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The idea of mean derivatives of stochastic processes was suggested by E. Nelson in
60-th years of XX century. Unlike ordinary derivatives, the mean derivatives are well-posed
for a very broad class of stochastic processes and equations with mean derivatives naturally
arise in many mathematical models of physics (in particular, E. Nelson introduced the
mean derivatives for the needs of Stochastic Mechanics, a version of quantum mechanics).
Inclusions with mean derivatives is a natural generalization of those equations in the case
of feedback control or in motion in complicated media. The paper is devoted to a brief
introduction into the theory of equations and inclusions with mean derivatives and to
investigation of a special type of such inclusions called inclusions of geometric Brownian
motion type. The existence of optimal solutions maximizing a certain cost criterion, is
proved.
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Introduction

The notion of mean derivatives (forward, backward, symmetric and antisymmetric) was
introduced by Edward Nelson in 60-th in his construction of the so-called Stochastic Mechanics, a
version of Quantum Mechanics ([1, 2, 3]). After that a lot of other applications of equations with
mean derivatives to various problems of mathematical were fond (see, e.g., [4]). Inclusions with
mean derivatives is a natural generalization of those equations in the case of feedback control or
of motion in complicated media.

It should be pointed out that the classical Nelson’s mean derivatives give information about
the drift of a stochastic process. In [5], as a slight modification of some Nelson’s constructions, a
new sort of mean derivative called quadratic (it is responsible for the diffusion term of a process)
was introduced so that, strictly speaking, it became possible to find processes having given mean
derivatives.

The paper contains a brief introduction to the general theory of stochastic differential
equations and inclusion given in terms of mean derivatives, and new applications. We investigate
a special class of inclusions with mean derivatives called inclusions of geometric Brownian motion
type, introduced previously in [6]. We show that under some natural condition, among the
solutions of such an inclusion there is an optimal one maximizing (or minimizing) a certain
cost criterion. For definiteness we deal with the problem of maximizing the criterion since the
minimizing problem is quite analogous.

Some remarks on notations. In this paper we deal with equations and inclusions in the linear
space R™, for which we always use coordinate presentation of vectors and linear operators. Vectors
in R™ are considered as columns. If X is such a vector, the transposed row vector is denoted by
X*. Linear operators from R"™ to R"™ are represented as n x n matrices, the symbol * means
transposition of a matrix (pass to the matrix of conjugate operator). The space of n x n matrices
is denoted by L(R™ R"™).

By S(n) we denote the linear space of symmetric n X n matrices that is a subspace in
L(R™,R™). The symbol Sy(n) denotes the set of positive definite symmetric n x n matrices
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that is a convex open set in S(n). Its closure, i.e., the set of positive semi-definite symmetric
n X n matrices, is denoted by Sy (n).
Everywhere below for a set B in R™ or in L(R"™,R™) we use the norm introduced by usual

formula || B|| = sup ||y]|.
yeB
Everywhere we use Einstein’s summation convention with respect to a shared upper and

lower index.

For the sake of simplicity we consider equations, their solutions and other objects on a finite
time interval ¢ € [0, 7.

We refer the reader to |7, 4] for details about set-valued mappings; to [4, 8, 9| for details about
Stochastic differential equations and weak convergence of probability measures; to [10] for details
about weak convergence in Hilbert spaces and to [11] for details about conditional expectation.

The research is supported in part by RFBR Grants 12-01-00183 and 13-01-00041.

1. Introduction into equations and inclusions with
mean derivatives

Consider a stochastic process £(t) in R™, ¢ € [0,T], given on a certain probability space
(Q,F,P) and such that £(¢) is an [;-random element for all . It is known that such a process
determines three families of o-subalgebras of the o-algebra F:

(i) <the past> Pf generated by preimages of Borel sets from R™ under all mappings £(s) :
QO — R" for 0 < s <t

(ii) <the future> ff generated by preimages of Borel sets from R™ under all mappings
E(s): Q=R " fort <s<T,

(iii) <the present> (<nows) /\/tE generated by preimages of Borel sets from R™ under the
mapping &£(t) : Q@ — R™.

All the above families we suppose to be complete, i.e., containing all sets of probability zero.

For the sake of convenience we denote by Ef () the conditional expectation E(|/\/t§) with
respect to the <present> ./\/'t5 for £(t).

Following [1, 2, 3|, introduce the following notions of forward and backward mean derivatives.

