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Machine learning is widely applied across diverse domains, with research teams
continually developing new recognition models that compete on open datasets. In some
tasks, accuracy surpasses 99%, and the differences between top-performing models are often
marginal, measured in hundredths of a percent. These minimal differences, combined with
the varying size of the benchmark datasets, raise questions about the reliability of model
evaluation and ranking. This paper introduces a method for determining the necessary
dataset size to ensure robust hypothesis testing for model performance. It also examines
the statistical significance of accuracy rankings in recent studies on MNIST, CIFAR-10, and
CIFAR-100 datasets.
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Introduction

Recognition models play a crucial role in the modern world, being applied across
various domains such as document recognition [1], forensics 2], mobile number recognition
[3], and text recognition in road scenes [4]. Therefore, it is imperative to reliably assess
their capabilities. The ability of a model to perform a given task is a critical measure of
its quality. In the scientific community, benchmarks — comprising datasets and associated
quality metrics —are commonly used to evaluate model performance. However, benchmarks
often represent tasks beyond merely predicting corresponding dataset objects. We interpret
the benchmark’s task more broadly as making predictions for objects “similar” to those in
the comprising datasets. Therefore, benchmark metrics estimate model performance but
do not fully reflect its predictive abilities in broader contexts.

Commonly used benchmarks in computer vision include MNIST [5], CIFAR-10 [6],
and CIFAR-100 [6], with accuracy as the standard metric for evaluating overall prediction
accuracy across all classes.

MNIST consists of 60 000 training and 10 000 testing 28x28 grayscale images of
handwritten digits across 10 classes. It has become a standard for evaluating machine
learning models, including neural networks. Top models achieve accuracy exceeding 99%,
with recent studies reporting results from 99,75% to 99,87% [7-12].

CIFAR-10 and CIFAR-100 are more complex datasets, each with 50 000 training
and 10 000 testing images. CIFAR-10 consists of 32x32 color images across 10 classes
(e.g., airplanes, cars, animals), while CIFAR-100 has images labeled into 100 classes (and
20 superclasses). These datasets are used to evaluate classification algorithms in more
challenging scenarios. The highest accuracy on CIFAR-10 reaches 99,612% [13], and only
96,08% on CIFAR-100 [14].
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In the field of machine learning, datasets such as MNIST, CIFAR-10, and CIFAR-
100 have historically served as important benchmarks for evaluating the performance of
various models. These datasets have played a pivotal role in the development of recognition
algorithms by providing researchers with a common platform to test and compare their
algorithms. However, as models have achieved near-perfect accuracy on these benchmarks,
their use for comparing models has become less effective. Marginal improvements in
accuracy on these datasets no longer correspond to significant practical advancements,
raising questions about the relevance of continued competition on them. For some models,
the difference in accuracy on the aforementioned datasets is on the order of 0,1%. In this
work, we demonstrate that such advantages in accuracy between one model and another
are often not statistically significant when considering the broader task at hand for datasets
such as MNIST, CIFAR-10, and CIFAR-100.

This paper explores the relationship between test set accuracy and task performance.
We present a method to determine the necessary dataset size for valid hypothesis testing
of whether a model belongs to a high-accuracy class and provide a formula for assessing
the statistical significance of accuracy differences between models. This analysis is applied
to models validated on MNIST, CIFAR-10, and CIFAR-100. Scripts for calculating the
main formulas in this work are available at https://github.com/AlexanderChuiko/Impact-
of-Dataset-Size.

1. Mathematical Model

Thus, let us consider a feature space X, whose points represent recognizable objects,
and a response space Y. We assume that a probability measure 7= and a loss function
L:Y xY — {0,1} are defined on X x Y:

L:(r,y):{g’ :;Z’ (1)

The model m is a mapping from X to Y. We define the loss of the model on a pair
(z,y) € X x Y as the expression L(m(x),y), and we assume that the function L(m(z),y)
is measurable. Let us introduce the accuracy of the model m as the inverse of the expected
value of its loss:

An =1—E;[L(m(x),y) | (z,y) € X xY]. (2)

Denoting ¢,,(x,y) =1 — L(m(x),y), we obtain
Am = Exlgm(z,y) | (z,y) € X x Y. (3)

