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The model of cutting plan can be presented as a planar graph for automated system of
sheet material cutting process preparation. The aim of such modelling is a definition of the
shortest path of a cutter having no parts requiring any additional cuttings. The paper is
devoted to a problem of chines postman path constructing for a planar graph representing
a cutting plan. This path has a restriction of ordered enclosing (i.e. cycle of passed edges
does not contain inside not passed ones). The path satisfying this restriction is also called
OF-path. This kind of restriction means the lack of additional cuttings of details. The
recursive algorithm for constructing of this type of paths is considered in the paper. It is
proved that this algorithm has a polynomial complexity. The developed software allows to
solve the problem for an arbitrary planar graph. The software is tested for the typical cases
of planar graphs.

Keywords: planar graph; Chinese postman problem; path; ordered enclosing; algorithm;
software.

Introduction

Great number of industrial branches is dealing with cutting the material such as metal,
wood, plywood, glass and others. These materials are presented in industrial flow as
sheets, boards, pipes, profiled rolls etc. Obviously, the usage of these materials implies
their separation (or cutting) on parts of the given size and form (the samples of some
details).

That is why the significance of industrial cutting is a source of economy and it is
mentioned in technical literature and some industrial journals [1]. Theoretically this field
is rather unexplored. There are some researches devoted to maximization of wood volume
at lumbering process. The well known problem of circles placement on a plane is also
similar to a cutting problem for an infinite sheet and equal round billets.

The experience of advanced engineering plants shows that accurate planning of cutting
process allows to achieve the economy of materials [1].

Nowadays the problems of creation of the high-effective technologies of social sphere
development, flexible automated enterprises on the base of information technologies,
particularly, clothes production for individuals, particularly, the development of software
for personified high quality clothes projecting for individual customer are actual. The
brunch connected with flexible automated enterprises of consumer goods is officially called
as one of prior branches of science development.

The interest to routing problems can be explained by their usage as mathematical
models of different control problems and automation of projection. Particularly, for
automated system of sheet material cutting process preparation the model of cutting
plan can be presented as a planar graph. The aim of such modelling is a definition of the
shortest path of a cutter. This path is to have no parts requiring any additional cuttings.
However, to solve this problem one needs a formal statement in terms of a problem of
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path constructing as a planar graph. Due to the lack of a statement the algorithms of such
rational trajectories definition should be developed.

One of the researches on special problems on graph theory is the monograph by
Herbert Fleischner "Eulerian Graphs and Related Topics" [2, 3] where some special types
of Eulerian trails (for example, trails without forbidden transitions, A-trails, pairwise-
compatible trails) are considered in rather detailed and systematised way.

There are also some papers of other authors where some problems on special type
Eulerian trails are considered. For example, For example, the extension of forbidden
transitions class [4], non-intersecting trails, bidirectional double paths |2, 3|, Petrie walks
[5], straight-ahead walks [6], and edge-ordered paths [7] are among them.

Let’s solve the problem of constructing of the Eulerian trail with considered restriction
as a cutting problem. Let the model of cutting sheet be presented as a plane S, and the
model of cutting plan be a planar graph G with outer face fy on plane S. For any part
J C G of this graph (a part of cutter movement trajectory) let’s define by Int (J) a set-
theoretic union of its inner faces (the union of all its connected components S \ J not
containing outer face). Then Int(J) can be interpreted as a part cut off a sheet. Let the
sets of vertices and edges of graph J be denoted by V' (J) and E(J) correspondingly, and
|M| be a number of set M elements.

Let any path in graph G be considered as a part of graph consisting of all vertices
and edges belonging to a path. This allows to formalize requirement to a cutter path as
no intersection of inner faces of any initial path part for a fixed graph G with unpassed
edges [8]. Let’s call such paths as ordered enclosing paths [9] (or OE-paths for short).

Definition 1. A cycle C' = viejvges ... v of Fulerian graph G has an ordered enclosing
(be an OE-cycle) if for any its initial part C; = vieqvaes ... e;, i < (|E(G)|) the condition

Int (C;) NE(G) =0
holds.