Definition 1. (i) The forward mean derivative DE(t) of £(t) at the time instant t is an l-random
element of the form
§(t+ At) —&(2)

De(t) = lim B (), (1)

where the limit is supposed to exist in L1(Q, F,P) and At — +0 means that At — 0 and At > 0.
(ii) The backward mean derivative D,&(t) of £(t) at t is the Li-random element

—E(t—A
D*g(ﬂ:AmoEf(g(t) i(z )

) (2)

where (as well as in (i) the limit is assumed to exist in L'(Q, F,P) and At — +0 means that
At — 0 and At > 0.

Remark 1. If £(t) is a Markov process then evidently E can be replaced by E(-|P%) in (1)
and by E(]]—"f) in (2). In initial Nelson’s works there were two versions of definition of mean
derivatives: as in our Definition 1 and with conditional expectations with respect to <past> and
<future> as above that coincide for Markov processes. We shall not suppose £(t) to be a Markov
process and give the definition with conditional expectation with respect to <present> taking
into account the physical principle of locality: the derivative should be determined by the present
state of the system, not by its past or future.
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Following [5], we introduce the differential operator Do that differentiates an [;-random
process £(t), t € [0,T] according to the rule

Due( = tm_ (ST B0 €N+ 20 g0y 5

where ({(t + At) —&(t)) is considered as a column vector (vector in R™), (§(t + At) —&(t))* is a
row vector (transposed, or conjugate vector) and the limit is supposed to exists in L;i(Q, F,P).
We emphasize that the matrix product of a column on the left and a row on the right is a matrix
so that D9&(t) is a symmetric semi-positive definite matrix function on [0,7] x R™. We call Dy
the quadratic mean derivative.

It is shown (see, e.g., |5, 4]) that for an Ito diffusion type process £(t) = & + fo s)ds +
fo ) the formulae DE(t) = ES(a(t)) and Dyt (t) = ES(A(t)A*(t)) hold (recall that by
the deﬁmtlon of diffusion-type process, see, e.g. |9], here w(t) is adapted to the “past” of £(t),
such a process is a solution of a diffusion type equatlon see [9]) If £(t) is a diffusion process,
i.e., a solution of stochastic differential equation £(t) = &+ fo )ds—}—fg A(s,&(s))dw(s) (a
partlcular case of diffusion type processes), DE(t) = a(t, &(t)) and Dgg(t) = A(t,&(t))A*(t,&(1)).
Note that quadratic derivative takes values in S, (n).

Let Borel measurable mappings a(t,z) and b(t,z) from [0,7] x R™ to R™ and to S, (n),
respectively, be given. We call the system of the form

{Df() a(t, (1))
D¢ (t) = b(t, (1)

a first order differential equation with forward mean derivatives.
Let a(t,xz) and b(¢,z) be set-valued mappings from [0,7] x R™ to R™ and to Si(n),
respectively. The system of the form

{ DE(t) € a(t,&(t)), (5)
Dy&(t) € b(t,£(t)).

is called a first order differential inclusion with forward mean derivatives.

; @

Definition 2. We say that (5) has a solution on [0,T] with initial condition & € R™, if there
exist a probability space (2, F,P) and a process £(t) given on (2, F,P) and taking values in R™
such that £(0) = & and P — a.s. for almost all t (5) is satisfied. For equation (4) the notion of
solution is quite analogous.

Note that for simplicity here we consider only deterministic initial conditions, i.e., & in
Definition 2 is a point in R".

Recall that for a mapping F': X — Y of a metric space X to a metric space Y its graph is
the set of pairs {(x, F(x)) | x € X} in X x Y. Note that for a set-valued F' the value F(x) is a
set in Y.

For considering upper semicontinuous mean forward differential inclusions we need to recall
the following

Definition 3. Let X andY be metric spaces. For given € > 0 a continuous single-valued mapping
fe : X =Y is called an e-approximation of the set-valued mapping F': X — Y, if the graph of f
belongs to e-neighbourhood of the graph of F.

It is known (see, e.g., [7]), that for upper semicontinuous set-valued mappings with convex
closed images in normed linear spaces the e-approximations exist for each € > 0.

40 Becrauk FOYpI'Y. Cepus «MareMmaTndyecKoe MOAEJINPOBAHNE U MPOrPaMMHUPOBaHIE>



MATEMATNYECKOE MOZIE/IMPOBAHUE

Denote by €2 the Banach space C°([0,T],R™) of continuous curves in R™ given on [0,7],
with usual uniform norm. Introduce in €2 the o-algebra F generated by cylinder sets. Everywhere
below we use this notation. Recall that F is the Borel g-algebra in 2. Note that the elementary
event in  is a curve that we denote by x(-). Its value at t € [0,T] is denoted by z(t).

