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We dedicate this paper to the memory of Yuri E. Boyarintsev, who was one of the pioneers in
discovering differential-algebraic equations.

In the projector based framework, any regular linear DAE features several continuous
time-varying characteristic subspaces that are independent of construction technicalities,
among them the so-called sum-subspaces. As it is well-known, the local matrix pencils of
a higher-index time-varying linear DAE do not reflect the global structure of the DAE in
general. We show that, on the given interval, the local matrix pencils of the DAE are regular
and reflect the global DAE structure if several of these characteristic subspaces are time-
invariant. We discuss practicable methods to check the time-invariance of these subspaces.
The corresponding class of DAEs is related to the class of DAEs formerly introduced and
discussed by Yuri E. Boyarintsev.
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Introduction

Inspired by the fundamental meaning of regular matrix pencils for linear constant coefficient
differential-algebraic equations (DAEs), e.g. [6], several early approaches to DAEs

A2 (t) + B(t)xz(t) = q(t), teT, (1)

with matrix coefficients A(t), B(t) € R™™ depending continuously on ¢ € Z, assume that the
so-called local matriz pencils NA(t) + B(t), t € Z, are regular.

For instance, in [4, Section 2.4], the DAE (1) is said to be regular if it has exclusively regular
local matrix pencils on the given interval, which is motivated by the feasibility of integration
methods the implicit Euler method, for instance.

If the local matrix pencils are regular and there is a number ¢ such that cA(t) + B(t) is
nonsingular for all ¢, then, by substituting x(t) = exp(ct)Z(t), the DAE (1) can be transformed
into the special form

(cA(t) + B(t))"YA(t) Z'(t) + 2(t) = (cA(t) + B(t)) Lexp(—ct)q(t), tecT. (2)

A(t)

In turn, the special form (2) serves as a vantage point for the use of the Drazin inverse, similarly as
for time-invariant DAEs. Obviously, Y.E. Boyarintsev was motivated by this fact: In |1, Chapter
5], the above property appears as an essential ingredient of Boyarintsev’s regularity notion for
DAEs. Later on, this property generally accounts for regularity: In |2, Definition 3.7.1|, the DAE
(1) is said to be regular on a compact interval T if there is a value ¢ such that cA(t) + B(t)
becomes nonsingular for all t € 7.
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More recent notions, e.g. [3, Section 2.1], also Section 2. below, do no longer tie regularity
of DAEs to regular local matrix pencils. Nevertheless, the interest in DAEs showing regular local
matrix pencils persists for different reasons.

After discussing general local DAE aspects in Section 1, in Section 2. we characterize a class
of DAEs whose local pencils uniformly reflect the global DAE structure in terms of the projector
based framework and we expose there relations to the special DAE class formerly introduced by
Boyarintsev. This class is actually characterized by certain time-invariant subspaces. Finally, in
Section 3, we consider possibilities to check the time-invariance of these subspaces.

1. Boyarintsev’s (2-condition

The class of linear DAEs showing regular local matrix pencils is broad and relevant for many
applications. If A(t) remains nonsingular on the interval Z, then the DAE (1) is actually a regular
ordinary differential equation, which is also called regular index-0 DAE. Trivially, then all local
matrix pencils are regular with index 0. Further, if the DAE (1) has differentiation index 1, then
all its local matrix pencils are regular with index 1.

Furthermore, all DAEs in Hessenberg form of arbitrary size p € N belong to this class, their
differentiation index equals p € N, and the local matrix pencils are regular with index p € N, too
[4, Section 2.4].

On the other hand, as it has been well-known for a long time (e.g. [7, 8, 4]), the local
matrix pencils are not necessarily regular for higher-index DAEs (1). We illustrate this fact by
the following two simple examples.

Example 1. The constant coefficient DAE

1 00 1 00
00 0|Z®)+ |0 1 0|z(t)=q(t), teZ:=]0,1], (3)
010 0 0 1

is regular with Kronecker index 2 owing to the matrix pencil properties. By means of a regular
transformation K with

-1 0 0
T(t)=Kt)z(t), K'(t)=HH)K(t), te Z,KO)=1, Ht):==| 1 0 —1],
0 0 O
the regular DAE (3) is transformed into the time-varying DAE
1 00 1 00
0 0 O K)2’(#)+ (|0 0 O| HHK () + K(t))z(t) =q(t), teT. (4)
010 010

A(t) B(t)

