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The idea of mean derivatives of stochastic processes was suggested by E. Nelson in
60-th years of XX century. Unlike ordinary derivatives, the mean derivatives are well-posed
for a very broad class of stochastic processes and equations with mean derivatives naturally
arise in many mathematical models of physics (in particular, E. Nelson introduced the
mean derivatives for the needs of Stochastic Mechanics, a version of quantum mechanics).
Inclusions with mean derivatives is a natural generalization of those equations in the case
of feedback control or in motion in complicated media. The paper is devoted to a brief
introduction into the theory of equations and inclusions with mean derivatives and to
investigation of a special type of such inclusions called inclusions of geometric Brownian
motion type. The existence of optimal solutions maximizing a certain cost criterion, is
proved.
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Introduction
The notion of mean derivatives (forward, backward, symmetric and antisymmetric) was

introduced by Edward Nelson in 60-th in his construction of the so-called Stochastic Mechanics, a
version of Quantum Mechanics ([1, 2, 3]). After that a lot of other applications of equations with
mean derivatives to various problems of mathematical were fond (see, e.g., [4]). Inclusions with
mean derivatives is a natural generalization of those equations in the case of feedback control or
of motion in complicated media.

It should be pointed out that the classical Nelson’s mean derivatives give information about
the drift of a stochastic process. In [5], as a slight modification of some Nelson’s constructions, a
new sort of mean derivative called quadratic (it is responsible for the diffusion term of a process)
was introduced so that, strictly speaking, it became possible to find processes having given mean
derivatives.

The paper contains a brief introduction to the general theory of stochastic differential
equations and inclusion given in terms of mean derivatives, and new applications. We investigate
a special class of inclusions with mean derivatives called inclusions of geometric Brownian motion
type, introduced previously in [6]. We show that under some natural condition, among the
solutions of such an inclusion there is an optimal one maximizing (or minimizing) a certain
cost criterion. For definiteness we deal with the problem of maximizing the criterion since the
minimizing problem is quite analogous.

Some remarks on notations. In this paper we deal with equations and inclusions in the linear
space Rn, for which we always use coordinate presentation of vectors and linear operators. Vectors
in Rn are considered as columns. If X is such a vector, the transposed row vector is denoted by
X∗. Linear operators from Rn to Rn are represented as n × n matrices, the symbol ∗ means
transposition of a matrix (pass to the matrix of conjugate operator). The space of n×n matrices
is denoted by L(Rn,Rn).

By S(n) we denote the linear space of symmetric n × n matrices that is a subspace in
L(Rn,Rn). The symbol S+(n) denotes the set of positive definite symmetric n × n matrices
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that is a convex open set in S(n). Its closure, i.e., the set of positive semi-definite symmetric
n× n matrices, is denoted by S̄+(n).

Everywhere below for a set B in Rn or in L(Rn,Rn) we use the norm introduced by usual
formula ‖B‖ = sup

y∈B
‖y‖.

Everywhere we use Einstein’s summation convention with respect to a shared upper and
lower index.

For the sake of simplicity we consider equations, their solutions and other objects on a finite
time interval t ∈ [0, T ].

We refer the reader to [7, 4] for details about set-valued mappings; to [4, 8, 9] for details about
Stochastic differential equations and weak convergence of probability measures; to [10] for details
about weak convergence in Hilbert spaces and to [11] for details about conditional expectation.

The research is supported in part by RFBR Grants 12-01-00183 and 13-01-00041.

1. Introduction into equations and inclusions with
mean derivatives
Consider a stochastic process ξ(t) in Rn, t ∈ [0, T ], given on a certain probability space

(Ω,F , P) and such that ξ(t) is an l1-random element for all t. It is known that such a process
determines three families of σ-subalgebras of the σ-algebra F :

(i) ¿the pastÀ Pξ
t generated by preimages of Borel sets from Rn under all mappings ξ(s) :

Ω → Rn for 0 ≤ s ≤ t;
(ii) ¿the futureÀ Fξ

t generated by preimages of Borel sets from Rn under all mappings
ξ(s) : Ω → Rn for t ≤ s ≤ T ;

(iii) ¿the presentÀ (¿nowÀ) N ξ
t generated by preimages of Borel sets from Rn under the

mapping ξ(t) : Ω → Rn.
All the above families we suppose to be complete, i.e., containing all sets of probability zero.
For the sake of convenience we denote by Eξ

t (·) the conditional expectation E(·|N ξ
t ) with

respect to the ¿presentÀ N ξ
t for ξ(t).

Following [1, 2, 3], introduce the following notions of forward and backward mean derivatives.