It is a well-known fact that every stochastic process 7(t) with continuous sample paths in R™,
given on a certain probability space (Q, F,P) for t € [0, T], is a measurable mapping from (£2, F)
to (Q, F). Thus it determines a measure y,, on (£, F) by the standard formula p,(A4) = P(n~1(A))
for every A € F.

There is a standard process c(t,z(-)) in R"™ given on (€2, F). It is the so-called <coordinate
process> defined by the formula ¢(¢, 2(-)) = z(t). The coordinate process on the probability space
(Q,F, py) is the standard description of the process n(t) on this probability space. See details,
e.g., in [9, 4].

We shall look for solutions of (5) with continuous sample paths and mainly the solution will
be described as a coordinate process on {2 where the corresponding measure will be constructed.

Definition 4. The perfect solution of (5) is a stochastic process with continuous sample paths
such that it is a solution in the sense of Definition 2 and the measure corresponding to it on the
space of continuous curves, is a weak limit of measures generated by solutions of a sequence of
diffusion-type Ito equations with continuous coefficients.

Lemma 1. Let b(t,x) be a jointly continuous (measurable, smooth) mapping from [0,T] x R™ to
S+ (n). Then there exists a jointly continuous (measurable, smooth, respectively) mapping A(t, x)
from [0,T] xR™ to L(R™,R"™) such that for allt € R, x € R™ the equality A(t,x)A*(t,x) = b(t, )
holds.

The proof is available in [5, Lemma 2.2].
Below we deal with the sequence of processes &;(t) (solutions of a sequence of stochastic

differential equations in R™) such that the estimate E( sup |[|&(¢)]|?) < Ca holds for all i with
0<t<T

the same constant Co > 0 (see |9, Section III,2, Lemma 1]). In presentation via the coordinate
process the latter inequality means that

/Q (sup [l2(t)]?)du: < Co (6)

0<t<T

for all measures u; generated by processes &;(t) as above. For such processes we have to use the
following technical statement.

Lemma 2. Consider a sequence of probabilistic measures p; on (2, F) such that (6) holds for alli.
Let the measures p; weakly converge to a certain measure p as i — o00. Introduce the measures v; by
relations dv; = (1+||x(-)||co)dp; and the measures v} by relations dv; = (1+ ||z(-)||20)dps. Then
the measures v; weakly converge to the measure v defined by the relation dv = (1+||x(+)||co)dp and
the measures v} weakly converge to the measure v defined by the relation dv' = (1+ Hai()Hzco)du

Indeed, specify an arbitrary bounded continuous function f : @ — R. Assertion of Lemma
2 follows from the fact that by (6) random variables f(&x)(1 + ||€k]|) are uniformly integrable as
well as f(£)(1 + [|€]|?) (see e.g. [12, Lemma 8§]).

Corollary 1. Letb: [0,T] x Q@ — R™ be a continuous vector-function such that ||b(t,z())| <
K(Q1+|z()|lco) and analogous b* be such that |[b*(t, z(-))|| < K(1+]|z(-)[|Z0) for a certain K > 0.
Then

(i) Jim_fo bt 2())dps = Jo bt 2())dp;
(M) klggo fQ bl(tv 1’())61/% - fQ b! (t7 37())05#

2013, Tom 6, Ne 3 41




10.E. I'mukaux, 0.0. 2Kearukosa

2. Equations and inclusions with mean derivatives of geometric
Brownian motion type

This section presents a brief description and a slight modification of material suggested in [6].
We deal with the following generalization of the so-called geometric Brownian motion, namely
with a process S(t) that satisfies the system of stochastic differential equations

dS®(t) = S%a®(t; S (1), ..., S™(1))dt + S* (1) A%(t: S (1), ..., S™(£))dw?, (7)

where w? are independent Wiener processes in R! that together form a Wiener process in R,
a(t, ) is a vector field on R™, A(t, x) is a mapping from [0, 7] x R™ to the space of linear operators
L(R™,R") and (Aj) denotes the matrix of operator A. Note that the (standard) geometric
Brownian motion satisfies (7) in the case where a(t) and A(t) depend only on time ¢ (i.e., do not
depend on the point x € R™).

The processes satisfying (7), arise in various stochastic models (e.g., in economy).