For example, let’s consider a plane FEulerian graph on fig. 1. Cycle

Fig. 1. Example of Eulerian graph

v1€1V3e3V2e201e4V3E52e6v1  satisfies the condition of ordered enclosing and cycle
V1€4V3e502€6V1€1V3€302€201 does not because Int (vieqvaesvszevr) D {eq, €2, e3}.

If a cutting plan is presented as plane Eulerian graph G then it can be passed without
any additional (idle) cuts [10]. If this graph G is not Eulerian and has 2k odd vertices
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then it is possible to use Listing—Luke algorithm [2, 3| to cover this graph by k trails.
An algorithm for constructing of a cover with defined restrictions (O E-cover) is proposed
in [11,12]. For an arbitrary chosen planar graph G the problem of OE-path constructing
can be considered in terms of Chinese postman problem where a path to be defined consists
only of graph G edges. Let’s consider this problem in details.

1. Algorithm Specification

Consider a planar graph G = (V, E') and a problem of constructing of a path C' on the
set of its edges E(G). To get a closed path we need some edges to be passed twice. Later
we shall consider that edges passed twice are duplicated by additional edges belonging
to set H(G).

Let’s show that algorithm for constructing of closed path P for non-Eulerian graph G
be the algorithm for constructing of Eulerian OE-cycle C' for Eulerian graph G being the
modification of G received by addition of edges from set H(G).

Definition 2. A path C = viejvsey . .. vy of graph G has an ordered enclosing (be an OE-
path) if for any its initial part C; = viejvges . .. e;, i < (|E(G)| + |H(G)|) the condition

Int(C;)) N (E(G)U H(G)) =0
holds. ILe. the intersection of inner faces C; with set of edges is empty.

In terms of cutting problem (for model of cutting plan as plane non-Eulerian graph)
the edges of set H(G) are interpreted as idle passes of a cutter.

Using approach similar to Chinese Postman Problem one can define a set of edges to
be duplicated. Obviously, the computing complexity of an algorithm may increase.

Here we shall add the duplicates in such a way that the recursive algorithm presented
in [8] for Eulerian graphs will have less modifications. This modification can be as the
following.

In the first part of algorithm when we need decision which edges bound the outer face
it occurs that field Mark pointing to a next edge in this cycle consists of edge pointing
on itself (terminal vertex of a current component) or this edge does not coincide with the
initial one for this component and points to marked edges (bridge). In both cases one
needs duplication of these edges. After adding these edges as it is shown on fig. 2 a) for a
terminal vertex and on fig. 2 b) for a bridge some pointers are to be modified. By the way,
each edge e € E of graph G is presented by pointers (functions) v;(e) (vertices incident to
e) and [;(e) (adjacent edges-neighbours laying first in rotation of e around v;(e)), i = 1, 2.

After making such constructions the field Mark on a first stage of algorithm execution
is to be formed such a way that all other functions for Eulerian graphs algorithm do not
require any modifications. So, after adding all idle edges one has Eulerian graph, and
a cycle found in it is to be an OF-cycle. That is why we have a path in initial graph
where any cycle of passed edges does not contain inside any unpassed ones. Let’s call this
modification of recursive algorithm as algorithm CPP_OE (see algorithm 5) (this algorithm
solves the O E-Postman problem). The recursive call of function for each unmarked edge
incident to vertices of a cycle received on a previous stage is made without changes. After
constructing of a path for the considered component the path obtained is included to a
resulting path.
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Fig. 2. Pointers modification after adding the edges: a) for a terminal vertex; b) for a bridge

Let’s generalize all above considerations as a following theorem.

Theorem 1. A path constructed by algorithm CPP_OE has to be an OFE-path. The
complexity of this algorithm is O(|E(G)|- |V (G)]).

The proof of this theorem is obvious because all additional edges are to be lacking
parts of cycles determined by algorithm. We need less than O(|E(G)|) edges additions,
and each addition needs changing of four pointers (fuctions).