Definition 1. (i) The forward mean derivative Dξ(t) of ξ(t) at the time instant t is an l1-random
element of the form

Dξ(t) = lim
4t→+0

Eξ
t (

ξ(t +4t)− ξ(t)
4t

), (1)

where the limit is supposed to exist in L1(Ω,F , P) and 4t → +0 means that 4t → 0 and 4t > 0.
(ii) The backward mean derivative D∗ξ(t) of ξ(t) at t is the L1-random element

D∗ξ(t) = lim
∆t→+0

Eξ
t (

ξ(t)− ξ(t−∆t)
∆t

) (2)

where (as well as in (i)) the limit is assumed to exist in L1(Ω,F , P) and ∆t → +0 means that
∆t → 0 and ∆t > 0.

Remark 1. If ξ(t) is a Markov process then evidently Eξ
t can be replaced by E(·|Pξ

t ) in (1)
and by E(·|Fξ

t ) in (2). In initial Nelson’s works there were two versions of definition of mean
derivatives: as in our Definition 1 and with conditional expectations with respect to ¿pastÀ and
¿futureÀ as above that coincide for Markov processes. We shall not suppose ξ(t) to be a Markov
process and give the definition with conditional expectation with respect to ¿presentÀ taking
into account the physical principle of locality: the derivative should be determined by the present
state of the system, not by its past or future.

2013, том 6, № 3 39



Ю.Е. Гликлих, О.О. Желтикова

Following [5], we introduce the differential operator D2 that differentiates an l1-random
process ξ(t), t ∈ [0, T ] according to the rule

D2ξ(t) = lim
4t→+0

Eξ
t (

(ξ(t +4t)− ξ(t))(ξ(t +4t)− ξ(t))∗

4t
), (3)

where (ξ(t +4t)− ξ(t)) is considered as a column vector (vector in Rn), (ξ(t +4t)− ξ(t))∗ is a
row vector (transposed, or conjugate vector) and the limit is supposed to exists in L1(Ω,F , P).
We emphasize that the matrix product of a column on the left and a row on the right is a matrix
so that D2ξ(t) is a symmetric semi-positive definite matrix function on [0, T ] × Rn. We call D2

the quadratic mean derivative.
It is shown (see, e.g., [5, 4]) that for an Itô diffusion type process ξ(t) = ξ0 +

∫ t
0 a(s)ds +∫ t

0 A(s)dw(s) the formulae Dξ(t) = Eξ
t (a(t)) and D2ξ(t) = Eξ

t (A(t)A∗(t)) hold (recall that by
the definition of diffusion-type process, see, e.g. [9], here w(t) is adapted to the “past” of ξ(t),
such a process is a solution of a diffusion type equation, see [9]). If ξ(t) is a diffusion process,
i.e., a solution of stochastic differential equation ξ(t) = ξ0 +

∫ t
0 a(s, ξ(s))ds+

∫ t
0 A(s, ξ(s))dw(s) (a

particular case of diffusion type processes), Dξ(t) = a(t, ξ(t)) and D2ξ(t) = A(t, ξ(t))A∗(t, ξ(t)).
Note that quadratic derivative takes values in S̄+(n).

Let Borel measurable mappings a(t, x) and b(t, x) from [0, T ] × Rn to Rn and to S̄+(n),
respectively, be given. We call the system of the form

{
Dξ(t) = a(t, ξ(t)),
D2ξ(t) = b(t, ξ(t)),

(4)

a first order differential equation with forward mean derivatives.
Let a(t, x) and b(t, x) be set-valued mappings from [0, T ] × Rn to Rn and to S̄+(n),

respectively. The system of the form
{

Dξ(t) ∈ a(t, ξ(t)),
D2ξ(t) ∈ b(t, ξ(t)).

(5)

is called a first order differential inclusion with forward mean derivatives.

Definition 2. We say that (5) has a solution on [0, T ] with initial condition ξ0 ∈ Rn, if there
exist a probability space (Ω,F ,P) and a process ξ(t) given on (Ω,F ,P) and taking values in Rn

such that ξ(0) = ξ0 and P – a.s. for almost all t (5) is satisfied. For equation (4) the notion of
solution is quite analogous.

Note that for simplicity here we consider only deterministic initial conditions, i.e., ξ0 in
Definition 2 is a point in Rn.

Recall that for a mapping F : X → Y of a metric space X to a metric space Y its graph is
the set of pairs {(x, F (x)) | x ∈ X} in X × Y . Note that for a set-valued F the value F (x) is a
set in Y .

For considering upper semicontinuous mean forward differential inclusions we need to recall
the following

Definition 3. Let X and Y be metric spaces. For given ε > 0 a continuous single-valued mapping
fε : X → Y is called an ε-approximation of the set-valued mapping F : X → Y , if the graph of f
belongs to ε-neighbourhood of the graph of F .