For arbitrary numbers c we arrive at

c 0
cA(t)+ B(t)= [0 1 K(t), det(cA(t)+ B(t))=0, teZ,
1 ¢

o O O

which means that the local matrix pencils of the DAE (4) are uniformly singular. However, no
doubt, regular transformations have to preserve basic DAE properties. The DAE (4) has regular
tractability index 2 and differentiation index 2, and it inherits the solvability of (3).
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Example 2. The time-varying DAE

0 1 0 1 0

0 —t 1|2'(t)+ |0 0| z(t) =q(t), teZ, (5)
0 0 O 0 1

has regular tractability index 3 and differentiation index 3 on each arbitrary interval Z as well as
the corresponding solvability properties, but all the local matrix pencils are singular.

We emphasize that there are also DAEs that have exclusively regular local matrix pencils,
but do not show a regular solvability behavior. The DAE in the next example is classified as
nonregular with index 0 by [10, Chapter 10].

Example 3. The time-varying DAE

42
[_i ﬂ ) +2(t) =0, teT, (6)

has local matrix pencils that are regular with index 2. Here, all vector functions given by

with an arbitrary continuously differentiable scalar function ~ are solutions.

In addition to the nonsingularity of cA(t) + B(t) for all ¢t € Z, a further special structural
demand is incorporated into the regularity notion in [1], which is marked as Q-condition. Even
though this property does no longer appear as an ingredient of the regularity notion later on, see
[2], it plays a central role in Boyarintsev’s work. The property 2 applies to the transformed DAE

A)E () + 2(t) = §(t), teT, (7)

which is supposed to satisfy the following basic conditions (see [1, p. 73 and p. 83]): The Jordan
representation A = NJN~! is valid with continuously differentiable nonsingular N, N~! and
continuous .J. Additionally, the Drazin inverse J” is continuous, and hence ind J(t) is time-
invariant, JP.J is constant and J5(I — JDJ) is constant for s € N. This implies the particular
structure

A(t) = N(t)JON() ™, J(t)z[JO 0} ®)

0 Ji(t)

with a constant nilpotent block Jy and a nonsingular block J;(¢). Since ker J(t) is time-invariant,
it also follows that (cf. (2))

ker A(t) = ker A(t) = ker (J(t)N(t)™1) = N(t)ker J () (9)

is a C!- subspace varying with ¢ in R™.
Next, for the Q-condition, see [1, p. 90], the gist of the matter is the following:

Definition 1. The time-varying matrizc fl(t) has the property € on the interval Z if at least one
of the following three conditions is valid:

1. A(t) is nonsingular for t € T,

2. A(t) has index 1 fort € T,
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3. A(t) can be brought into Jordan form by a constant similarity transform, that is, A(t) =
NJt)N~! fort € T.

By the Q-condition, if indJy > 2, then N is supposed to be time-invariant. In this case, the
subspaces ker A(t) and im A(t) are also time-invariant, which rules out the negative Example 3.
Note that Definition 3.7.2 in [2]| generalizes the Q-condition in the sense that the expression
(I — A(t)PA(t))A(t) is time-invariant on the given interval.

2. Regularity in the projector based framework

As before we consider the DAE (1) with continuous coefficients and a C!- subspace ker A,
but we do not demand regular local matrix pencils.
By means of a continuously differentiable projector valued function

P:T —R™™,

with ker P(t) = ker A(t), P(t)2 = P(t) for all t € Z, we rewrite the DAE (1) as DAE with properly
stated leading term

A@)(P()z(t))" + (B(t) — AP (1)x(t) = q(t), teT, (10)

and, aiming at a further analysis of the DAE, we construct a sequence of admissible matrix
functions and associated projector functions. Thereby, the special choice of the projector function
P does not matter at all. One can restrict oneself to deal with the orthoprojector function.

For more transparency, we drop the argument ¢ in most parts; the relations a meant pointwise on
the given interval. Below, the condition @; = Q? indicates that @; is a projector valued function.
We adapt the notion of admissible matrix function sequences [10, Definition 1.10] to the DAE
(10):

Definition 2. The sequence of continuous matriz functions Go, ..., Gy is said to be admissible
on the interval I for the DAE (10) if it is built by the following rule:
Go:=A, Qo= Qf, imQo = Ny := ker Go, ITo := Py := I — Qq,
By:= B — AP,
for i=0,...,6—1:
Git1:=G; + BiQi,
Nit1:=kerGiy1, Nip1:= Nigzi N (No+ -+ Ny),
Qit1 = Q% 1, M Qi1 = Niy1, (No+ -+ N;) © Nijq C ker Qip1,

Py =1 = Qiy1, Hiyy := 11 Py,

Biy1 := B;P; — Gi1P(PIl;11) PII;,

and Qo is continuwous, PIIy,..., PIl; are continuously differentiable, and G; has constant rank
ry fori=0,... K.