Let’s organize the first part of algorithm as function ExternCycle (see algorithm 1)
to make algorithm more descriptive. Input data for this function are:

e the first edge of a graph (it’s the edge from which the searching of edges bounding
outer face of the current component starts);

e edge next to the starting one;

e the initial vertex for a currtnt component (for organising the correct edges
orientation);

e some additional variables.

This function calls the process of edges addition in all considered above cases. The
duplicating of a bridge occurs directly in a function ExternCycle, for the remained two
cases of different modifications of function Add are called (see algorithm 3 and 4). The first
one is used to drop-out the terminal vertex of a current component, and the second one
is to finish a cycle in a current component.

The example of this algorithm execution is shown on fig. 3. The dashed line corresponds
to the additional (idle) edges. The considered algorithm allows to find path

V3V1V3V7V10VsV10V7VU8Ve V4V U5V6UgU9VU11V12V11V13V11V9U7VU3V2V1 VU4 VU5V12V13V2.
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Algorithm 1. ExternCycle  (Part 1)

Require: G = (V, E) be a planar graph where Ve € E the functions v (e) (vertices incident to e)

and [x(e) (edges neighbouring to e received by its rotation counter-clockwise around vg(e)),
k =1,2; First be the first considered edge; Next be a pointer to the next edge; Vertexr be
a current vertex; Number be the number of edges in graph

Ensure: NewF'irst be the number of additional edge finishing a cycle
1: procedure EXTERNCYCLE(In: G = (V, E), First, Next, Vertex, Number; Out: NewF'irst)

2: NewFirst = 0;
3: while true do
4: First = Next; Vertex = vi(First); Next = l1(First);
5: if Mark(Next) # oo then
6: if Next = Start then
7: if vi(First) = vi(Next) then
8: Add(G, Next, Mark(Next)); Number = Number + 1;
9: Mark(First) = Number; Mark(Number) = Next;
10: Level(First) = L; Level(Number) = L; NewFirst = Number;
11: return NewkF'irst;
12: end if
13: Mark(First) = Next; Level(First) = L; return NewF'irst;
14: else
15: e = la(Mark(Next));
16: if e # Start then
17: while Mark(e) # oo do
18: e = lg(ll(e));
19: if e = Start then
20: break;
21: end if
22: end while
23: end if
24: if e # First then
25: if Mark(Next) # oo and Level(Next) = L then
26: Number = Number + 1;
27: v1(Number) = va(Next); vo(Number) = vi(Next),
28: li(Number) = la(Next); r1(l2(Next)) = Number;
29: r1(Number) = Next; lo(Next) = Number;
30: if vi(r1(Next)) = vo(Number) then
31: li(ri(Next)) = Number;
32: else
33: lo(r1(Next)) = Number;
34: end if
35: ro(Number) = ri(Next); ri(Next) = Number; lo(Number) = Next;
36: Next = Number;
37 end if
38: Next = e;
39: else
40: Number = Number + 1; Add(G, Number, First);
41: Next = 11 (First);
42: end if
43: end if
44: end if
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Algorithm 2. ExternCycle (Part 2)

45:
46:
47:
48:
49:
50:
51:
52:
53:

if Vertex # vo(Next) then
REPLACE(Next);
end if
Mark(First) = Next; Level(First) = L;
if Next = Start then
break;
end if
end while
return NewlF'irst;

54: end procedure

Algorithm 3. Add (Function for adding of an idle edge for a terminal vertex)

1: procedure ApD(In: G = (V, E) be a planar graph; Number be a number of additional (idle)

— e e e
QU = W NN = O

16:

edge; First be an edge leading to this terminal vertex)

v (Number) = vo(First); vo(Number) = vy (First);
li(Number) = la(First); ri(Number) = First;
if vy (lo(First)) = va(First) then
r1(lo(First)) = Number;,
else
ro(lo(First)) = Number;
end if
lo(First) = Number;
ro(Number) = First;
if vi(r1(First)) = vi(First) then
l1(r1(First)) = Number;
else
lo(r (First)) = Number;,
end if
r1(First) = Number; lo(Number) = First; l1(First) = Number;