It is known (see, e.g., [7]), that for upper semicontinuous set-valued mappings with convex
closed images in normed linear spaces the ε-approximations exist for each ε > 0.
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Denote by Ω the Banach space C0([0, T ],Rn) of continuous curves in Rn given on [0, T ],
with usual uniform norm. Introduce in Ω the σ-algebra F generated by cylinder sets. Everywhere
below we use this notation. Recall that F is the Borel σ-algebra in Ω. Note that the elementary
event in Ω is a curve that we denote by x(·). Its value at t ∈ [0, T ] is denoted by x(t).

It is a well-known fact that every stochastic process η(t) with continuous sample paths in Rn,
given on a certain probability space (Ω̃, F̃ , P) for t ∈ [0, T ], is a measurable mapping from (Ω̃, F̃)
to (Ω,F). Thus it determines a measure µη on (Ω,F) by the standard formula µη(A) = P(η−1(A))
for every A ∈ F .

There is a standard process c(t, x(·)) in Rn given on (Ω,F). It is the so-called ¿coordinate
processÀ defined by the formula c(t, x(·)) = x(t). The coordinate process on the probability space
(Ω,F , µη) is the standard description of the process η(t) on this probability space. See details,
e.g., in [9, 4].

We shall look for solutions of (5) with continuous sample paths and mainly the solution will
be described as a coordinate process on Ω where the corresponding measure will be constructed.

Definition 4. The perfect solution of (5) is a stochastic process with continuous sample paths
such that it is a solution in the sense of Definition 2 and the measure corresponding to it on the
space of continuous curves, is a weak limit of measures generated by solutions of a sequence of
diffusion-type Itô equations with continuous coefficients.

Lemma 1. Let b(t, x) be a jointly continuous (measurable, smooth) mapping from [0, T ]×Rn to
S+(n). Then there exists a jointly continuous (measurable, smooth, respectively) mapping A(t, x)
from [0, T ]×Rn to L(Rn,Rn) such that for all t ∈ R, x ∈ Rn the equality A(t, x)A∗(t, x) = b(t, x)
holds.

The proof is available in [5, Lemma 2.2].
Below we deal with the sequence of processes ξi(t) (solutions of a sequence of stochastic

differential equations in Rn) such that the estimate E( sup
0≤t≤T

‖ξi(t)‖2) ≤ C2 holds for all i with

the same constant C2 > 0 (see [9, Section III,2, Lemma 1]). In presentation via the coordinate
process the latter inequality means that∫

Ω
( sup
0≤t≤T

‖x(t)‖2)dµi ≤ C2 (6)

for all measures µi generated by processes ξi(t) as above. For such processes we have to use the
following technical statement.

Lemma 2. Consider a sequence of probabilistic measures µi on (Ω,F) such that (6) holds for all i.
Let the measures µi weakly converge to a certain measure µ as i →∞. Introduce the measures νi by
relations dνi = (1+‖x(·)‖C0)dµi and the measures ν1

i by relations dν1
i = (1+‖x(·)‖2

C0)dµi. Then
the measures νi weakly converge to the measure ν defined by the relation dν = (1+‖x(·)‖C0)dµ and
the measures ν1

i weakly converge to the measure ν1 defined by the relation dν1 = (1+‖x(·)‖2
C0)dµ.

Indeed, specify an arbitrary bounded continuous function f : Ω → R. Assertion of Lemma
2 follows from the fact that by (6) random variables f(ξk)(1 + ‖ξk‖) are uniformly integrable as
well as f(ξk)(1 + ‖ξk‖2) (see e.g. [12, Lemma 8]).

Corollary 1. Let b : [0, T ] × Ω → Rn be a continuous vector-function such that ‖b(t, x(·))‖ <
K(1+‖x(·)‖C0) and analogous b1 be such that ‖b1(t, x(·))‖ < K(1+‖x(·)‖2

C0) for a certain K > 0.
Then

(i) lim
k→∞

∫
Ω b(t, x(·))dµk =

∫
Ω b(t, x(·))dµ;

(ii) lim
k→∞

∫
Ω b1(t, x(·))dµk =

∫
Ω b1(t, x(·))dµ.
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2. Equations and inclusions with mean derivatives of geometric
Brownian motion type
This section presents a brief description and a slight modification of material suggested in [6].
We deal with the following generalization of the so-called geometric Brownian motion, namely

with a process S(t) that satisfies the system of stochastic differential equations 1

dSα(t) = Sαaα(t; S1(t), . . . , Sn(t))dt + Sα(t)Aα
β(t; S1(t), . . . , Sn(t))dwβ, (7)

where wβ are independent Wiener processes in R1 that together form a Wiener process in Rn,
a(t, x) is a vector field on Rn, A(t, x) is a mapping from [0, T ]×Rn to the space of linear operators
L(Rn,Rn) and (Aα

β) denotes the matrix of operator A. Note that the (standard) geometric
Brownian motion satisfies (7) in the case where a(t) and A(t) depend only on time t (i.e., do not
depend on the point x ∈ Rn).