The empirical accuracy A | which is used to evaluate the performance of the model m, is
computed based on the test sample O; C X x Y

A=) 9uli)/ 104, (4)
JEO:

where |O,| denotes the size of the test sample. Note that the empirical accuracy A!
coincides with the quality metric Accuracy. We will further assume that the random
variables {g,,} are mutually independent for all considered models.
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2. Assessment of Required Dataset Size and Statistical
Significance of Ranking

This section addresses two key questions regarding model accuracy in practical
applications. The first question concerns classifying a model as either high-quality or
low-quality, based on whether the distribution of g,, for model m falls within one of
two classes: A,, > po or A,, < p1 < po. The second question examines the “advantage”
between two models m; and ma, specifically whether the difference A,,; — A,,2 is positive.
We begin with the first question.

2.1. Model Classification: High-Quality vs Low-Quality

High-quality models satisfy A,, > po, while low-quality models meet A,, < p1 <
po, where py and p; are fixed thresholds. Models with A,, € (p1,po) are considered
unclassifiable, but this is not crucial for our analysis.

The goal is to classify any model with A,, ¢ (p1,po) while maintaining a Type I error
rate o and a Type II error rate 5. When testing the hypothesis Hy : A,, > po against the
alternative Hy : A,, < p1 < po, the most difficult cases occur when A,, = py and A,,, = p1,
as the distributions of g,, are closest in these scenarios.

We first consider testing the simple hypothesis Hy : A, = po against the simple
alternative H; : A,, = p;. Let us construct a likelihood ratio criterion. The quantity Af,
represents the sample mean of indicators of the model’s correct predictions on the test
sample. Therefore, under the assumption that the null hypothesis Hj is true, the quantity
|Oy| - AL, follows a binomial distribution Bin(|Oy|,po). Similarly, under the assumption
that the alternative hypothesis H; is true, this quantity follows a binomial distribution
Bin(]Oy|, p1). Assuming that the sample size |Oy] is sufficiently large, we approximate the
distributions Bin(|O¢|,po) and Bin(|O;|,p1) by a normal distribution:

(04| AL, ~ N(|Ot]po, |Otlpo(1 — po)), under Hy; (5)
|O| AL, ~ N(|O¢|p1, |O¢lpi(1 —p1)), under H.

The likelihood ratio for A!  after simplification will take the form:

ALy = Jd=p) (_(A:n —p) (A —p1)2> | )

1— po(1—po) p1(1—p1)

It can be shown that this is an increasing function of A! for 0 < A/, < 1 and p; < po.
Then, a criterion of the form A(A?)) > )\ is equivalent to a criterion of the form A, > Ay,

\/\O_tl(A’in—po) N./\/(O,l)

given the corresponding values of A\g and \;. Given that — under the
po(l—po
true hypothesis Hy, for the Type I error rate «, we obtain the likelihood ratio criterion:
Hy: AL > po+ zar/Po(1 — po)/|O4], (7)

H, : otherwise,

where z, is the quantile of level « of the standard normal distribution.
We compute the required size of the test sample |O;| such that the Type II error is no
greater than :

Puy (AL > po+ za7/po(1 = po)/10 ) < B, ®)
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Transforming the expression, we obtain:

i (VIO ) VIO (30~ + /ol = m)TON)

> <
VP1(1—p1) p1(1—p1) ’
vV 04| (A, — p1)

p1(1—p1)

VIO (o = 1+ zav/po(1 = po) 10

pi(1 —pl)

Given that

~ N (0, 1) under the true hypothesis H;, we obtain:

2 2’1,/3, (10)

from which we can express:

0| > (Zavpo(l — o) + 25/ (1 —p1>>2, (11)

Po— D1

By the Neyman—Pearson lemma, the obtained criterion is the most powerful. Therefore, the
size of the test sample, which is obtained by rounding up the right-hand side of expression
11, is the minimal size required to construct a criterion with Type I and Type II errors at
levels v and (3, respectively.

It is evident that for A,, > p, for any fixed threshold ¢, it holds that P, (A, > ¢) >
P, (Al > ¢). Therefore, when applying the criterion 7 to test the hypothesis Hy : A,,, = po
against the alternative H; : A,, < p1 < po, the Type I and Type II errors will also be at
levels o and (3, respectively.

