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We consider a Leontieff-type stochastic equation, that is, a system of differential
equations implicit with respect to the time derivative in the spaces of random processes. The
concepts previously introduced for the spaces of differentiable "noise" using the Nelson—
Gliklikh derivative carry over to the case of complex-valued "noise"; in addition, the
right-hand side of the equation is subject to multiplicative effect of a special form. We
construct a solution to the Showalter—Sidorov problem for Leontieff-type equations with
multiplicative effect of a complex-valued process of special form. Aside from the introduction
and references, the article consists of two parts. In the first part we carry over various
concepts of the space of real-valued differentiable "noise" to the complex-valued case. In
the second part we construct a Showalter—Sidorov solution to a Leontieff-type equation with
multiplicative effect of a complex-valued process of special form. The list of references is
not intended to be complete and reflects only the authors’ personal preferences.
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Introduction

In the spaces of random processes, consider the stochastic equation

LE(t)= e MEW) + N W (1), ker L # {0}, (1)

where « is a real-valued Gaussian random variable, L, M, and N are matrices of complex
coefficients, £(t) is the required complex-valued random process with the Nelson—Gliklikh

derivative &, and Wy(t) is the k-Wiener process.

Ito pioneered the study of linear ordinary stochastic differential equations, and later
Stratonovich and Skorokhod joined in. The approach of Ito—Stratonovich—Skorokhod is
still popular [1, 2| in the finite-dimensional case. Moreover, it was successfully extended
to an infinite-dimensional situation [3] and even to Sobolev-type equations [4, 5, 6]. The
right-hand side involved the differential of a Wiener processes, whose generalized derivative
is traditionally treated as white noise. Let us also mention the approach of Mel'nikova’s
school [7], in which ordinary stochastic differential equations are considered in Schwartz
spaces, where the generalized derivative of a Wiener process makes sense.

A new approach in stochastic ordinary differential equations arose [8] and is actively
developing [9], in which "white noise" is regarded as the Nelson—Gliklikh derivative of
a Wiener processes. This "white noise" is more adequate for the Einstein-Smoluchowski
theory of Brownian motion than the traditional white noise [8, 9]. Originally "white noise"

132 Becrauk OYpIL'Y. Cepus <MaremaTuueckoe MoOZeJMPOBaHUE W MPOrpaMMHUPOBaHUe



KPATKUE COOBIITEHNUA

was used in the theory of optimal measurements [10, 11|, which required constructing
a special space of real-valued "noises" [9]. In this article for the finite-dimensional case we
carry over the concepts and results of [6, 9] to complex-valued random processes. In these
spaces we construct a solution to a Leontieff-type equation (1) with multiplicative effect
of a complex-valued process of special form basing on the deterministic case [11, 12].

1. Spaces of Complex-Valued "Noises"

Take a complete probability space 2 = (2, A, P) and the set C of complex numbers
equipped with the structure of a Borel o-algebra. A measurable mapping £ : 2 — C is
called a random wvariable. The set of random variables constitutes a Hilbert space with
the inner product (£1,&) = E£,&. Denote this Hilbert space by L. Below the random
variables & € La with the normal (Gaussian) distribution are important, and we refer to
them as Gaussian variables.

Consider now a o-subalgebra Ay of the o-algebra A. Construct the space L3 of random
variables which are measurable with respect to Ag. It turns out that L is a subspace of
Lo, Denote by II : Ly — L the corresponding orthogonal projection. For & € Ly refer to
1€ as the conditional expectation of the random variable £ and denote it by E(¢|Ag). It is
not difficult to observe that E(£|A4y) = E for Ay = {0,Q} and E({|Ay) = & for Ay = A.
Finally, recall that the minimal o-subalgebra A4y C A with respect to which a random
variable £ is measurable is called the o-algebra generated by &.