Suppose that the coordinates S of the solution of (7) are positive for all t. Than by It
formula the process £(t) = log S(t) = {log S1(¢),...,log S™(t)} satisfies the equation

d6v(0) = (a® = JA30745) ) (160t + A5, ) A0 0

since dw®dw? = §*Pdt (here 6 is Kronecker’s symbol: 6% = 1, 6% = 0 for a # j3).

Analogously, from It6 formula we derive that if a process £(t) satisfies (8), the process S(t) =
exp&(t) = (exp&l(t),...,exp&n(t)) satisfies (7). Note that in this case the coordinates S are
positive.

Denote by B the symmetric positive semi-definite matrix AA* (where A* is the operator
conjugate to A as above) and by diagB the vector constructed from the diagonal elements of
matrix B. Note that AgéMA?; is the a-th element B** of diagB. If a process satisfies (8), it also
satisfies the following equation with mean derivatives:

{ DE(t) = (a — LdiagB) (,£(t)), (9)
Ds¢(t) = B(t,£(t))

or, equivalently,
{ D{(t) + %diagDQ(é‘(t» = a(t,{(t)), (10)
Dog(t) = B(t,£(1)).

Let £(t) be a solution of equation (9) (or (10)). We call it the logarithm of the process
S(t) = exp&(t) = (£, ..., e 1),

Note that if equation (9) (or (10)) is given a priory with some B € S, (n), the process
S(t) = exp(&(t)) may not satisfy (7). Thus the models based on equations (9) or (10) cover a
broader class of problems then those based on (8).

Consider set-valued mappings a : [0,7] x R® — R™ and B : [0,7] x R® — S, (n) and the
following inclusion with mean derivatives

{ DE(t) + sdiagDs£(t) € a(t, (1)),

Dy&(t) € B(t,£(1)) (11)

Inclusion (11) is called the one of geometric Brownian motion type. Such an inclusion can be
constructed from an equation of form (10) with control in the usual way. Let the right-hand

'Recall that we use Einstein’s summation convention with respect to a shared upper and lower index.
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sides a(t,z,u) and B(t,z,u) of (10) depend on controlling parameter v and U(t,z) be the
set of the possible values of controlling parameters at (t,z), then on constructing a(t,z) =
cd U a(t,z,u) and B(t,z) = ¢l |J B(t,z,u) where ¢l denotes the convex closure, we
uel (t,z) uel/(t,x)

obtain inclusion (11).

Below we describe conditions, under which the solutions of (11) do exist, and prove existence
of optimal solutions maximizing a certain cost criterion.

Note that inclusion (11) has the form analogous to equation (10). The inclusion given in the
form analogous to (9) would be ill-posed.

3. The main results

Theorem 1. Specify an arbitrary initial value & € R™. Let a(t,x) be an upper semicontinuous
set-valued mapping with closed convex images from [0, T] x R™ to R™ and let it satisfy the estimate

la(t, 2)[* < K (1 + [|l=[|*) (12)

for some K > 0.

Let B(t,z) be an upper semicontinuous set-valued mapping with closed convex images from
[0,T] x R™ to S4(n) such that for each B(t,x) € B(t, ) the estimate

[trB (¢, x)[| < K (1 + =) (13)

takes place for some K > 0.

Then for every sequence €; — 0, ; > 0, each pair of sequence a;(t,x) and B;(t,z) of &;-
approzimations of a(t,z) and B(t, x), respectively, generates a perfect solution of (11) with initial
condition &g.

Proof. Specify a sequence of & — 0 and sequences of ;-approximations a;(t,z) and B;(t,z)
as in the hypothesis of Theorem. Without loss of generality we may suppose that Bi(t,x) are
S-approximations of B(t, x).

As the norm in S(n) we take the restriction to S(n) of Euclidean norm (i.e., the square root
from the sum of squares of all elements of a matrix) in the space L(R™,R™) isomorphic to R,
Without loss of generality we suppose that (13) is valid for this norm.

All a;(t, z) satisfy (12) with a certain constant that is bigger than K (see the hypothesis).
Nevertheless we keep the notation K for this constant. Since 1+ ||z|? < (1 + ||=||)?, for a;(¢,z)
the estimate

las(t, )| < K1+ |lz]), (14)

is valid as well.