The processes satisfying (7), arise in various stochastic models (e.g., in economy).
Suppose that the coordinates Sα of the solution of (7) are positive for all t. Than by Itô

formula the process ξ(t) = log S(t) = {log S1(t), . . . , log Sn(t)} satisfies the equation

dξα(t) =
(

aα − 1
2
(Aα

βδβγAα
γ )

)
(t, ξ(t))dt + Aα

β(t, ξ(t))dwβ(t), (8)

since dwαdwβ = δαβdt (here δαβ is Kronecker’s symbol: δαα = 1, δαβ = 0 for α 6= β).
Analogously, from Itô formula we derive that if a process ξ(t) satisfies (8), the process S(t) =

exp ξ(t) = (exp ξ1(t), . . . , exp ξn(t)) satisfies (7). Note that in this case the coordinates Sα are
positive.

Denote by B the symmetric positive semi-definite matrix AA∗ (where A∗ is the operator
conjugate to A as above) and by diagB the vector constructed from the diagonal elements of
matrix B. Note that Aα

βδβγAα
γ is the α-th element Bαα of diagB. If a process satisfies (8), it also

satisfies the following equation with mean derivatives:
{

Dξ(t) =
(
a− 1

2diagB
)
(t, ξ(t)),

D2ξ(t) = B(t, ξ(t))
(9)

or, equivalently, {
Dξ(t) + 1

2diagD2(ξ(t)) = a(t, ξ(t)),
D2ξ(t) = B(t, ξ(t)).

(10)

Let ξ(t) be a solution of equation (9) (or (10)). We call it the logarithm of the process
S(t) = exp ξ(t) = (eξ1(t), . . . , eξn(t)).

Note that if equation (9) (or (10)) is given a priory with some B ∈ S̄+(n), the process
S(t) = exp(ξ(t)) may not satisfy (7). Thus the models based on equations (9) or (10) cover a
broader class of problems then those based on (8).

Consider set-valued mappings a : [0, T ] × Rn → Rn and B : [0, T ] × Rn → S̄+(n) and the
following inclusion with mean derivatives

{
Dξ(t) + 1

2diagD2ξ(t) ∈ a(t, ξ(t)),
D2ξ(t) ∈ B(t, ξ(t))

. (11)

Inclusion (11) is called the one of geometric Brownian motion type. Such an inclusion can be
constructed from an equation of form (10) with control in the usual way. Let the right-hand

1Recall that we use Einstein’s summation convention with respect to a shared upper and lower index.
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sides a(t, x, u) and B(t, x, u) of (10) depend on controlling parameter u and U(t, x) be the
set of the possible values of controlling parameters at (t, x), then on constructing a(t, x) =
cl

⋃
u∈U(t,x)

a(t, x, u) and B(t, x) = cl
⋃

u∈U(t,x)

B(t, x, u) where cl denotes the convex closure, we

obtain inclusion (11).
Below we describe conditions, under which the solutions of (11) do exist, and prove existence

of optimal solutions maximizing a certain cost criterion.
Note that inclusion (11) has the form analogous to equation (10). The inclusion given in the

form analogous to (9) would be ill-posed.

3. The main results

Theorem 1. Specify an arbitrary initial value ξ0 ∈ Rn. Let a(t, x) be an upper semicontinuous
set-valued mapping with closed convex images from [0, T ]×Rn to Rn and let it satisfy the estimate

‖a(t, x)‖2 < K(1 + ‖x‖2) (12)

for some K > 0.
Let B(t, x) be an upper semicontinuous set-valued mapping with closed convex images from

[0, T ]× Rn to S̄+(n) such that for each B(t, x) ∈ B(t, x) the estimate

‖trB(t, x)‖ < K(1 + ‖x‖) (13)

takes place for some K > 0.
Then for every sequence εi → 0, εi > 0, each pair of sequence ai(t, x) and Bi(t, x) of εi-

approximations of a(t, x) and B(t, x), respectively, generates a perfect solution of (11) with initial
condition ξ0.

Proof. Specify a sequence of εi → 0 and sequences of εi-approximations ai(t, x) and B̃i(t, x)
as in the hypothesis of Theorem. Without loss of generality we may suppose that B̃i(t, x) are
εi
2 -approximations of B(t, x).

As the norm in S(n) we take the restriction to S(n) of Euclidean norm (i.e., the square root
from the sum of squares of all elements of a matrix) in the space L(Rn,Rn) isomorphic to Rn2 .
Without loss of generality we suppose that (13) is valid for this norm.