2.2. Hypothesis of Advantage

Consider two models m; and my with accuracies A! | and A! ,, where A! | > Al . on
the test set. We investigate the relationship between A,,; and A,,» using the statistic:

At At
St (AL AL ) =/2|0 ml___~m2 , 12
(o mz) = V2 RV TR R e -

which follows an asymptotic normal distribution as |O;] — oo and A,,; = Ae. To test
the null hypothesis Hy : A,,1 < A,2 against the alternative Hy : A,,; > A2, we define
the P-value pg; as:

s (Ays Alz) = 1= Fv (St (A1, Anz) ) » (13)

where F)r is the cumulative distribution function of the standard normal distribution.
Rejecting Hy at pgy < « controls the Type I error rate at . By inverting (13) with respect

to A! 5, we derive the range of A! , values for which pg; < « at a fixed Af ;:

200, At | — 22 At |+ 22 — /D

a‘*ml

2|Ot‘ +Z§ ’

At e o, (14)

D = (2{0)| A, — 2248+ 22)° — AL (210 + 22) (2104 A, — 222 4+ 2240 ). (15)

m a’*ml
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Thus, if A? , falls within the range (14), we can claim that model m1 has a statistically
significant accuracy advantage over model m2 at the Type I error rate «.

We can also determine the required test set size |Oy| such that the difference Af,; > A? ,
indicates a statistically significant advantage:

2 (A + A0 (L= Ay +1-Aly)

04 > =
' 2(AL, — AL )

(16)

This formula specifies the necessary test set size to assert that model m; has a statistically
significant advantage over model ms based on their observed accuracy values, AL, > Al ..

3. Computational Experiments

We calculate the discriminability boundary using formula (14) for models evaluated on
the MNIST [7-12, 15], CIFAR-10 [10,13,16-19], and CIFAR-100 [10, 14,20-23| datasets.
Tables 1-3 list the models, their accuracy metrics, and the highest accuracy values for
which each model demonstrates a statistically significant advantage.

Table 1
Upper bound of the range (14) for models on MNIST
Model Accuracy Upper bound of the range (14) at
Type I error rate of 0,05
[11] 0,9987 0,99772
12] 0,9984 0,99733
7] 0,9982 0,99707
9] 0,9979 0,99669
8] 0,9977 0,99644
[10] 0,9975 0,99620
[15] 0,0859 0,08302
Table 2
Upper bound of the range (14) for models on CIFAR-10
Model Accuracy Upper bound of the range (14) at
Type I error rate of 0,05
[13] 0,99612 0,99453
[16] 0,995 0,99322
I17] 0,005 0,99322
[10] 0,9949 0,99310
18] 0,9905 0,08811
[19] 0,984 0,98095

If a model’s accuracy exceeds the value in the third column, the claim that the model
in the second column has greater accuracy than the first is not statistically significant.
From this comparison, we make the following conclusions:

1. On the MNIST dataset, the top model does not have a statistically significant advantage
over its three closest competitors. The second-best model [12] has a significant advantage
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only over the last model listed [15|. Thus, leading models on MNIST do not exhibit
statistical superiority over one another. It is plausible that the 2016 model [9] with an
accuracy of 0,9979, may outperform the 2021 model [11] with an accuracy of 0,9987, on a
larger dataset.

2. A similar trend is observed on the CIFAR-10 dataset, where the top model [13| shows
no statistically significant advantage over models [16], [17], and [10].

3. On CIFAR-100, model rankings are more robust. The top-1 model has a statistically
significant advantage over the top-2 model, the top-2 over the top-3, and the top-3 over
the top-5. Therefore, the current test set size for CIFAR-100 still supports statistically
significant ranking by accuracy.

Table 3
Upper bound of the range (14) for models on CIFAR-100
Model Accuracy Upper bound of the range (14) at
Type I error rate of 0,05
[14] 0,9608 0,95616
[20] 0,9510 0,94586
[10] 0,9495 0,94428
21] 0,042 0,03644
22] 0,0409 0,03520
[23] 0,9395 0,93383

To improve the statistical significance of rankings on MNIST, larger test sets are
required. For example, to distinguish a model with 0,9987 accuracy from the one with
0.9979 accuracy (such as models [9] and [11]), at least 14 349 test instances are necessary
(using formula (16) with o« = 0,05). For models like [11] and [12], an even larger test
set — 87 053 instances — is required.