The approximations B;(t,z) take values in S, (n). Introduce B;(t, z) = B;(t,z) + <1 where
I is the unit matrix. Immediately from the construction it follows that B;(¢,z) for every i is
a continuous g;-approximation of B(t,z) and that at each (¢,x) it belongs to Si(n), i.e., it is
strictly positive definite. Besides, B;(t,x) satisfy (13) where the constant K > 0 is bigger than
the constant from the hypothesis of Theorem but nevertheless we keep the notation K for it.

By Lemma 1 there exist continuous fields A;(t,z) such that B;(t,z) = A;(t,x)A(t,z).
Directly from the definition of trace we obtain that trB;(t,z) is equal to the sum of squares
of all elements of A;(t,x), i.e., it is the square of the Euclidean norm of A;(¢,x) in L(R™, R").
Hence from (13) and from the obvious inequality (1+||z||) < (1+]z||)? it follows that all A;(¢,z)
satisfy

1At )| < K (1 + ). (15)
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Without loss of generality we can suppose that the above-mentioned continuous
approximations a; and A; are smooth. Indeed, if a certain a; is not smooth, we can approximate it
by a sequence of smooth mappings a;; that converges to a; as j — oo with respect to the uniform
norm on compacts. Hence for j large enough the graph of a;; belongs to the ;-neighborhood
of the graph of a. Thus a;; is an g;-approximation of a. Then we replace continuous a; by this
a;j, i.e., take it as new a;. For A; the arguments are the same. Note that after this replacement
estimates (14) and (15) remain true.

Consider the sequence of stochastic diferential equations

5i(6) = (a1 — diagBi) (b, E:(0)db + Ailt, &(0)dw(s), (16)

where w(t) is a Wiener process in R"™.
Note that every (a; — 1diagB;)(t,z) is smooth as the difference of smooth mappings.
Consider ||(a; — 3diagB;)(t, z)|| and show that it satisfies the estimate of (14) type with a
constant greater than K. Indeed,

1 . 1.
I{a; — 5diagBi)(t, 2)|| < llai(t, 2)l| + || 5diagBi(t, z)|

< K(1+||z])) + KatrBi(t,z) < K>(1 + [a]). (17)

Thus, the coefficients of equations (16) are smooth and satisfy estimates (17) and (15). So,
every equation of this sequence has a unique strong solution &;(t) well-defined on the entire interval
[0,7] (see. [9]). In particular, this means that each process §; can be given on every appropriate
probability space, where w(t) is adapted to its own <pasts.

Consider the measure space (2, F) introduced in Section 1.Denote by P; the o-subalgebra
of F, generated by cylinder sets with bases on [0,¢], and by N; — the o-algebra generated by the
preimages of Borel sets in R™ under the mapping z(-) — x(t).

Since all the solutions &;(t) are strong, they all can be defined on a certain unique probability
space (Q, F, P) and so they all can be considered as measurable mappings from (Q, F ) to (2, F)
(see Section J.

On the measure space ([0,7], ), where B is Borel o-algebra, by A\; we denote the Lebesgue
measure.

As it is mentioned in Section 1.every process ;(t) determines a measure p; on (2, F) and on
the probability space (€2, F, ;) the coordinate process represents &;(t).

Since all (a; — 3diagB;)(t, x) satisfy (17) and all A;(t,z) satisfy (15) with the same K (see
above), equations (16) satisfy the hypothesis of |9, Lemma II1.2.1] and the remark after it for all
¢ and so the estimate

E(sup [I€:(t)]%) < Ca. (18)
t<T
is valid for all &;, where Cy depends only on the interval [0,7] and on K from (17) and (15).

Remark 2. In the proof of |9, Lemma III.2.1] estimate (18) is derived from the relation
E(sup||&(®))?) < K(1 + fg E(sup||&(uw)||?ds). Since the solutions are strong, they can be given
t<T u<s

on various probability spaces and the latter inequality is true on all such probability spaces. In
particular, it is true on the probability space (£, F, u;) where the solution is described as the
coordinate process. This means that (6) is valid for all i for some Cy depending only on the
interval [0,7] and on K from (17) and (15).

In addition by corollary in Section II1.2 [9] the set of measures {p;} is weakly compact. Thus
for a given sequence of approximations a; and A;, from the sequence of corresponding measures
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u; one can select a subsequence that weakly converges to a certain measure p. For simplicity of
presentation we suppose that the sequence p; itself weakly converges to p. Denote by £(t) the
coordinate process on the probability space (2, F, u). Note that Py is the <past> and N is the
<present> o-algebras for £(t).

Lemma 3. [,( sup [|z(t)|*)du < Cy where constant Cy > 0 depends only on the interval [0, T
0<t<T
and on K from (17) and (15).