All ai(t, x) satisfy (12) with a certain constant that is bigger than K (see the hypothesis).
Nevertheless we keep the notation K for this constant. Since 1 + ‖x‖2 ≤ (1 + ‖x‖)2, for ai(t, x)
the estimate

‖ai(t, x)‖ < K(1 + ‖x‖), (14)

is valid as well.
The approximations B̃i(t, x) take values in S̄+(n). Introduce Bi(t, x) = B̃i(t, x) + εi

4 I where
I is the unit matrix. Immediately from the construction it follows that Bi(t, x) for every i is
a continuous εi-approximation of B(t, x) and that at each (t, x) it belongs to S+(n), i.e., it is
strictly positive definite. Besides, Bi(t, x) satisfy (13) where the constant K > 0 is bigger than
the constant from the hypothesis of Theorem but nevertheless we keep the notation K for it.

By Lemma 1 there exist continuous fields Ai(t, x) such that Bi(t, x) = Ai(t, x)A∗i (t, x).
Directly from the definition of trace we obtain that trBi(t, x) is equal to the sum of squares
of all elements of Ai(t, x), i.e., it is the square of the Euclidean norm of Ai(t, x) in L(Rn,Rn).
Hence from (13) and from the obvious inequality (1+‖x‖) ≤ (1+‖x‖)2 it follows that all Ai(t, x)
satisfy

‖Ai(t, x)‖ < K1(1 + ‖x‖). (15)
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Without loss of generality we can suppose that the above-mentioned continuous
approximations ai and Ai are smooth. Indeed, if a certain ai is not smooth, we can approximate it
by a sequence of smooth mappings aij that converges to ai as j →∞ with respect to the uniform
norm on compacts. Hence for j large enough the graph of aij belongs to the εi-neighborhood
of the graph of a. Thus aij is an εi-approximation of a. Then we replace continuous ai by this
aij , i.e., take it as new ai. For Ai the arguments are the same. Note that after this replacement
estimates (14) and (15) remain true.

Consider the sequence of stochastic diferential equations

dξi(t) = (ai − 1
2
diagBi)(t, ξi(t))dt + Ai(t, ξi(t))dw(t), (16)

where w(t) is a Wiener process in Rn.
Note that every (ai − 1

2diagBi)(t, x) is smooth as the difference of smooth mappings.
Consider ‖(ai − 1

2diagBi)(t, x)‖ and show that it satisfies the estimate of (14) type with a
constant greater than K. Indeed,

‖(ai − 1
2
diagBi)(t, x)‖ ≤ ‖ai(t, x)‖+ ‖1

2
diagBi(t, x)‖

< K(1 + ‖x‖) + K1trBi(t, x) < K2(1 + ‖x‖). (17)

Thus, the coefficients of equations (16) are smooth and satisfy estimates (17) and (15). So,
every equation of this sequence has a unique strong solution ξi(t) well-defined on the entire interval
[0, T ] (see. [9]). In particular, this means that each process ξi can be given on every appropriate
probability space, where w(t) is adapted to its own ¿pastÀ.

Consider the measure space (Ω,F) introduced in Section 1.. Denote by Pt the σ-subalgebra
of F , generated by cylinder sets with bases on [0, t], and by Nt – the σ-algebra generated by the
preimages of Borel sets in Rn under the mapping x(·) 7→ x(t).

Since all the solutions ξi(t) are strong, they all can be defined on a certain unique probability
space (Ω̃, F̃ , P) and so they all can be considered as measurable mappings from (Ω̃, F̃) to (Ω,F)
(see Section 1.).

On the measure space ([0, T ],B), where B is Borel σ-algebra, by λ1 we denote the Lebesgue
measure.

As it is mentioned in Section 1., every process ξi(t) determines a measure µi on (Ω,F) and on
the probability space (Ω,F , µi) the coordinate process represents ξi(t).

Since all (ai − 1
2diagBi)(t, x) satisfy (17) and all Ai(t, x) satisfy (15) with the same K (see

above), equations (16) satisfy the hypothesis of [9, Lemma III.2.1] and the remark after it for all
i and so the estimate

E(sup
t≤T

‖ξi(t)‖2) ≤ C2. (18)

is valid for all ξi, where C2 depends only on the interval [0, T ] and on K from (17) and (15).

Remark 2. In the proof of [9, Lemma III.2.1] estimate (18) is derived from the relation
E(sup

t≤T
‖ξi(t)‖2) ≤ K(1 +

∫ t
0 E(sup

u≤s
‖ξi(u)‖2ds). Since the solutions are strong, they can be given

on various probability spaces and the latter inequality is true on all such probability spaces. In
particular, it is true on the probability space (Ω,F , µi) where the solution is described as the
coordinate process. This means that (6) is valid for all i for some C2 depending only on the
interval [0, T ] and on K from (17) and (15).

In addition by corollary in Section III.2 [9] the set of measures {µi} is weakly compact. Thus
for a given sequence of approximations ai and Ai, from the sequence of corresponding measures
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µi one can select a subsequence that weakly converges to a certain measure µ. For simplicity of
presentation we suppose that the sequence µi itself weakly converges to µ. Denote by ξ(t) the
coordinate process on the probability space (Ω,F , µ). Note that Pt is the ¿pastÀ and Nt is the
¿presentÀ σ-algebras for ξ(t).