By construction, it holds that r; < r;41.

Definition 3. The DAE (1) is said to be reqular on the interval Z if ro = m or if there are an
integer 1 € N and an admissible matriz function sequence Go, ..., G, constructed for (10) such
that

0<rg < <ry1 <ry=m. (11)
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Put 4 =0 if rg = m.
The values r; are called characteristic values and p is called the tractability index of the DAE (1).

This definition is consistent with [10, Definition 2.61]. We refer to [10, Chapter 2], for
arguments such as solvability properties justifying the term regularity as regards content.
If the DAE is regular, then the above intersection subspaces are necessarily trivial, that is,

Nij1 = {0}, fori=0,...,1—2.

Besides, this condition represents a practically useful regularity criterion.
In the context given here, we can restrict ourselves to the so-called widely orthogonal projector
functions [10, Subsubsection 2.2.3| in the regular case, which correspond to the special choice

ker Qir1=(No+ -+ Ni) & (No+ -+ + Nig1)", i=0,...0—2. (12)

The tractability index as well the characteristic values of the DAE are invariant under scalings
of the DAE and transformations of the unknown function. Also refactorizations of the leading
term, e.g. choosing a new projector function P in (10), do not change these values, [10]. In the
case of constant coefficients A and B, these values describe the structure of the Kronecker normal
form of the matrix pencil formed by the ordered pair {A, B}.

The reformulation (10) suggests to consider also the so-called modified local matriz pencils
MA(t) + B(t) — A(t)P'(t), tel. (13)

If the DAE is regular with tractability index 0, then A(¢) remains nonsingular on the given interval
and P(t) = I. Then, trivially, the local matrix pencils and the modified local matrix pencils are
regular, uniformly with Kronecker index 0.

If the DAE is regular with tractability index 1, then the local matrix pencils and the modified
local matrix pencils are regular, uniformly with Kronecker index 1, e.g., [8, Theorem A.13].

The classes of regular DAEs with tractability index p € {0,1} coincide in essence with those
described in Definition 1, item 1 and item 2. We concentrate now on the more complicated higher
index cases.

Motivated by a series of examples, it has been the conjecture in [8, 9] that the modified local
pencil has stronger relevance for global DAE properties. Notice that the regular index-2 DAE (4)
actually shows regular modified local pencils, while the modified local pencil of the nonregular
DAE (6) is singular as expected. However, for the regular index-3 DAE (5) also the modified local
pencil fails to be regular, and hence, this conjecture appears to be a misapprehension for regular
DAEs with index g > 3, while it becomes true for regular index-2 DAEs. Note that the early
version of tractability index 2 in [8] applies modified local pencils.

Theorem 1. The DAE (1) is regular with tractability index 2 on the interval Z if and only if the
modified local matriz pencils (13) are regular, uniformly with Kronecker index 2.

The local matriz pencils of a DAE (1) that are reqular with tractability index 2 are not necessarily
reqular.

Proof. The first statement is a consequence of [12, Theorem 2.6], and, due to [8, Theorem
1.3.1.], the property of the modified local matrix pencils to be regular with Kronecker index
2 is independent of the choice of the projector function P.

The DAE (4) in Example 1 is regular with tractability index 2, since it represents a transformed
constant coefficient index-2 DAE. The local matrix pencils are singular, which confirms the second
statement. O
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Corollary 1. If the DAE (1) is reqular with tractability index 2 and if, additionally, the nullspace
ker A(t) is time-invariant, then the local matriz pencils are regular, uniformly with index 2.

Proof. This statement follows from Theorem 1 by taking P as the orthoprojector function.
O
Note that there is a variety of possibilities to choose the projector functions Qo,...,Qu—1.
Of course, the characteristic values do not depend on the special choice of the projector function,
while the matrix functions themselves do so. We emphasize that the sum-subspaces

Ny, No—i-Nl,...,No—i-”-—i-N“_l (14)

are also independent of the special choice of the projector functions, [10]. We refer to [10] for
further properties. Regular time-varying DAEs are shown to be solvable similar to constant
coefficient DAEs corresponding to regular matrix pencils.