Conclusion

This study examines the statistical significance of evaluating and ranking
recognition models, particularly as top models approach near-perfect accuracy on classical
benchmarks, making it difficult to distinguish between them.

We formalized accuracy as the expected value of the correct response indicator, treating
it as the sample mean. This approach enables conclusions to be drawn about model
performance. Using the likelihood ratio test, we derived a formula to determine the required
test set size to reliably classify a model as high-quality. This formula is useful in practical
applications for designing datasets to ensure that models meet or exceed critical accuracy
thresholds. For comparing two models, we introduced a method, using formula (14), to
identify when one model has a statistically significant accuracy advantage over another.

Our computational experiments applied formula (14) to models evaluated on MNIST,
CIFAR-10, and CIFAR-100 datasets. The results show that, for MNIST and CIFAR-
10, the top models do not have statistically significant advantages over their nearest
competitors. However, for CIFAR-100, the highest-ranked models demonstrate clear
statistically significant advantages. From these observations, we can conclude that
conducting competitions on classical datasets is irrelevant when the achieved accuracy
on them is already sufficiently high. However, MNIST, CIFAR-10, and CIFAR-100 retain
their significance for individual research.
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OINEHKA PEJIEBAHTHOCTU TECTUPOBAHNA
" PAHXKUPOBAHUY MOJAEJIEN B 3ABUCUMOCTU
OT OB'bEMA JTATACETA

A.B. Yytixo', B.B. Apaasapos*?, C.A. Ycuaun'?

L®enepanbublii nceaenosarensekuit nentp <Mudopmaruka u ynpasitenues PAH,
r. MockBa, Poccniickast ®enepariust

2000 «Cwmapt Dumkunc Cepsucs, . Mocksa, Poccuiickaa @enepanus

MeTOﬂbI MaIllMHHOI'O O6y‘{€HI/I$I BCE qallle UCIOJIb3YIOTCA B PAa3/JIMIHBIX 001aCTAX JKIA3-

HeaedTeJIbHOCTHU. E)I{GFO,ILHO MHO2KECTBO HAYYHBIX KOJIJIEKTHBOB pa3pa6aTI>IBa10T HOBBIE
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PACIIO3HAIOIIIE MOJIEJIN, COPEBHYSICH IIPH 9TOM B IIOKA3aTeJIsIX Ka9eCTBa HA OTKPBITBHIX Jia-
TaceraX. B HEKOTODBIX 3aJadax MOKA3aTEJHd TOYHOCTH JaBHO npesbicumn 99%, mpu sToM
Jiydinve B TabJIuIe PaHKUPOBAHUST MOJIEIN 329aCTYI0 OTIMIAIOTCS MEXK/y CODOM Ha COThIe
Jou IpotieHToB. [IpuHuMasi B pacder o0beMbl JATaCeTOB, PE3OHHBIM CTAHOBUTCS BOIIPOC
O PEJIEBAHTHOCTH OIIEHKU KAYeCTBa W JOCTOBEPHOCTH PAHXKUPOBAHUS PA3JIMIHBIX PACIIO-
3HAIMUX Mojesiell. B pabore omnmcan MeToJr pacdera HEOOXOIMMOr0 0O0beMa JaTaceTa JJIst
BO3MOXKHOCTHU KOPPEKTHOI MPOBEPKHU TUIIOTE3BI O TOYHOCTH MOJEJIHU, a8 TaKXKe MPeJICTABICH
aHaJIM3 CTATUCTUYIECKON 3HAYNMOCTH PAHKUPOBAHUS M0 TOYHOCTH HEKOTOPBIX COBPEMEH-
upix pabor ma garacerax MNIST, CIFAR-10 u CIFAR-100.

Karouesvie caosa: 0bsem damacema; pacno3nasanue 06seKmos; cmamucmuieckas 3Ha-

YUMOCTMD, OUEHKA KAYECMEQ MO(?@./MJ,,' OUEHKA KAHYeECTEa Pacno3nasaru.