Lemma 3.
∫
Ω( sup

0≤t≤T
‖x(t)‖2)dµ ≤ C2 where constant C2 > 0 depends only on the interval [0, T ]

and on K from (17) and (15).

Since the sequence of measures µi weakly converges to µ, Lemma 3 follows directly from
Remark 2 and Corollary 1 (ii).

Let us continue the proof of Theorem. From the construction we derive that

‖Bi(t, x(t))‖2 = ‖Ai(t, x(t))A∗i (t, x(t))‖2

≤ ‖Ai(t, x(t))‖2‖A∗i (t, x(t))‖2 = (trBi(t, x(t))2

< K1(1 + ‖x(t)‖)2 ≤ K2(1 + ‖x(t)‖2).

Since ‖Bi(t, x)‖2 < K2(1 + ‖x‖2)), taking into account Lemma 3, we see that
∫

Ω×[0,T ]

‖Bi(t, x(t))‖2dµ× dλ1 ≤ K3. (19)

Introduce the mapping B̃i : [0, T ] × Ω → S+(n) by the formula B̃i(t, x(·)) = Bi(t, x(t)). Then it
follows from (19) that the set of all B̃i is uniformly bounded in the Hilbert space L2([0, T ]×Ω, S(n))
defined with respect to measures λ1 in [0, T ] and µ in Ω. Hence, this set is weakly relatively
compact in L2([0, T ]×Ω, S+(n)) and so it is possible to select a subsequence that weakly converges
in L2([0, T ] × Ω,S+(n)) to a certain B : [0, T ] × Ω → S+(n). For simplicity, let the sequence
B̃i(t, x(·)) itself converge to B : [0, T ]× Ω → S+(n).

Introduce also B(t, x(·)) = E(B | Nt) on the probability space (Ω,F , µ), x(·) ∈ Ω. From the
definition of weak convergence and presentation of a linear functional in L2 it immediately follows
that diagB̃i(t, x(·)) weakly converges to diagB(t, x(·)) in L2([0, T ]× Ω,Rn).

As ‖ai(t, x(t))‖2 ≤ K(1 + ‖x(t)‖2) by (12), then, taking into account Lemma 3, we obtain
that for some K1 > 0 ∫

[0,T ]×Ω

‖ai(t, x(t))‖2dλ1 × dµ ≤ K1. (20)

Introduce the mappings ãi : [0, T ] × Ω → Rn by the formula ãi(t, x(·)) = ai(t, x(t)). Then from
formula (20) it follows that the set of all ãi is uniformly bounded with respect to the norm in
Hilbert space L2([0, T ]× Ω,Rn) defined with respect to measures λ1 in [0, T ] and µ in Ω. Hence
the set of all ãi is weakly relatively compact in L2([0, T ] × Ω,Rn) and so it is possible to select
a subsequence that weakly in L2([0, T ] × Ω,Rn) converges to a certain a : [0, T ] × Ω → Rn. For
simplicity, let ãi(t, x(·)) itself be this subsequence.

Introduce also a(t, x(·)) = E(a | Nt) on the probability space (Ω,F , µ), x(·) ∈ Ω.
Immediately from the definition of weak convergence and from the above arguments we

obtain that (ãi− 1
2diagB̃i)(t, x) weakly converges to (a− 1

2diagB)(t, x) in L2([0, T ]×Ω,Rn).
By Mazur’s lemma (see, [13]), for the weakly convergent sequence (ãi− 1

2diagB̃i)(t, x(·)) there
exists a sequence of finite convex combinations āk(t, x(·)) of its elements that converges in
the same space strongly (in norm). The convex combinations have the form

āk(t, x(·)) =
n(k)∑

i=j(k)

βi

(
(ãi − 1

2
diagB̃i)(t, x(·))

)
,
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where βi ≥ 0, i = j(k), . . . , n(k), j(k) →∞ as k →∞ and
n(k)∑

i=j(k)

βi = 1.

Remark 3. Above we have introduced a(t, x(·)) as a weak limit of ai(t, x(·)) in L2([0, T ]×Ω,Rn)
equipped with measures λ1 on [0, T ] and µ on Ω. By Mazur’s lemma, as well as above, it is a
strong limit of some correspondent sequence of convex combinations of ai (different from that
for (ãi − 1

2diagB̃i)). But since the images of a are convex, those convex combinations are εj-
approximations for some sequence of εj → 0. Thus µ-a.s. a(t, ξ(t)) is a selector of a(t, ξ(t)),
measurable with respect to Nt. The same arguments show that µ-a.s. B(t, ξ(t)) is a selector of
B(t, ξ(t)), measurable with respect to Nt.