Consider now some interval J C R and two mappings. The first mapping f : J — Ly
associates to each ¢t € J a random variable ¢ € Ly. The second mapping g : Ly x Q@ — C
associates to each pair (§,w) a point £(w) € C. Refer to a mapping 1 : IxQ — C defined as
n=mn(t,w) = g(f(t),w) as a (one-dimensional) complez-valued random process. Therefore,
for each fixed ¢ € J the random process n = 7(t,-) is a complex random variable, that
is, n(t,-) € La, while for each fixed w € € the random process n = n(-,w) is called
a (choice of) trajectory. A random process 7 is called continuous whenever almost surely
all its trajectories are continuous (that is, for almost all w € Q the trajectories n(-,w) are
continuous). The set of continuous random processes constitutes a Banach space, which
we denote by C(J;C). A continuous random process with (independent) Gaussian random
variables is called a Gaussian process.

The most important example of a continuous complex-valued Gaussian random process
is the (one-dimensional) Wiener process = [(t) modeling the Brownian motion on
a complex plane in the Einstein-Smoluchowski theory. It enjoys the following properties:

(W1) almost surely 5(0) = 0, almost surely all its trajectories ((t) are continuous,
and for all t € R, (= {0} UR) the random variable 3(t) is Gaussian;

(W2) the expectation is E (S (f)) = 0 and the autocorrelation function is
E(|6(t)— 8 (s)|2) = |t — 5| for all 5,t € R.

Remark 1. For the process with properties (W1), (W2) also satirsfire B
(W3) the trajectories [B(t) are nondifferentiable at every point ¢ € R, and of
unbounded variation on every arbitrarily small interval.

A random process § with properties (W1)—(W3) is called Brownian motion.
Fixing n € C(J;C) and t € J(= (¢,7) C R), denote by N, the o-algebra generated by
the random variable n(¢). Put E] = E(-|N}") for brevity.
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Definition 1. On assuming that n € C(e, 7;C), refer as the (right left) derivative in the
mean Dn(t,-) (D.n(t,-)) of the random process n at t € (,7) to the random variable

N nEEAL) (L) N ()= (=D
pu. )= i B (M Denlt )= . B A

whenever the limit exists in the sense of uniform metric on R. A random process 7 is called
(right left) differentiable in the mean on (,7) whenever at each point ¢ € (e, 7) its right
(left) derivative in the mean exists.

Therefore, take a random process n € C(e, 7; C) which is right (left) differentiable in
the mean on (e,7). Its right (left) derivative in the mean is a random process as well,
which we denote by Dn (D.n). If n € C(e,7;C) is both right and left differentiable in
the mean on (g,7) then we can define the symmetric (antisymmetric) derivative in the
mean Dgn=1(D+ D,)n (Dan= 1 (D.— D)n). Since Nelson introduced derivatives in
the mean [13] and Gliklikh developed their theory [2], for brevity we call the symmetric
derivative in the mean Dg of a random process n the Nelson—Gliklikh derivative and

denote it by 73, that is, put Dgn 573. For ¢ € N, denote by 73(@ the order ¢ Nelson—
Gliklikh derivative of 1. Observe that if the trajectories of 77 are almost surely continuously
differentiable in the ordinary sense on (¢, 7) then their Nelson—-Gliklikh derivative coincides
with the ordinary derivative. For instance, this is so for the random real-valued process
n = asin(vt), where « is a Gaussian random real-variable and v € R, is a fixed constant,
while ¢ € R has the meaning of time.

Theorem 1. (Gliklikh) We have ’;)7(6)(75) = (=D @20 y(t) for allt € Ry and ¢ € N.

Consider the space C/(J;C), with ¢ € N, of random process in C(J;C) whose
trajectories are almost surely Nelson—Gliklikh differentiable on J through order £. If 7 C R,

then Theorem 1 implies the existence of the derivative 3€ C'(J;C), which we call a (one-
dimensional) "white noise”. In 9] the spaces C!(J; C) are called the spaces of differentiable
"noises”.