17: end procedure

Algorithm 4. Add (Function of adding of the idle edge for finishing a cycle)

1: procedure ApD(In: G = (V, E) be a planar graph; Number be the number of added idle

9:

edge; Next be the edge belonging to an outer cycle)

v (Number) = vo(Next); va( Number) = vi(Next);
li(Number) = Next; la(Next) = Number; la(Number) = Mark(Next);
if vi(Mark(Next)) = va(Number) then
ri(Mark(Next)) = Number;
else
ro(Mark(Next)) = Number;
end if
ro(Number) = Next; ri(Number) = Next; ro( Next) = Number;

10: end procedure
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Algorithm 5. CPP_OE (OFE-chinese postman problem)

Require: G = (V, E) be a planar graph; Number be the number of graph vertices; First be a
first considered edge
Ensure: Queue Mark, the first its edge be Ret.First and the last one be Ret.Last;
1: procedure CPP_OE(In: G = (V, E); Number; First; Out: Mark, Ret)
2: for all e € E do

3: Mark(e) = oo;
4 end for
5: Start = Next = First,;
6: NewFirst=ExternCycle (G, Start, Next, First, Vertex, Number); Mst = 0;
I while true do
8: if [a(Next) # First and Mark(la(Next)) = co then
9: if Mst =0 then
10: M st = lo(Next);
11: end if
12: if v # va(la(Next)) then
13: REPLACE(ly(Next));
14: end if
15: Ret=CPP_OE (G, l3(Next), Number);
16: if Mark(First) # oo then
17: Mark(Ret.Last) = Mark(First);
18: if vo(Ret.First) = vi(First) then
19: Mark(First) = lo(Next);
20: else
21: Mark.First = la(Next);
22: end if
23: end if
24: First = Next; Next = Mark(First); Vertex = vi(e);
25: if Next = Ret.First or Next = Start then
26: break;
27: end if
28: end if

29: end while
30: if Mst =0 then

31: Ret.Flirst = Start,;

32: else

33: if vo(Ret.First) # vi(First)and NewFirst =0 then
34: Ret.First = Mst;

35: end if

36: if vo(Ret.First) # vi(First)and NewFirst # 0 then
37 Ret.First = Next;

38: end if

39: end if

40: if NewF'irst =0 then

41: Ret.Last = First;

42: else

43: Ret.Last = NewlF'irst;

44: end if return Ret;
45: end procedure
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Fig. 3. The example of algorithm execution for a plane non-Eulerian graph

This algorithm allows to define [V| different paths for a given graph G. Here V is a set
of graph G vertices adjacent to outer face of this graph. In fact it is only the low bound for
number of solutions. However this algorithm allows to define only |V| of different solutions
due to certainty of choosing of the next edge of the path.

2. The Software for Constructing of Postman Path
with Ordered Enclosing
Consider some examples demonstrating how the developed algorithm runs for non-

Eulerian graphs. Figure 4 demonstrates the simplest example when graph has only two
odd vertices (vertices 2 and 4) and both of them are adjacent to the outer face.

M Euler Cycles Constructor 2.0 E'@
| =l
New graph d ‘
1
E
i
£ < / >
] 4
H save
M Ciose
[2F2AFE2H (AR 3H52)

Fig. 4. One of the simplest examples of planar non-Eulerian graph

The additional (idle) edges are shown by a polyline. The significance of these idle edges
is laid at a stage of model projecting (in terms of cutting problem they are understood,
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for example, as idle way of a cutter), not at a stage of solution finding. In a bottom of the
window we see the defined path. Numbers of vertices are embraced.

For graph on fig. 4 algortighm constructs the additional edge 6 connecting vertices 2
and 4.

Consider the example of graph having no even vertices (see fig. 5).

