
MSC 05C38 DOI: 10.14529/mmp140407

CONSTRUCTING OF OE-POSTMAN PATH
FOR A PLANAR GRAPH

T.A. Panyukova, South Ural State University, Chelyabinsk, Russian Federation,
kwark@mail.ru

The model of cutting plan can be presented as a planar graph for automated system of
sheet material cutting process preparation. The aim of such modelling is a de�nition of the
shortest path of a cutter having no parts requiring any additional cuttings. The paper is
devoted to a problem of chines postman path constructing for a planar graph representing
a cutting plan. This path has a restriction of ordered enclosing (i.e. cycle of passed edges
does not contain inside not passed ones). The path satisfying this restriction is also called
OE-path. This kind of restriction means the lack of additional cuttings of details. The
recursive algorithm for constructing of this type of paths is considered in the paper. It is
proved that this algorithm has a polynomial complexity. The developed software allows to
solve the problem for an arbitrary planar graph. The software is tested for the typical cases
of planar graphs.

Keywords: planar graph; Chinese postman problem; path; ordered enclosing; algorithm;

software.

Introduction

Great number of industrial branches is dealing with cutting the material such as metal,
wood, plywood, glass and others. These materials are presented in industrial �ow as
sheets, boards, pipes, pro�led rolls etc. Obviously, the usage of these materials implies
their separation (or cutting) on parts of the given size and form (the samples of some
details).

That is why the signi�cance of industrial cutting is a source of economy and it is
mentioned in technical literature and some industrial journals [1]. Theoretically this �eld
is rather unexplored. There are some researches devoted to maximization of wood volume
at lumbering process. The well known problem of circles placement on a plane is also
similar to a cutting problem for an in�nite sheet and equal round billets.

The experience of advanced engineering plants shows that accurate planning of cutting
process allows to achieve the economy of materials [1].

Nowadays the problems of creation of the high-e�ective technologies of social sphere
development, �exible automated enterprises on the base of information technologies,
particularly, clothes production for individuals, particularly, the development of software
for personi�ed high quality clothes projecting for individual customer are actual. The
brunch connected with �exible automated enterprises of consumer goods is o�cially called
as one of prior branches of science development.

The interest to routing problems can be explained by their usage as mathematical
models of di�erent control problems and automation of projection. Particularly, for
automated system of sheet material cutting process preparation the model of cutting
plan can be presented as a planar graph. The aim of such modelling is a de�nition of the
shortest path of a cutter. This path is to have no parts requiring any additional cuttings.
However, to solve this problem one needs a formal statement in terms of a problem of

90 Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå è ïðîãðàììèðîâàíèå≫

ÏÐÎÃÐÀÌÌÈÐÎÂÀÍÈÅ

path constructing as a planar graph. Due to the lack of a statement the algorithms of such
rational trajectories de�nition should be developed.

One of the researches on special problems on graph theory is the monograph by
Herbert Fleischner "Eulerian Graphs and Related Topics" [2, 3] where some special types
of Eulerian trails (for example, trails without forbidden transitions, A-trails, pairwise-
compatible trails) are considered in rather detailed and systematised way.

There are also some papers of other authors where some problems on special type
Eulerian trails are considered. For example, For example, the extension of forbidden
transitions class [4], non-intersecting trails, bidirectional double paths [2, 3], Petrie walks
[5], straight-ahead walks [6], and edge-ordered paths [7] are among them.

Let's solve the problem of constructing of the Eulerian trail with considered restriction
as a cutting problem. Let the model of cutting sheet be presented as a plane S, and the
model of cutting plan be a planar graph G with outer face f0 on plane S. For any part
J ⊆ G of this graph (a part of cutter movement trajectory) let's de�ne by Int (J) a set-
theoretic union of its inner faces (the union of all its connected components S \ J not
containing outer face). Then Int(J) can be interpreted as a part cut o� a sheet. Let the
sets of vertices and edges of graph J be denoted by V (J) and E(J) correspondingly, and
|M | be a number of set M elements.

Let any path in graph G be considered as a part of graph consisting of all vertices
and edges belonging to a path. This allows to formalize requirement to a cutter path as
no intersection of inner faces of any initial path part for a �xed graph G with unpassed
edges [8]. Let's call such paths as ordered enclosing paths [9] (or OE-paths for short).

De�nition 1. A cycle C = v1e1v2e2 . . . vk of Eulerian graph G has an ordered enclosing
(be an OE-cycle) if for any its initial part Ci = v1e1v2e2 . . . ei, i ≤ (|E(G)|) the condition

Int (Ci) ∩ E(G) = ∅

holds.