Proposition 1. If the leading matriz coefficient A(t) in (1) has a time-invariant nullspace, then
the local matriz pencils and the modified local matriz pencils coincide.

Proof. Denote by P, and P a constant and an arbitrary continuously differentiable projector
function along ker A, respectively. Then we have AP’ = AP.P' = A(P.P)' = A(P.) = 0.
O
The next theorem generalizes Corollary 1 for DAEs that are regular with arbitrary index.

Theorem 2. Let the DAE (1) be regular with tractability index p = 2 and characteristics (11),
and let the subspaces
No, No+ Ni,...,No+---+ Ny 2 (15)

be time-invariant.
Then the local matriz pencils are reqular, with uniform Kronecker indexr p and characteristics

(11).

Proof. We apply P to be the orthoprojector onto (the time invariant) subspace (ker A)*, which
yields By = B. We choose Qg to be the orthoprojector onto ker Gy = ker A such that Py = P.
Since the DAE (1) is regular, so is the alternative version (10) with properly stated leading
term. In particular, we can apply the so-called widely orthogonal projector functions Qg and
Q1,-..,Qu-1, see [10]. The resulting projector functions Ily,...,II,_1 are the orthoprojectors

along the subspaces No,...,Ng +---+ N,_1 and, hence, Iy, ..., I, 2 must be time-invariant.
Moreover, also PIly = Ily,...,PIl,,_5 = II,_o are time-invariant. Therefore, the expressions
(PII;1+1)" within the matrix function sequence disappear for i = 0,...,u — 3. It results that

Bi-‘rl:BiPi:BHi: izO;---aM—3a
and further, with F:=1 — P,_P(Il,,_1)'II,—2Q,—1 being nonsingular,

Gu-1=A+B(Qo+ IIoQ1 + - + 11,_3Q,—2),
By—1=By2F,—2— Gu—lp(ﬂu—l)lnﬂ—2 = BIl,—2 — Gu—lp(ﬂu—l)lnﬂ—%

Gu=Gu-1+Bu-1Qu-1=Gu1+ BIl,_2Q,—1 — Gu1P(II,_1) II,—2Q,-1
= (G,u—l + BH;L—QQM—I)F
=(A+B(Qo+ yQ1+ -+ 11, 2Q,1)F
— (A+B(I - II,_1))F.
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Now it becomes clear that, at each frozen ¢t € Z, we obtain a matrix sequence for the local pencil
formed by the ordered pair {A(t), B(t)}. Due to [9, Theorems 3 and 4], this pencil is regular with
Kronecker index p and characteristics (11).
O
Turn back to the DAE class considered by Boyarintsev, given by (7), (8) and Definition 1
(3), i.e.,
N [JO 0 ] N7 ) +3t)=qt), teT (16)
0 Ji(t) ’ '
Let the constant matrix Jo have index p > 2, and let Ggo = Jo, G{O, ceey GI{O denote
an admissible matrix sequence for the matrix pair {Jy, I} associated with the projectors
670, cee Q;{O—l' All matrices G;-JO and Q;.IO are constant, and so are the subspaces Ni‘]O := ker G;]O
for ¢ < p. Moreover, G;]“ is singular for ¢« < u — 1, but G/{O is nonsingular.
With

Gi(t):zN[Gi‘]O 0 }NE@@)::N[Q{O O}Nl, P=0,.. 1,

0  Ji(t) 0 I
Go 0 1
= I3
Gu(t) N[O Jl(t)}N , teT,

we obtain an admissible matrix function sequence and associated time-invariant projector
functions for the DAE (16). The corresponding subspaces

No = N(Ng® x {0}),.., Nuo1 = N(N° | x {0}),

are time-invariant and, hence, ]\70, N0+N1, up to No+-- '+Nu—1 are so. This shows that Theorem
2 applies to the DAE (16). Taking into account that the DAE (16) represents the special form
of the DAE (2) corresponding to Boyarintsev’s Q-condition, and regarding that the scaling of
the DAE by (cA(t) + B(t))~! and the transformation z(t) = K (t)&(t), K(t) := exp(ct)I, do not
change these sum-subspaces, we know that Boyarintsev’s higher index DAEs have time-invariant
sum-subspaces (14) in their original form (1). This proves that Boyarintsev’s class of higher index
DAESs represents a special class belonging to the application field of Theorem 2.