Since the sequence of measures p; weakly converges to p, Lemma 3 follows directly from
Remark 2 and Corollary 1 (ii).
Let us continue the proof of Theorem. From the construction we derive that

B3 (t, x())[1* = | Ai(t, 2(£)) A7 (2, (1)) |
< || Ait, aO)P1A; (¢ aO)P = (trBi(t, x(1))?
< Ki(1+ z@®)])? < Ka(1 + z(0)]?).
Since || B;(t,z)|?> < K2(1 + ||=||?)), taking into account Lemma 3, we see that

/ 1Bs(t, 2(8))|2dp x ddr < K. (19)
Qx1[0,7]

Introduce the mapping B; : [0,T] x Q — S, (n) by the formula B;(t,z(-)) = B;(t,z(t)). Then it
follows from (19) that the set of all B; is uniformly bounded in the Hilbert space Lo([0, T]x 2, S(n))
defined with respect to measures A\ in [0,7] and p in . Hence, this set is weakly relatively
compact in La([0, T]xQ,S4(n)) and so it is possible to select a subsequence that weakly converges
in Ly(]0,T] x ©2,54(n)) to a certain B : [0,7] x @ — Si(n). For simplicity, let the sequence
Bi(t,z(-)) itself converge to B : [0,7] x Q — S, (n).

Introduce also B(t,z(-)) = E(B | N}) on the probability space (Q, F, u), z(-) € Q. From the
definition of weak convergence and presentation of a linear functional in Lo it immediately follows
that diagB;(t, z(-)) weakly converges to diagB(t,z(-)) in Ly([0,T] x Q,R").

As |lai(t,z(t))]|*> < K(1 + ||z(¢)||?) by (12), then, taking into account Lemma 3, we obtain
that for some K7 > 0

lla; (¢, 2(2))||2dM x dp < K. (20)

[0,T]x$2

Introduce the mappings a; : [0,7] x @ — R” by the formula a;(¢,z(-)) = a;(t,z(t)). Then from
formula (20) it follows that the set of all @; is uniformly bounded with respect to the norm in
Hilbert space La(]0,7] x ©,R™) defined with respect to measures A\ in [0,7] and p in Q. Hence
the set of all a; is weakly relatively compact in La([0,7] x ©,R™) and so it is possible to select
a subsequence that weakly in Ls([0,7] x ©,R™) converges to a certain a : [0,7] x Q — R™. For
simplicity, let a;(¢,z(-)) itself be this subsequence.

Introduce also a(t,z(-)) = E(a | N¢) on the probability space (Q, F, u), z(-) € .

Immediately from the definition of weak convergence and from the above arguments we
obtain that (a; — %diagéi)(t,x) weakly converges to (a— idiagB)(t,z) in Lo([0,T] x Q,R").

By Mazur’s lemma (see, [13]), for the weakly convergent sequence (&; — 1diagB;)(t, z(-)) there
exists a sequence of finite convex combinations ag(t,z(-)) of its elements that converges in
the same space strongly (in norm). The convex combinations have the form

n(k)
aulto) = Y- 0 (@ - yaiagB)(ta()).

i=j(k)
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n(k
where 3; > 0,1 =j(k),...,n(k), j(k) — oo as k — oo and i) B; = 1.

i=j(k)
Remark 3. Above we have introduced a(t, z(+)) as a weak limit of a;(¢, z(+)) in L2([0,T] x Q,R™)
equipped with measures \; on [0,7] and px on Q. By Mazur’s lemma, as well as above, it is a
strong limit of some correspondent sequence of convex combinations of a; (different from that
for (a; — %diagéi)). But since the images of a are convex, those convex combinations are ¢;-
approximations for some sequence of €; — 0. Thus p-a.s. a(t,£(t)) is a selector of a(t,&(t)),
measurable with respect to N;. The same arguments show that p-a.s. B(t,£(t)) is a selector of
B(t,£(t)), measurable with respect to N;.

Note that by construction and by the properties of conditional expectation the sequence
a;(t,x(-)) converges to (a — diagB)(t,z(-)) strongly in La([0,7] x £, R™) where Q is equipped
with the o-algebra N;. Hence it converges also in probability (in measure ) and so it is possible
to select a subsequence that converges p-a.s. In order not to change the notation, we suppose
that a;(¢,z(-)) converges to (a — diagB)(t,z(-)) u-a.s.