Fixing now k£ € N, take k independent random processes {n;(t),n2(t), ..., m(t)} and
define the k-dimensional random process (or briefly, a k-random process) as O(t) =

k
an(t)ej, where e; for j = 1,k are the standard basis vectors in CF. It is obvious
j=1

that almost surely all its trajectories are continuous whenever n; € C(J;C) for j = 1,k
and Nelson—Gliklikh continuously differentiable through order ¢ whenever 7; € C*(J;C)
for j = 1,k. By analogy with the above, introduce the spaces C(J;C*) and C*(J;CF) of
continuous and continuously differentiable k-dimensional "noises". As an example, consider
the k-dimensional Wiener process (k- Wiener process)

k
Wi(t) = Z Bji(t)e;, (2)

where 3; for j = 1,k are independent Brownian motions. Theorem 1 yields
It follows from (2) that the k-Wiener process Wy, enjoys properties (W1)-(W3) with g
replaced by Wj. On assuming this replacement made, we have
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Theorem 2. For each k € N with probability 1 there exists a unique k-Wiener process
Wy, with properties (W1)—(W3); furthermore, we can express it as (2).

2. Stochastic Leontieff-Type Equations with Multiplicative Effect

Take two square matrices L and M of size k with complex entries. Following 6] and
[10], refer to the sets pX(M) = {u € C : det(uL — M) # 0} and oZ(M) = C\ p*(M)
respectively as the L-resolvent set and L-spectrum of M. It is not difficult to show that
either p(M) = () or the L-spectrum of M amounts to a finite set of points. In addition,
observe that p®(M) and ol (M) are preserved under the changes of basis. Define also the
matrix-valued functions (uL — M)~} R(M) = (uL—M)~'L, and L (M) = L(uL —M)™"
on p*(M) and call them respectively the L-resolvent, the right and left L-resolvents of M.

Definition 2. For p € {0} UN, call M an (L, p)-reqular matriz whenever p"(M) # ()
and oo is either a removable singular point (for p = 0) or a pole of order p € N of
the L-resolution of M.

Take an (L, p)-regular matrix M with p € {0} UN. Consider the system of Leontieff-
type equations

LE(t) = ™ ME(t) + Nu(t),  kerL # {0}, (3)
where « is a real-valued Gaussian random variable, £(¢) is the required random process

with the Nelson—Gliklikh derivative £, and w = w(t) is a random process corresponding
to the outside effect.
Impose for (3) the Showalter—Sidorov initial condition

[RE(OM)]PH(€(0) = &) =0,  vep (M), (4)

Observe that for the Leontieff-type system [10] this condition is more natural than the
traditional Cauchy condition £(0) = &.

Take now J = [0,7). Call a random process £ € C'(0,7;C*) a (classical) solution
to (3) whenever almost surely all its trajectories satisfy (3) for some random process
w € C(0,7;C*), a complex matrix N of size k, and all ¢ € (0, 7). Call a solution & = £(t)
to (3) a (classical) solution to problem (3), (4) whenever condition (4) holds as well.

Theorem 3. Take an (L,p)-regular matriz M for p € {0} UN with det M # 0. Given
a matriz N : Ck — C*, a random process w = w(t) with

(I—-Q)Nw e CP™(3;C*) and QNw € C(J;C"), (5)

and a random wvariable & € Ly independent of w, there exists a unique solution & €

C(T;C*) to problem (3), (4) of the form

n

§(t) = lim. [((L + %M (e — 1))1 L> Eot

. / (<L + (e - ews)) _1L> n(L - %M) _1(nL,§(M))p Nuw(s)ds+

no
0
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+Z( (1= (2l ()" L) M (LEM)) 1) (7 Ds) " (e Nu(t))|.

Proof of this theorem repeats almost verbatim the arguments of [11, 12|, taking into
account the features of the space of "noises" |6, 9|, and is therefore omitted.