JIureparypa

1.

10.

11.

12.

Apiazapos, B.JI. Bompocbl pacrnosHaBanust u BepUQUKALUA TEKCTOBBIX JOKYMEHTOB
/ B.JI. Apnazapos, O.A. Cinasun // VndopmanuoHHble TEXHOJIOTUH ¥ BBIYUCIUTEIbHBIE CH-
crembl. — 2023. — Ne 3. — C. 55-61.

Kunina, I.A. Screen Recapture Detection Based on Color-Texture Analysis of Document
Boundary Regions / I.LA. Kunina, A.V. Sher, D.P. Nikolaev // Computer Optics. — 2023. —
V. 47, Ne 4. — P. 650-657.

laitep, A.B. KoHTeKCTHO-HE3aBUCHMBIIT METOJ, OBICTPOIl IeTEKIINI TEKCTa, /I PACIIO3HABAHNUS
Homepos Tesiecporos / A.B. Taiiep // Tpymabl uncturyTa cucremuoro anaausa PAH. — 2024. —
T. 74, No 3. — C. 39-47.

Maxkcumos, T.P. CHmxkeHne ommOKH W BBIYUCIUTEIBHON HAIDY3KM B PACIIO3HABAHWH TEK-
cra gopoxuoit criensl / T.P. Makcumos, K.B. Bynaros // Nndopmanuonusie TexHoaornu u
BBIYUCIUTENbHBIE cucTeMbl. — 2024. — Ne 3. — C. 1-15.

Deng Li. The MNIST Database of Handwritten Digit Images for Machine Learning Research
[Best of the Web| / Li Deng // IEEE Signal Processing Magazine. — 2012. — V. 29, Ne 6. —
P. 141-142.

Krizhevsky, A. Learning Multiple Layers of Features From Tiny Images / A. Krizhevsky,
G. Hinton. — Toronto: University of Toronto, 2009.

Kowsari, K. RMDL: Random Multimodel Deep Learning for Classification / K. Kowsari,
M. Heidarysafa, D.E. Brown, K.J. Meimandi, L.E. Barnes // Proceedings of the 2nd
International Conference on Information System and Data Mining. — New York, 2018. —
P. 19-28.

Ciregan, D. Multi-Column Deep Neural Networks for Image Classification / D. Ciregan,
U. Meier, J. Schmidhuber // IEEE Conference on Computer Vision and Pattern
Recognition. — Providence, 2012. — P. 3642-3649.

Romanuke, V. Training Data Expansion and Boosting of Convolutional Neural Networks for
Reducing the MNIST Dataset Error Rate / V. Romanuke // Research Bulletin of the National
Technical University of Ukraine “Kyiv Politechnic Institute”. — 2016. — Ne 6. — P. 29-34.

Gesmundo, A. An Evolutionary Approach to Dynamic Introduction of Tasks in Large-Scale
Multitask Learning Systems / A. Gesmundo, J. Dean // arXiv: Machine Learning. — 2022. —
URL: https://arxiv.org/abs/2205.12755.

Byerly, A. No Routing Needed Between Capsules / A. Byerly, T. Kalganova, I. Dear
// Neurocomputing. — 2021. — V. 463. — P. 545-553.

Hirata, D. Ensemble Learning in CNN Augmented with Fully Connected Subnetworks
/ D. Hirata, N. Takahashi // IEICE Transactions on Information and Systems. — 2023. —
V. 106, Ne. 7. — P. 1258-1261.

110

Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2025, vol. 18, no. 2, pp. 102-111



I[TPOI'PAMMIPOBAHNE

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Bruno, A. Efficient Adaptive Ensembling for Image Classification / A. Bruno, D. Moroni,
M. Martinelli // arXiv: Computer Vision and Pattern Recognition. — 2022. -
URL: https://arxiv.org/abs/2206.07394

Foret, P. Sharpness-Aware Minimization for Efficiently Improving Generalization / P. Foret,
A. Kleiner, H. Mobahi, B. Neyshabur // arXiv: Machine Learning. — 2020. —
URL: https://arxiv.org/abs/2010.01412

Gehring, J. Convolutional Sequence to Sequence Learning / J. Gehring, M. Auli, D. Grangier,
D. Yarats, Y.N. Dauphin // Proceedings of the 34th International Conference on Machine
Learning. — 2017. — P. 1243-1252.