Choose 6 > 0. By Egorov theorem (see, e.g., [13]) there exists a set Ks C € such that
p(Ks) > 1 —0 and on this set the sequence a;(t, z(-)) converges to (a — diagB)(t, z(-)) uniformly.

Let f:Q — R be an arbitrary bounded continuous function measurable with respect to N;.
Specify an arbitrary € > 0. From the above uniform convergence on Ks and boundedness of f it
follows that for all 7 and all ¢ € [0, T] simultaneously there exists N(g) > 0 such that for & > N(¢)

I 5 (axt,20) ~ (0~ diagB)(t,2())) ] < e (21)
Ks

Since f is bounded, there exists some = > 0 such that |f(z(-))| < E for all z(-) € 2. Note also that
p(Q\Ks) < 8. On the other hand, [Ja;(t, &(t))I| < K (L+||&(#)]) by (14) and sup [ [|][Zedn < Co
i Q

by (18). Note also the relation

1
lellovdis <+ [ lgiZadn
lI€ill>c 1€ill>c
(see [14]). Thus, taking into account Remark 2, we get

_ , IEK(1+ Cy)
I f@() (ar(t, z() = (a — diagB)(t, x("))) dpil| < ————,
O\K; C
i.e., since ¢ is an arbitrary positive number, the above norm of integral becomes smaller than any
positive number when § — 0. Together with (21) this means that

lim | / 7)) (a(t.20)) ~ (a — diagB)(t.2()) dyu| = 0 (22)

k—o0

for all 4 uniformly.
Note that (a — diagB)(t, z(-)) is continuous on the set of full measure p in Q. Indeed, it is a
uniform limit of continuous functions on Ks for every § > 0 and so on every ﬁnite union of the

sets Ks. Thus it is continuous on the finite unions of the sets K. Evidently hm wu( U w(Ks,)) =1
=1
for a sequence of §; — 0.

Then by the properties of weak convergence of measures and by (14) we can apply Corollary
1 (i) and obtain that

lim / f(z())(a — diagB)(t,z(-))dpr = / f(z())(a — diagB)(t,z(:))du

k—o0
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and that
kli)rgo/ f(z x(t + At) — z(t))dpr, =
/f x(t+ At) — x(t))dp.
The following relations take place
I
</f ot A) = a(6) = (0 ydiag ) (t.2(0) )
/ Fa) (2t + A) — 2(t) — (a— %diagB)(t,x(-)))duH <
I ] fat) t+At—xu<mk—/f ) (el + 20) — () dl
+ Z Bi / fx — %diagBi)(ma:(t))dui
i=j(k)

- [ f@t) s~ gaiagBo(t,a(t))d)|

+w/f Daau(t, o dul/f )(a — sdiagB)(t, x())du]

where the right-hand side of this inequality becomes less than every positive number for k large
enough. Thus

A%ﬂo/ flz()(x(t+ At) —x(t) — (a — %diagB)(t,x(-)))d,u:

RO > o S+ 30t

4w—§mw3muammm)=o

and so DE(t) + diagB(t,&(+)) = a(t, () € a(t,&(+)) = a(t,&(t)) p-as. (see Remark 3).

Recall that we have constructed the sequence B;(t,z(-)) that weakly converges
to B(t,z(+)) and B(t,z(-)) is a Ni-measurable selector of B(¢,£(t)) p-a.s. (see Remark 3).

Then applying Mazur’s lemma and Egorov’s theorem in analogy to above arguments we show
that for f(-) as above

lim /f 2t + At) — (1)) (a(t + At) — 2(8)*

At—+0

—A(t,z(t))A*(t, z(t))]dp = 0.
Hence D2{(t) = A(t,&(t))A(t, &(t))* = B(t,£(t)) € B(t,£(t)) p-a.s.
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Remark 4. Note that all sequences of e-approximations for all sequences of £; — 0, used in the
proof of Theorem 1, satisfy (17) and (15) with the same K so that by corollary in Section III.2
[9] the set of measures {u;} (corresponding to all sequences and all ) is weakly compact.

Let f be a continuous bounded real-valued function on [0,7] x R™. For solutions of (11)
consider the cost criterion in the form

T
JE() = E /0 F(t, ()t (23)

We are looking for solutions, for which the value of the criterion is maximal.

Theorem 2. Among the perfect solutions of (11) constructed in the proof of Theorem 1, there is
a solution £(t) on which the value of J is maximal.