However, the "white noise" w(t) :I/f/k (t) = (2¢)"'Wi(t) doesn’t satisfy (5) and we
can’t substitute it into (3) and (4). So for equation (1) we consider the weakened Showalter—
Sidorov initial condition

lim [REM)]"™ (6(H) ~ &) =0, veph(M). (6)

t—0+

Using the results from |6] and Theorem 3, we obtain next

Corollary 1. Take an (L,p)-reqular matriz M for p € {0} UN with det M # 0. Given
a matriz N : C¥ — C*¥ and a random variable & € Ly independent of k-Wiener process
Wi, there exists a unique solution & € C(J;CF) to problem (1), (6) of the form

n—oo no

—M / <(L + —M (e — ems)>_1L>n(L - %M>_1(nL£(M))p NWy(s)ds| +

p

37 (0t (= (nzkn) ™) L) vt (k) 1) (e—mDsY’(e‘mwm(t))]-

q=0

£(t) = lim [((L L p (e — 1))_1L>n &+ (L - %M)_l [(nLﬁ(M))pNWk(t) -
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CTOXACTNYECKUE YPABHEHU A JIEOHTHBEBCKOI'O
TUITA C MVYJIBTUIIJINKATNBHBIM
BO3JENCTBUEM B ITPOCTPAHCTBAX
KOMIIJIEKCHO3HAYHBIX «IITYMOB»

A.JI. Illecmaxos, M.A. Cazadeesa

B craTpe paccmMaTpuBaeTcs CTOXaCTHIECKOE YPABHEHNE JIEOHTHEBCKOTO TUIIA, T.€. CHCTE-
Ma muddepeHnnaIbHbIX YPABHEHUH, Hepa3peIlleHHas OTHOCUTEIBHO TPOU3BOIHON MO Bpe-
MEHHU, B MPOCTPAHCTBAX CJIYYAUHBIX IPOIeccoB. IIpn 3TOM BBe/EHHBIE PAHEE C MOMOIIBIO
npou3Boauoi Hembcona—Imukinxa mOHATHS 11T TPOCTPAHCTB Aud HEepEeHIPYEMbIX <IITy-
MOB>>, IIEPEHOCATCA Ha Cyvail KOMIIJIEKCHO3HAYHBIX <IIIYMOB>, M, KDOM€ TOT'O, B yYpaBHe-
HUU IPUCYTCTBYET MYJIbTUIJINKATUBHOE BO3/IEMCTBIE CIEIINAJIBLHOIO BI/Ia Ha IPaBYIO YacTh
ypaeHenusi. B crarbe crpoutcs perenne 3amaun [loyonrepa—CumopoBa [y ypaBHEHUS
JIEOHTBEBCKOTO THUIA ¢ MYJTbTUIINKATUBHBIM BO3JA€HCTBUEM KOMILIEKCHO3HATHOT'O TIPOTIECCA,
CTIeIaIbHOTO BHU/IA.
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Crarbsi KpOMe BBEJIEHUS W CIIMCKA JINTEPATYPbI CONEPKUT siBe dactu. B mepsoii u3
HUX MPOU3BOIUTCS MTEPEHOC MOHATH TTPOCTPAHCTBA, AU DepeHITMPYEeMbIX <IITyMOB> C Jeii-
CTBUTEJIBHO3HAYHOIO CIy4Yasd Ha KOMIUIEKCHO3HAYHBINA, & BO BTOPOH — CTPOUTCHA pelleHue
[Moyonrepa—CunopoBa [ ypaBHEHHST JTEOHTHEBCKOTO THIA C MYJbTUILTUKATHBHBIM BO3-
JeficTBHeM KOMILIEKCHO3HAYHOTO MPOIECCa CHeMuasbHOTo Bua. CIHMCOK JINTEPATYphI He
MIPETEHYET HA MOJHOTY, U OTPAZKAET JIAIIb JUIHbIE TPUCTPACTUS aBTOPOB.

Karouesvte €a06a: ypasHenue ACOHbEBCKO20 TMUNG; MYALMUNAUKAMUGHOE 6030el-
cmeue; 8uneposcrull npoyece; npouseodnas Heavcona — Laukauxa; npocmpancmeo kom-
NAEKCHOZHAUHBIL <WYMOB>; <OeAbll ULYM>.
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