image restoration. It can be expressed
mathematically [13].

The effectiveness of the suggested method on image restoration issues will be examined
in this work. Using the suggested technique, the images distorted by salt-and-pepper
impulse noise would be restored: LENA (512x512) and Cameraman (512x512), hill, boat,
and brain. The restored image quality would be evaluated using peak signal-to-noise ratio
(PSNR), which is defined as:

M x N x 2552 )
Zi,j(XZ?:j - Xz‘*,j)2 ’

where X/, and X, represent the restored image’s and the original image’s pixel values,
M and N are the sizes of the image [14]. Table displays the image restoration’s PSNR.
We discovered that the restored images produced by the suggested approach (NEW) are
often higher than PRP, HS, and HZ. Fig. 3 compares the performance of the proposed
method with the other three methods, which added 90% salt and pepper noise. Table
displays comprehensive PSNR data for the restored image.

(39)

Fig. 3. First column: The noisy images with 90% salt-and-pepper, the original
images (second column), third Column to last column: restored image by New
method, HZ method,PRP method, HS method
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Table
Numerical results of image restoration testing

Image Nosie ratio % NEW PRP HS HZ
30% 36,993069174649428  37,023036504655934  37,000657744696220  36,927257219117280
lena 50% 34,429411734127044  33,723213923376619  34,446902831435317  34,360799123081279
90% 26,243859265298106  24,906231815588576  26,195136906369395  24,906231815588576
30% 29,585782468936202  29,580297892936272  29,594164353587512  29,528719848633195
cameraman 50% 27,362640230151527  27,309747426689043  27,333619578052328  27,331584830182894
90% 21,075419144261282  19,750459209731062  21,201483095676736  21,155936069934484
30% 34,981229685095933  34,734473193084980  34,987065656749252  34,934676067228956
hill 50% 32,672393877510522  32,512447598495207  32,625474214864845  32,583040601942855
90% 25,552443454750176  25,493125525430919  25,527291168484126  25,543367444124048
30% 33,700053527454955  33,167401704397996  33,701642551491410  33,640779636884005
boat 50% 31,173833464752608  30,835962294902973  31,130494754286389  31,108197221963074
90% 24,087329105510875  20,378422929846529  24,078558710540445  24,033576509731493
30% 29,737683127069353  29,742894746913990  29,723767518709366  29,685004675274456
brain 50% 28,196987629232577  27,607722481930960  28,138532701527808  28,118419873053220
90% 22,257949700183932  22,272347757874435  22,274004684205387  22,231223100184515

Conclusion

The proposed three-term conjugate gradient method with new direction, based
on the Barzilai and Borwein technique, guarantees global convergence under standard
assumptions, addressing challenges in both optimization and image restoration domains.
The new formula’s effectiveness was assessed by contrasting its numerical results with those
of other approaches that shared the same features. Based on NI and NF, a comparison
is made, and the findings indicate that the suggested method outperformed the others
in terms of all parameters. We utilized the method to recover image restoration by pulse
noise in order to further illustrate the effectiveness of the proposed formula. The results
confirmed the power and efficiency of our method, as the new approach was able to restore
images with greater precision.
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MOINPUKAIINA METOAOJA TPEXCTOPOHHEI'O COIIPA2KEHHOTI'O
I'PAIVEHTA IJIsI PEIIIEHU S 3AJJAY BESOTPAHNYEHHOI
OIITUMU3AIINN 1 BOCCTAHOBJIEHN A NSOBPA2KEHINN

IOnyc Haodorem Xyda', Ilayxam Taxep Mapourn', Myzruadur Acmaa
A60yapaxman'
YVuusepcurer axoka, r. Jaxok, Upak

HesmnuelHbIit aaropuT™M COMPSIKEHHOTO T'pajiienTa 0deHb 3(hdEKTUBEH JIjIsd ONTHMU-
3aruu  OJjiarojjapsi CBOMM HU3KUM TPeOOBAHMSAM K I[AMSTH U IPOCTBIM CTPYKTYpP-
HBIM CBoiicTBaM. Paciupsis MeTos CONpsizKeHHbIX I'paueHToB bapsuiast u Bopseitna, Mbl
[peJjIaraéM MeTOJI, CONPSIYKEHHBIX T'PAJMEHTOB C TPEMsI WIEHAMU U IIPOIEIYpOil mepesa-
IyCKa JJist 6€3yCJIOBHON ONTUMH3AIANA. DTOT METO/] 00ECIEINBAELT VIODATBHYIO CXOIUMOCTD
[IPU CTAHIAPTHBIX IPEJIIIOJIOKEHUIX U HCIOJIb3yeT CTAHIAPTHBIN JTUHEHHBIH Touck Byibda.
Yr00BI OIEHUTH €r0 MPOU3BOAUTEBHOCTD, MbI IIPOBO/IMM KOMILJIEKCHBIE YHMCJIEHHBIE JKCIIe-
PUMEHTBI JJIsi OOJIBIINX MACIITaboOB, YTOOBI PENIUTh MPOLJIEMbl 6€3YCJIOBHOI ONITUMUBAIINN
U BOCCTAHOBJIEHUsI n300paxKkeHuil. YucjieHHbIe Pe3y/IbTaThl JTOKA3BIBAIOT, YTO HOBBIA METO.,
6ostee 3(pHEKTUBEH IO CPABHEHUIO C APYTUMHU KJIACCHICCKUME METOIAMH.

Karouesvie caosa: 6e3ycro8nas onmumMu3auus; AUHeTHbl NOUCK; MEMO0 CONPANCEN-
HOEL 2PadUEHTNOG C MPEMA YAEHAMU; 2A000NDHAA CTOOUMOCTL; BOCCTNAHOBAEHUE U300PA-

otcenut.
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