For example, let's consider a plane Eulerian graph on �g. 1. Cycle

Fig. 1. Example of Eulerian graph

v1e1v3e3v2e2v1e4v3e5v2e6v1 satis�es the condition of ordered enclosing and cycle
v1e4v3e5v2e6v1e1v3e3v2e2v1 does not because Int (v1e4v2e5v3e6v1) ⊃ {e1, e2, e3}.

If a cutting plan is presented as plane Eulerian graph G then it can be passed without
any additional (idle) cuts [10]. If this graph G is not Eulerian and has 2k odd vertices

2014, òîì 7, � 4 91

T.A. Panyukova

then it is possible to use Listing�Luke algorithm [2, 3] to cover this graph by k trails.
An algorithm for constructing of a cover with de�ned restrictions (OE-cover) is proposed
in [11, 12]. For an arbitrary chosen planar graph G the problem of OE-path constructing
can be considered in terms of Chinese postman problem where a path to be de�ned consists
only of graph G edges. Let's consider this problem in details.

1. Algorithm Speci�cation

Consider a planar graph G = (V,E) and a problem of constructing of a path C on the
set of its edges E(G). To get a closed path we need some edges to be passed twice. Later
we shall consider that edges passed twice are duplicated by additional edges belonging
to set H(G).

Let's show that algorithm for constructing of closed path P for non-Eulerian graph G
be the algorithm for constructing of Eulerian OE-cycle C for Eulerian graph G̃ being the
modi�cation of G received by addition of edges from set H(G).

De�nition 2. A path C = v1e1v2e2 . . . vk of graph G has an ordered enclosing (be an OE-
path) if for any its initial part Ci = v1e1v2e2 . . . ei, i ≤ (|E(G)|+ |H(G)|) the condition

Int(Ci) ∩ (E(G) ∪H(G)) = ∅

holds. I.e. the intersection of inner faces Ci with set of edges is empty.

In terms of cutting problem (for model of cutting plan as plane non-Eulerian graph)
the edges of set H(G) are interpreted as idle passes of a cutter.

Using approach similar to Chinese Postman Problem one can de�ne a set of edges to
be duplicated. Obviously, the computing complexity of an algorithm may increase.

Here we shall add the duplicates in such a way that the recursive algorithm presented
in [8] for Eulerian graphs will have less modi�cations. This modi�cation can be as the
following.

In the �rst part of algorithm when we need decision which edges bound the outer face
it occurs that �eld Mark pointing to a next edge in this cycle consists of edge pointing
on itself (terminal vertex of a current component) or this edge does not coincide with the
initial one for this component and points to marked edges (bridge). In both cases one
needs duplication of these edges. After adding these edges as it is shown on �g. 2 a) for a
terminal vertex and on �g. 2 b) for a bridge some pointers are to be modi�ed. By the way,
each edge e ∈ E of graph G is presented by pointers (functions) vi(e) (vertices incident to
e) and li(e) (adjacent edges-neighbours laying �rst in rotation of e around vi(e)), i = 1, 2.

After making such constructions the �eldMark on a �rst stage of algorithm execution
is to be formed such a way that all other functions for Eulerian graphs algorithm do not
require any modi�cations. So, after adding all idle edges one has Eulerian graph, and
a cycle found in it is to be an OE-cycle. That is why we have a path in initial graph
where any cycle of passed edges does not contain inside any unpassed ones. Let's call this
modi�cation of recursive algorithm as algorithm CPP_OE (see algorithm 5) (this algorithm
solves the OE-Postman problem). The recursive call of function for each unmarked edge
incident to vertices of a cycle received on a previous stage is made without changes. After
constructing of a path for the considered component the path obtained is included to a
resulting path.

92 Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå è ïðîãðàììèðîâàíèå≫

ÏÐÎÃÐÀÌÌÈÐÎÂÀÍÈÅ

à) á)

Fig. 2. Pointers modi�cation after adding the edges: a) for a terminal vertex; b) for a bridge

Let's generalize all above considerations as a following theorem.

Theorem 1. A path constructed by algorithm CPP_OE has to be an OE-path. The
complexity of this algorithm is O(|E(G)| · |V (G)|).

The proof of this theorem is obvious because all additional edges are to be lacking
parts of cycles determined by algorithm. We need less than O(|E(G)|) edges additions,
and each addition needs changing of four pointers (fuctions).