Note that by construction and by the properties of conditional expectation the sequence
āi(t, x(·)) converges to (a − diagB)(t, x(·)) strongly in L2([0, T ] × Ω,Rn) where Ω is equipped
with the σ-algebra Nt. Hence it converges also in probability (in measure µ) and so it is possible
to select a subsequence that converges µ-a.s. In order not to change the notation, we suppose
that āi(t, x(·)) converges to (a− diagB)(t, x(·)) µ-a.s.

Choose δ > 0. By Egorov theorem (see, e.g., [13]) there exists a set Kδ ⊂ Ω such that
µ(Kδ) > 1− δ and on this set the sequence āi(t, x(·)) converges to (a− diagB)(t, x(·)) uniformly.

Let f : Ω → R be an arbitrary bounded continuous function measurable with respect to Nt.
Specify an arbitrary ε > 0. From the above uniform convergence on Kδ and boundedness of f it
follows that for all i and all t ∈ [0, T ] simultaneously there exists N(ε) > 0 such that for k > N(ε)

‖
∫

Kδ

f(x(·))
(
āk(t, x(·))− (a− diagB)(t, x(·))

)
dµi‖ < ε. (21)

Since f is bounded, there exists some Ξ > 0 such that |f(x(·))| < Ξ for all x(·) ∈ Ω. Note also that
µ(Ω\Kδ) < δ. On the other hand, ‖ai(t, ξi(t))‖ < K(1+‖ξi(t)‖) by (14) and sup

i

∫
Ω

‖ξ̄i‖2
C0dµ < C2

by (18). Note also the relation
∫

‖ξi‖>c

‖ξi‖C0dµi <
1
c

∫

‖ξi‖>c

‖ξi‖2
C0dµ

(see [14]). Thus, taking into account Remark 2, we get

‖
∫

Ω̃\Kδ

f(x(·)) (āk(t, x(·))− (a− diagB)(t, x(·))) dµi‖ <
δΞK(1 + C2)

c
,

i.e., since δ is an arbitrary positive number, the above norm of integral becomes smaller than any
positive number when δ → 0. Together with (21) this means that

lim
k→∞

‖
∫

Ω
f(x(·))

(
āk(t, x(·))− (a− diagB)(t, x(·))

)
dµi‖ = 0 (22)

for all i uniformly.
Note that (a− diagB)(t, x(·)) is continuous on the set of full measure µ in Ω. Indeed, it is a

uniform limit of continuous functions on Kδ for every δ > 0 and so on every finite union of the

sets Kδ. Thus it is continuous on the finite unions of the sets Kδ. Evidently lim
j→∞

µ(
j⋃

i=1
µ(Kδi)) = 1

for a sequence of δi → 0.
Then by the properties of weak convergence of measures and by (14) we can apply Corollary

1 (i) and obtain that

lim
k→∞

∫

Ω
f(x(·))(a− diagB)(t, x(·))dµk =

∫

Ω
f(x(·))(a− diagB)(t, x(·))dµ
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and that

lim
k→∞

∫

Ω
f(x(·))((x(t + ∆t)− x(t))dµk =

∫

Ω
f(x(·))((x(t + ∆t)− x(t))dµ.

The following relations take place

‖
n(k)∑

i=j(k)

βi

(∫

Ω
f(x(·))

(
x(t + ∆t)− x(t)− (ai − 1

2
diagBi)(t, x(t))

)
dµi

)

−
∫

Ω
f(x(·))

(
x(t + ∆t)− x(t)− (a− 1

2
diagB)(t, x(·))

)
dµ‖ ≤

‖
∫

Ω
f(x(·))

(
x(t + ∆t)− x(t)

)
dµk −

∫

Ω
f(x(·))

(
(x(t + ∆t)− x(t)

)
dµ‖

+‖
n(k)∑

i=j(k)

βi

(∫

Ω
f(x(·))(ai − 1

2
diagBi)(t, x(t))dµi

−
∫

Ω
f(x(·))(ai − 1

2
diagBi)(t, x(t))dµ

)
‖

+‖
∫

Ω
f(x(·))āk(t, x(·))dµ−

∫

Ω
f(x(·))(a− 1

2
diagB)(t, x(·))dµ‖

where the right-hand side of this inequality becomes less than every positive number for k large
enough. Thus

lim
∆t→+0

∫

Ω
f(x(·))(x(t + ∆t)− x(t)− (a− 1

2
diagB)(t, x(·)))dµ =

lim
∆t→+0

( n(k)∑

i=j(k)

βi(
∫

Ω
f(x(·))(x(t + ∆t)− x(t)

−(ai − 1
2
diagBi)(t, x(t)))dµi

)
= 0

and so Dξ(t) + 1
2diagB(t, ξ(·)) = a(t, ξ(·)) ∈ ã(t, ξ(·)) = a(t, ξ(t)) µ-a.s. (see Remark 3).