3. Checking time-invariant sum-subspaces and the responsibility
of local pencils

Recall once again that the local matrix pencils of index-0 and index-1 DAEs are always
regular with index 0 and index 1, respectively.

For regular higher-index DAEs, Theorem 2 provides a useful, sufficient criterion of the
responsibility for the local matrix pencils. The subspaces (15) are time-invariant if and only

if the projector functions Ily,. .., II, o associated with widely orthogonal nullspace- projectors
Qo - .., Q,—2 are so. In consequence, having no further a priori information, one has to generate
the projector functions Ily,...,II,, 2 associated with widely orthogonal nullspace-projectors

Qo, - .., Qu—2 by means of one of the algorithms described in [10, Chapter 7| first, and then to
check their time-invariance. The latter can be done by applying a difference. For low-dimension
problems, algorithmic differentiation techniques (AD) are preferable. AD provides the Taylor
coefficients of IT; and, therefore, a more reliable check of time-invariance, see [11], [5].

Of course, if available, an a priori structural analysis ensuring structure reflecting local matrix
pencils and even time-invariant subspaces (15) would be best. At this place, we emphasize once
again that time-invariant subspaces (15) represent a sufficient, but not a necessary condition for
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the structure preservation of the local pencils. For instance, the DAEs in Hessenberg form show
regular local matrix pencils reflecting exactly the given Hessenberg form though the subspaces
(15) may vary with time. Take a look at the special case of a DAE in size-2 Hessenberg form:

2 (t) + Bua(t)z1(t) + Bua(t)za(t) = qu(t),
Boi(t)z1(t) = q2(2),

comprising m; + mg = m equations, with Bi2(t)B21(t) being nonsingular everywhere. This DAE
is regular with tractability index 2. Its characteristics are rg = r1 = mq, ro = m. We have further

o[} Y - [} Y o[} 5],

and

No(t) = {z € R™ ™2 : 2 = 0},
Ni(t) = {z € R™T™M2 : 2 4 Biy(t)zg = 0}
= {2z € R™T™2 : 2 € im Bya(t), B12(t) " 21 + 22 = 0},
No(t) + Ni(t) = im Bya(t) x R™2.

If im By varies with time, then so does the subspace Ny(t) + N1(t). Then, Theorem 2 does not
apply and also the Q2-condition is not given. Nevertheless, the local matrix pencils are regular
with Kronecker index 2, and this remains unaffected if im Bjs actually varies or not.
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VIIK 517.984

JANPOPEPEHIINMAJIBHO-AJITEBPANYECKUE YPABHEHU A
C PEI'VJIAPHBIMU JIOKAJIbHBIMU ITYYKAMU MATPUII

P. Jlamyp, P. Map3

B paMkax mpoekTOpHOrO aHam3a, Kaxkjaoe peryaspuoe nuneiinoe JTAY Briodaer B
cebsT HECKOJIBKO HEMPEPHIBHBIX U3MEHSIOMIAXCS BO BPEMEHU XapaKTEPUCTHUECKUX TOIIPO-
CTPAHCTB, HE 3aBUCSIIIMX OT TEXHUYIECKOW KOHCTPYKIMU, B TOM HUCIE TAK HA3BIBAEMYIO
CYMMY TIOANPOCTPAHCTE. KakK M3BECTHO, JOKAJLHBIE TYYKH MaTpull junetinoro JTAY, wus-
MEHSIIOITIETOCST BO BpeMeHHU, DOJiee BBICOKOTO WHIIEKCA, HE OTPAXKAIOT TI00ATBHON CTPYKTY-
pot JAY Boobie. TTokaxkem, 9To Ha 33JaHHOM WHTEPBaJe, JOKATHHBIE YUKW MATPUI] U3
JIIAY peryngapHbl U OTpaxkaoT raobanbayio cTpykrypy JAY ecianm HEKOTOPBIE U3 ITUX Xa-
PAKTEPUCTUIECKUX TOAMPOCTPAHCTB CTAMOHAPHBL. Mbl 00CY K€M TIPAKTUIECKHE METOIbI
TIPOBEPKHU CTAIMOHAPHOCTH 3TUX ToAnpocTpancTs. Coorrercrrytomuii kKiaacc JIAY crsasan
¢ xaaccom TAY, panee spenenubx u ucciaenopannnix 0. E. Bospunnesnim.
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