Dosovitskiy, A. An Image is Worth 16x16 Words: Transformers for Image Recognition at
Scale / A. Dosovitskiy // arXiv: Computer Vision and Pattern Recognition. — 2020. —
URL: https://arxiv.org/abs/2010.11929

Oquab, M. Dinov2: Learning Robust Visual Features without Supervision / M. Oquab,
T. Darcet, T. Moutakanni, Vo Huy, et al. // arXiv: Computer Vision and Pattern
Recognition. — 2023. — URL: https://arxiv.org/abs/2304.07193

Kabir, H.M. Reduction of Class Activation Uncertainty with Background Information
/ H.M. Kabir // arXiv: Computer Vision and Pattern Recognition. - 2023. -
URL: https://arxiv.org/abs/2305.03238

Zhichao Lu. Neural Architecture Transfer / Lu Zhichao, G. Sreekumar, E. Goodman,
W. Banzhaf, K. Deb, V.N. Boddeti // IEEE Transactions on Pattern Analysis and Machine
Intelligence. — 2021. — V. 43, Ne 9. — P. 2971-2989.

Ridni, T. Ml-Decoder: Scalable and Versatile Classification Head / T. Ridnik, G. Sharir,
A. Ben-Cohen, E. Ben-Baruch, A. Noy // Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision. — 2023. — P. 32-41.

Ridnik, T. Imagenet-21k Pretraining for the Masses / T. Ridnik, E. Ben-Baruch,
A. Noy, L. Zelnik-Manor // arXiv: Computer Vision and Pattern Recognition. — 2021. —
URL: https://arxiv.org/abs/2104.10972

Haiping Wu. CVT: Introducing Convolutions to Vision Transformers / Wu Haiping, Bin Xiao,
N. Codella, Liu Mengchen, Dai Xiyang, Lu Yuan, Lei Zhang // Proceedings of the IEEE/CVF
International Conference on Computer Vision. — 2021. — P. 22-31.

Ching-Hsun Tseng. Perturbed Gradients Updating Within Unit Space for Deep Learning
/ Tseng Ching-Hsun, Liu-Hsueh Cheng, Shin-Jye Lee, Xiaojun Zeng // IEEE International
Joint Conference on Neural Networks. — 2022. — P. 1-8.

Anekcannp BacunpeBna Yyiiko, acmmpaHT, deepasabHBIl  HCCIeI0BATEIbCKIIA

nenrp <Wudopmarnka u ynpasienne> PAH (r. Mocksa, Poccniickas ®eneparus),
a.chuyko@smartengines.com.

Bragumup BuktopoBud Apiia3apoB, JOKTOP TEeXHUYECKUX HAyK, I'€HEpaJIbHBIN Ji1-

pekrop, OO0 «Cmapr Duukunc Cepsucs (r. Mocksa, Poccuiickast @enepanust); 3aBe-
JIyIouii oraesoM, denepaabHbIi HccaeaoBaTebeKuil menTp <MudopMmarnka n ynpasiie-
ure> PAH (r. Mocksa, Poccuiickas @enepanus), vva@smartengines.com.

Cepreit AjekcanapoBUY YCUINH, KAHIUIAT TEXHUIECKUX HAYK, UCIOJHUTETbHBIN J1-

pekrop, OO0 «Cmapt duxunc Cepsucs (r. Mocksa, Poccuiickas @eneparyst ); crapriimii
Hay4HBIN COTPYIHUK, (bejiepalibHbI ncciieoBaTeIbekuil eHTp <Mudopmaruka un yipas-
nenne> PAH (r. Mocksa, Poccniickass @egepanust), usilin@smartengines.com.

Hocmynunaa 6 pedarxuuro 24 dexabpa 202/ e.

Bectauk FOYpI'Y. Cepua <«Maremarudeckoe MOAeJIMPOBAHUE 111
u nporpammupoBanue> (Bectuuk FOYpI'Y MMII). 2025. T. 18, Ne 2. C. 102-111