Let's organize the �rst part of algorithm as function ExternCycle (see algorithm 1)
to make algorithm more descriptive. Input data for this function are:

• the �rst edge of a graph (it's the edge from which the searching of edges bounding
outer face of the current component starts);

• edge next to the starting one;

• the initial vertex for a currtnt component (for organising the correct edges
orientation);

• some additional variables.

This function calls the process of edges addition in all considered above cases. The
duplicating of a bridge occurs directly in a function ExternCycle, for the remained two
cases of di�erent modi�cations of function Add are called (see algorithm 3 and 4). The �rst
one is used to drop-out the terminal vertex of a current component, and the second one
is to �nish a cycle in a current component.

The example of this algorithm execution is shown on �g. 3. The dashed line corresponds
to the additional (idle) edges. The considered algorithm allows to �nd path

v3v1v3v7v10v8v10v7v8v6v4v6v5v6v8v9v11v12v11v13v11v9v7v3v2v1v4v5v12v13v2.

2014, òîì 7, � 4 93

T.A. Panyukova

Algorithm 1. ExternCycle (Part 1)

Require: G = (V,E) be a planar graph where ∀e ∈ E the functions vk(e) (vertices incident to e)
and lk(e) (edges neighbouring to e received by its rotation counter-clockwise around vk(e)),
k = 1, 2; First be the �rst considered edge; Next be a pointer to the next edge; V ertex be

a current vertex; Number be the number of edges in graph

Ensure: NewFirst be the number of additional edge �nishing a cycle
1: procedure ExternCycle(In: G = (V,E), First, Next, V ertex, Number; Out: NewFirst)
2: NewFirst = 0;
3: while true do
4: First = Next; V ertex = v1(First); Next = l1(First);
5: if Mark(Next) ̸= ∞ then
6: if Next = Start then
7: if v1(First) = v1(Next) then
8: Add(G, Next, Mark(Next)); Number = Number + 1;
9: Mark(First) = Number; Mark(Number) = Next;
10: Level(First) = L; Level(Number) = L; NewFirst = Number;
11: return NewFirst;
12: end if
13: Mark(First) = Next; Level(First) = L; return NewFirst;
14: else
15: e = l2(Mark(Next));
16: if e ̸= Start then
17: while Mark(e) ̸= ∞ do
18: e = l2(l1(e));
19: if e = Start then
20: break;

21: end if
22: end while
23: end if
24: if e ̸= First then
25: if Mark(Next) ̸= ∞ and Level(Next) = L then
26: Number = Number + 1;
27: v1(Number) = v2(Next); v2(Number) = v1(Next);
28: l1(Number) = l2(Next); r1(l2(Next)) = Number;
29: r1(Number) = Next; l2(Next) = Number;
30: if v1(r1(Next)) = v2(Number) then
31: l1(r1(Next)) = Number;
32: else
33: l2(r1(Next)) = Number;
34: end if
35: r2(Number) = r1(Next); r1(Next) = Number; l2(Number) = Next;
36: Next = Number;
37: end if
38: Next = e;
39: else
40: Number = Number + 1; Add(G, Number, First);
41: Next = l1(First);
42: end if
43: end if
44: end if
94 Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå è ïðîãðàììèðîâàíèå≫

ÏÐÎÃÐÀÌÌÈÐÎÂÀÍÈÅ

Algorithm 2. ExternCycle (Part 2)

45: if V ertex ̸= v2(Next) then
46: REPLACE(Next);
47: end if
48: Mark(First) = Next; Level(First) = L;
49: if Next = Start then
50: break;

51: end if
52: end while
53: return NewFirst;
54: end procedure

Algorithm 3. Add (Function for adding of an idle edge for a terminal vertex)

1: procedure Add(In: G = (V,E) be a planar graph; Number be a number of additional (idle)
edge; First be an edge leading to this terminal vertex)

2: v1(Number) = v2(First); v2(Number) = v1(First);
3: l1(Number) = l2(First); r1(Number) = First;
4: if v1(l2(First)) = v2(First) then
5: r1(l2(First)) = Number;
6: else
7: r2(l2(First)) = Number;
8: end if
9: l2(First) = Number;
10: r2(Number) = First;
11: if v1(r1(First)) = v1(First) then
12: l1(r1(First)) = Number;
13: else
14: l2(r1(First)) = Number;
15: end if
16: r1(First) = Number; l2(Number) = First; l1(First) = Number;
17: end procedure

Algorithm 4. Add (Function of adding of the idle edge for �nishing a cycle)