-_E uler Cycles Constructor 2.0 @@@

Mew graph

-

@ Open

& Save
1 Ciose

(3244} 501 )7 A14-2)B-4) 313421 643)

Fig. 5. Raph without even vertices

Obviously, after marking the outer cycle of edges 1, 3, and 6 we have a subgraph with
three terminal vertices. To get an inner cycle we need a construction of three additional
edges 7, 8, and 9. Such a construction is not optimal by the number of added edges
because graph with four odd vertices needs only two additional edges to become Eulerian.
Nevertheless, the received construction allows to get Kulerian graph while algorithm
CPP_OE is running.

Consider more complex example (fig. 6) where one needs duplication of edges (that
are bridges) not adjacent to exterior face.

Note that the condition of ordered enclosing holds because idle edges are the lacking
parts of the inner cycles, and as the received Eulerian graph has an O E-cycle then a path
where some edges are replaced by idle ones also has ordered enclosing.

Conclusion

The considered algorithm allows to find one of possible postman paths satisfying the
condition of ordered enclosing corresponding to a chosen initial vertex. Algorithm has
polynomial complexity. The developed software allows to solve the problem for an arbitrary
planar graph. The software is tested for the typical cases of planar graphs. In all of these
cases graph was completed to become Fulerian using considered above functions and O E-
path for initial graph is defined.
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M Euler Cycles Constructor 2.0

Hew graph

& Open
B seve
AL Dose

(2F243F3H1 K223 7F1 4101 381311011549} 3241 0 33HT HEHHEHT {4} 2B -5} 24 (BF 25BN 243 M M 71 2F 2611112041 32711 284S 147
2943 302111 44) 55} 1812119013} 2142)

Fig. 6. Plane non-Eulerian graph where there are no planar matching of odd vertices
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IIOCTPOEHUE OE-MAPIIIPYTA KUTAMCKOTI'O
IIOYTAJIBOHA B IIJIOCKOM I'PA®E

T.A. Ilanroxosa

IIpu aBTOMATH3MPOBAHHOIN MOATOTOBKE IIPOIECCA PACKPOA PACKPOMHBIN IIJIAH MOMXKHO
MIPEJICTABUTD B KAYECTBE IIOCKOro rpada. Ilenpo Takoro MomennpoBaHns SBIISETC Ope-
JleJleHrEe KPATYafIero nyTu PEeXKyIIero MHCTPYMEHTA, IPU YCJIOBUHU, YTO OTPE3aHHAS OT
JmcTa JacTh He TpeboBasa Obl JOTIOTHUTENBHBIX pa3pe3anuii. B crarbe paccMarpuBaercs
3a/1a1a, MOCTPOEHUS ITyTH KUTANCKOrO MOYTATBOHA B IJIOCKOM Tpade, sIBISIONEMYCs MOIe-
JIBIO PACKPOHHOTO miana. Ha 3ToT myTh HATOKEHO YCIOBHE YHIOPSIIOYEHHOTO OXBATHIBAHUS
(T.e. nMKJ U3 NPOIZEeHHbIX pebep He OXBATHIBAET €Ille He POoiiaeHHbxX). Takoil nyTs eme Gy-
nem zHasbiBaTh O E-miyrem. JlaHHOE OrpaHUYeHUE W O3HAYAET OTCYTCTBHUE JIOMOJHUTEIbHBIX
paspesanmuii 1y getaseil. B craThbe paccMaTpuBaeTCsl peKyPCUBHBIN AJITOPUTM TIOCTPOEHMST
Takux rene. JlokazaHo, 9TO AJIMOPUTM UMEET TOJUHOMUAIBHYIO CJI0KHOCTE. Pazpaboran-
HOE MpPOrpaMMHOe obecliedeHue MO3BOJISET PEIUTh 3334y /I IIPOU3BOJIBLHOIO IJIOCKOrO
rpada. IIporpamma mporecTrpoBaHa A/ PA3INIHBIX THIIOB IJIOCKHX IpadoB.

Karuesne caosa: naockutl 2pad; 3adana Kumalickoz0 nowmaisbora; Mapupym; ynops-
doueHHOE OLBAMBLEAHUE; GA20PUTNM; TNPOZDAMMHAS PEGAUS GUUS.
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