Proof. Since all the measures on (€2, F), constructed in the proof of Theorem 1 for perfect solutions
of (11), are probabilistic and the function f in (23) is bounded, the set of values of J on those
solutions is bounded. If that set of values has a maximum, then the corresponding measure p is
the one we are looking for: the coordinate process on the space (€2, F, i) is an optimal solution.
Suppose that the above-mentioned set of values has no maximum, but then it has a lowest
upper bound R that is a limit point in that set. Let u; be a sequence of measures such that for
the corresponding solutions &/ (t) the values J (& (t)) converge to N. Every uf is a weak limit of a
sequence of measures p;; corresponding to some sequence of €;-approximations as j — oco. Select
from the sequence a subsequence (for simplicity we denote it by the same symbol p;;) such that
for the corresponding solutions &;;(t) and for all i we obtain the uniform convergence of J(&;;(-))
to J(&(+)) as j — oo. Then J(&;(-)) — Nas i — oo. Since the set of all measures corresponding to
all approximations, is weakly compact (see above), we can select from pu;; a subsequence (denote
it by the same symbol p;;) that weakly converges to a certain measure p*. By the construction,
for the coordinate process £*(t) on (2, F,u*) we get J(£*(-)) = N, i.e., the value is maximal.
Since p* is a limit of p;;, £*(t) is a perfect solution of (11) that we are looking for.
O
The assertion of Theorem 2 deals with logarithms of generalized geometric Brownian motions
satisfying inclusion (11). Note that it remains true also for the corresponding generalized geometric
Brownian motions. Indeed, introduce the cost criterion J(£(t)) = J(exp &(t)) (see Section 3). This
criterion satisfies the hypothesis of Theorem 2 and so among the generalized geometric Brownian
motions corresponding to solutions of inclusion (11), there is an optimal process maximizing .J.
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YAK 517.9 + 519.216.2

OIITUMAJILHBIE PEIIIEHUA AJ1d BKJIIOYEHUN TUIIA
I'EOMETPNYECKOI'O BPOYHOBCKOI'O JABV2KEHIN
C ITPOMN3BOJIHBIMUA B CPE/IHEM

FO.E. TI'nukaux, O0.0. 2Keamuxosa

W nest mpon3BOAHBIX B CPETHEM CTOXACTUIECKUX IIPOIECCOB ObLIa mpeyiozkera . Hemrnb-
conoM B 60-x romax XX Beka. B orsimume OT OOBIYHBIX NMPOU3BOJAHBIX, IPOU3BOIHBIE B
CpeJjiHeM KOPPEKTHO OIPEJIEJIEHBI IJIsi OYEeHDb ITHPOKOIO KJIACCA CIIyYalHBIX HTPOIECCOB, W
YPaBHEHUsI C POU3BOJHBIMU B CPEIHEM €CTECTBEHHO BO3HUKAIOT BO MHOIUX MATEMATHYIE-
ckux Mozienax dbuzuku (B gactHoCTH, D. HeJlbCOH BBEJI IPOU3BOIHBIE B CPEIHEM JJIs HY K]
Croxacruueckoii MexaHuku — BapuaHTa KBAHTOBOI MEXaHWMKM). BKIIIOUEHHs C IPOU3BOJI-
HBIMU B CPEJTHEM SIBJISIOTCS] €CTECTBEHHBIMY OOODIIEHUSIMI YKA3aHHBIX YPABHEHUN B CIydae
yIpaBJIeHUsI ¢ OOPATHOW CBSI3bIO WJIN JIBUXKEHWS B CJOXKHBIX cpefiax. CTaThbsl MOCBSIIIEHA
KPATKOMY BBEJEHUIO B TEOPHIO yPABHEHWUI M BKJIIOYEHWI € IPOM3BOJHBIMU B CPEIHEM U
U3YyYEHHIO CITENUATBLHOTO KJIACCa TOJO00HBIX BKJIFOUEHW, HA3BIBAEMbBIX BKJIFOUEHUSIMHU TH-
a PeOMEeTPUIECKOr0 OPOYHOBCKOrO JIBUKeHUsl. JIOKa3aHO CyIeCTBOBAHUE ONTHUMAJIBLHOTO
pelleHnst, MAaKCUMHU3UPYIONIEr0 HEKOTOPBIH (DYHKITMOHAJ KAYECTBA.

Karouesnie caosa: npouseoduvie 6 cpednem; cmozxacmuveckue Juddeperyuanvroie

BKANOUEHUA;, ONMUMANDHOE DEULEHUE.
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