1: procedure Add(In: G = (V,E) be a planar graph; Number be the number of added idle

edge; Next be the edge belonging to an outer cycle)

2: v1(Number) = v2(Next); v2(Number) = v1(Next);
3: l1(Number) = Next; l2(Next) = Number; l2(Number) = Mark(Next);
4: if v1(Mark(Next)) = v2(Number) then
5: r1(Mark(Next)) = Number;
6: else
7: r2(Mark(Next)) = Number;
8: end if
9: r2(Number) = Next; r1(Number) = Next; r2(Next) = Number;
10: end procedure

2014, òîì 7, � 4 95

T.A. Panyukova

Algorithm 5. CPP_OE (OE-chinese postman problem)

Require: G = (V,E) be a planar graph; Number be the number of graph vertices; First be a
�rst considered edge

Ensure: Queue Mark, the �rst its edge be Ret.F irst and the last one be Ret.Last;

1: procedure CPP_OE(In: G = (V,E); Number; First; Out: Mark, Ret)
2: for all e ∈ E do
3: Mark(e) = ∞;

4: end for
5: Start = Next = First;
6: NewFirst=ExternCycle (G, Start, Next, First, V ertex, Number); Mst = 0;
7: while true do
8: if l2(Next) ̸= First and Mark(l2(Next)) = ∞ then
9: if Mst = 0 then
10: Mst = l2(Next);
11: end if
12: if v ̸= v2(l2(Next)) then
13: REPLACE(l2(Next));
14: end if
15: Ret=CPP_OE (G, l2(Next), Number);
16: if Mark(First) ̸= ∞ then
17: Mark(Ret.Last) = Mark(First);
18: if v2(Ret.F irst) = v1(First) then
19: Mark(First) = l2(Next);
20: else
21: Mark.F irst = l2(Next);
22: end if
23: end if
24: First = Next; Next = Mark(First); V ertex = v1(e);
25: if Next = Ret.F irst or Next = Start then
26: break;

27: end if
28: end if
29: end while
30: if Mst = 0 then
31: Ret.F irst = Start;
32: else
33: if v2(Ret.F irst) ̸= v1(First)and NewFirst = 0 then
34: Ret.F irst = Mst;
35: end if
36: if v2(Ret.F irst) ̸= v1(First)and NewFirst ̸= 0 then
37: Ret.F irst = Next;
38: end if
39: end if
40: if NewFirst = 0 then
41: Ret.Last = First;
42: else
43: Ret.Last = NewFirst;
44: end if return Ret;
45: end procedure

96 Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå è ïðîãðàììèðîâàíèå≫

ÏÐÎÃÐÀÌÌÈÐÎÂÀÍÈÅ

Fig. 3. The example of algorithm execution for a plane non-Eulerian graph

This algorithm allows to de�ne |Ṽ | di�erent paths for a given graph G. Here Ṽ is a set
of graph G vertices adjacent to outer face of this graph. In fact it is only the low bound for
number of solutions. However this algorithm allows to de�ne only |Ṽ | of di�erent solutions
due to certainty of choosing of the next edge of the path.

2. The Software for Constructing of Postman Path
with Ordered Enclosing

Consider some examples demonstrating how the developed algorithm runs for non-
Eulerian graphs. Figure 4 demonstrates the simplest example when graph has only two
odd vertices (vertices 2 and 4) and both of them are adjacent to the outer face.

Fig. 4. One of the simplest examples of planar non-Eulerian graph

The additional (idle) edges are shown by a polyline. The signi�cance of these idle edges
is laid at a stage of model projecting (in terms of cutting problem they are understood,

2014, òîì 7, � 4 97

T.A. Panyukova

for example, as idle way of a cutter), not at a stage of solution �nding. In a bottom of the
window we see the de�ned path. Numbers of vertices are embraced.

For graph on �g. 4 algortighm constructs the additional edge 6 connecting vertices 2
and 4.

Consider the example of graph having no even vertices (see �g. 5).

Fig. 5. Raph without even vertices

Obviously, after marking the outer cycle of edges 1, 3, and 6 we have a subgraph with
three terminal vertices. To get an inner cycle we need a construction of three additional
edges 7, 8, and 9. Such a construction is not optimal by the number of added edges
because graph with four odd vertices needs only two additional edges to become Eulerian.
Nevertheless, the received construction allows to get Eulerian graph while algorithm
CPP_OE is running.

Consider more complex example (�g. 6) where one needs duplication of edges (that
are bridges) not adjacent to exterior face.