Recall that we have constructed the sequence Bi(t, x(·)) that weakly converges
to B(t, x(·)) and B(t, x(·)) is a Nt-measurable selector of B(t, ξ(t)) µ-a.s. (see Remark 3).

Then applying Mazur’s lemma and Egorov’s theorem in analogy to above arguments we show
that for f(·) as above

lim
∆t→+0

∫

Ω
f(·)[(x(t + ∆t)− x(t))(x(t + ∆t)− x(t))∗

−A(t, x(t))A∗(t, x(t))]dµ = 0.

Hence D2ξ(t) = A(t, ξ(t))A(t, ξ(t))∗ = B(t, ξ(t)) ∈ B(t, ξ(t)) µ-a.s.

2

2013, том 6, № 3 47



Ю.Е. Гликлих, О.О. Желтикова

Remark 4. Note that all sequences of ε-approximations for all sequences of εi → 0, used in the
proof of Theorem 1, satisfy (17) and (15) with the same K so that by corollary in Section III.2
[9] the set of measures {µi} (corresponding to all sequences and all i) is weakly compact.

Let f be a continuous bounded real-valued function on [0, T ] × Rn. For solutions of (11)
consider the cost criterion in the form

J(ξ(·)) = E

∫ T

0
f(t, ξ(t))dt. (23)

We are looking for solutions, for which the value of the criterion is maximal.

Theorem 2. Among the perfect solutions of (11) constructed in the proof of Theorem 1, there is
a solution ξ(t) on which the value of J is maximal.

Proof. Since all the measures on (Ω,F), constructed in the proof of Theorem 1 for perfect solutions
of (11), are probabilistic and the function f in (23) is bounded, the set of values of J on those
solutions is bounded. If that set of values has a maximum, then the corresponding measure µ is
the one we are looking for: the coordinate process on the space (Ω,F , µ) is an optimal solution.

Suppose that the above-mentioned set of values has no maximum, but then it has a lowest
upper bound ℵ that is a limit point in that set. Let µ∗i be a sequence of measures such that for
the corresponding solutions ξ∗i (t) the values J(ξ∗i (t)) converge to ℵ. Every µ∗i is a weak limit of a
sequence of measures µij corresponding to some sequence of εj-approximations as j →∞. Select
from the sequence a subsequence (for simplicity we denote it by the same symbol µij) such that
for the corresponding solutions ξij(t) and for all i we obtain the uniform convergence of J(ξij(·))
to J(ξ∗i (·)) as j →∞. Then J(ξii(·)) → ℵ as i →∞. Since the set of all measures corresponding to
all approximations, is weakly compact (see above), we can select from µii a subsequence (denote
it by the same symbol µii) that weakly converges to a certain measure µ∗. By the construction,
for the coordinate process ξ∗(t) on (Ω,F , µ∗) we get J(ξ∗(·)) = ℵ, i.e., the value is maximal.
Since µ∗ is a limit of µii, ξ∗(t) is a perfect solution of (11) that we are looking for.

2
The assertion of Theorem 2 deals with logarithms of generalized geometric Brownian motions

satisfying inclusion (11). Note that it remains true also for the corresponding generalized geometric
Brownian motions. Indeed, introduce the cost criterion J̃(ξ(t)) = J(exp ξ(t)) (see Section 3). This
criterion satisfies the hypothesis of Theorem 2 and so among the generalized geometric Brownian
motions corresponding to solutions of inclusion (11), there is an optimal process maximizing J .
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УДК 517.9 + 519.216.2

ОПТИМАЛЬНЫЕ РЕШЕНИЯ ДЛЯ ВКЛЮЧЕНИЙ ТИПА
ГЕОМЕТРИЧЕСКОГО БРОУНОВСКОГО ДВИЖЕНИЯ
С ПРОИЗВОДНЫМИ В СРЕДНЕМ

Ю.Е. Гликлих, О.О. Желтикова

Идея производных в среднем стохастических процессов была предложена Э. Нель-
соном в 60-х годах ХХ века. В отличие от обычных производных, производные в
среднем корректно определены для очень широкого класса случайных процессов, и
уравнения с производными в среднем естественно возникают во многих математиче-
ских моделях физики (в частности, Э. Нельсон ввел производные в среднем для нужд
Стохастической Механики – варианта квантовой механики). Включения с производ-
ными в среднем являются естественными обобщениями указанных уравнений в случае
управления с обратной связью или движения в сложных средах. Статья посвящена
краткому введению в теорию уравнений и включений с производными в среднем и
изучению специального класса подобных включений, называемых включениями ти-
па геометрического броуновского движения. Доказано существование оптимального
решения, максимизирующего некоторый функционал качества.

Ключевые слова: производные в среднем; стохастические дифференциальные
включения; оптимальное решение.
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