Note that the condition of ordered enclosing holds because idle edges are the lacking
parts of the inner cycles, and as the received Eulerian graph has an OE-cycle then a path
where some edges are replaced by idle ones also has ordered enclosing.

Conclusion

The considered algorithm allows to �nd one of possible postman paths satisfying the
condition of ordered enclosing corresponding to a chosen initial vertex. Algorithm has
polynomial complexity. The developed software allows to solve the problem for an arbitrary
planar graph. The software is tested for the typical cases of planar graphs. In all of these
cases graph was completed to become Eulerian using considered above functions and OE-
path for initial graph is de�ned.

98 Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå è ïðîãðàììèðîâàíèå≫

ÏÐÎÃÐÀÌÌÈÐÎÂÀÍÈÅ

Fig. 6. Plane non-Eulerian graph where there are no planar matching of odd vertices

References

1. Kantorovich L.V., Zalgaller V.A. Ratzionalniy raskroy promyshlennikh materialov
[Rational Cutting of Industrial Materials]. St.Peterburg, 2012. 304 p.

2. Fleischner H. Eulerian Graphs and Related Topics. Part 1, vol. 1. Ann. Discrete
Mathematics, 1990, no. 48. 420 p.

3. Fleischner H. Eulerian Graphs and Related Topics. Part 1, vol. 2. Ann. Discrete
Mathematics, 1991, no. 50. 356 p.

4. Szeider S. Finding Paths in Graphs Avoiding Forbidden Transitions. Discrete Applied
Mathematics, 2003, no. 126, pp. 261�273. DOI: 10.1016/S0166-218X(02)00251-2

5. Zitnik A. planar graphs with Eulerian Petrie Walks. Discrete Mathematics, 2002,
vol. 244, pp. 539�549. DOI: 10.1016/S0012-365X(01)00061-9

6. Pisanski Ò., Tucker T.W., Zitnik A. Straight-Ahead Walks in Eulerian Graphs.
Discrete Mathematics, 2004, no. 281, pp. 237�246. DOI: 10.1016/j.disc.2003.09.011

7. Chebikin D. On k-Edge-Ordered Graphs. Discrete Mathematics, 2004, no. 281,
pp. 115�128. DOI: 10.1016/j.disc.2003.09.004

8. Panioukova T.A., Panyukov A.V.Algorithms for Construction of Ordered Enclosing
Traces in Planar Eulerian Graphs. The International Workshop on Computer Science
and Information Technologies' 2003. Proceedings of Workshop, Ufa, September 16 �
18, 2003, Ufa, Ufa State Technical University, 2003, vol. 1, pp. 134�138.

9. Panyukova T. Chain Sequences with Ordered Enclosing. Journal of Computer
and System Sciences International, 2007, vol. 46, no. 1, pp. 83�92.
DOI: 10.1134/S1064230707010108

10. Panyukov A.V., Panioukova T.A. The Algorithm for Tracing of Flat Euler
Cycles with Ordered Enclosing. Proceedings of Chelyabinsk Scienti�c Center, 2000,
no. 49), pp. 18�22. Available at: http://elibrary.ru/download/18130929.pdf (accessed
November 20, 2000).

2014, òîì 7, � 4 99

T.A. Panyukova

11. Panyukova T.A. [Trails with Ordered Enclosing for planar graphs]. Diskretny analys
i issledovaniye operaziy [Discrete Analysis and Operation Research], 2006, part 2,
vol. 13, no. 2, pp. 31�43. (in Russian)

12. Panyukova T.A. [Optimal Eulerian Covers for planar graphs]. Diskretny analys i
issledovaniye operaziy [Discrete Analysis and Operation Research], 2011, vol. 18, no. 2,
pp. 64�74. (in Russian)

Received August 15, 2014

ÓÄÊ 519.178 DOI: 10.14529/mmp140407

ÏÎÑÒÐÎÅÍÈÅ OE-ÌÀÐØÐÓÒÀ ÊÈÒÀÉÑÊÎÃÎ
ÏÎ×ÒÀËÜÎÍÀ Â ÏËÎÑÊÎÌ ÃÐÀÔÅ

Ò.À. Ïàíþêîâà

Ïðè àâòîìàòèçèðîâàííîé ïîäãîòîâêå ïðîöåññà ðàñêðîÿ ðàñêðîéíûé ïëàí ìîæíî
ïðåäñòàâèòü â êà÷åñòâå ïëîñêîãî ãðàôà. Öåëüþ òàêîãî ìîäåëèðîâàíèÿ ÿâëÿåòñÿ îïðå-
äåëåíèå êðàò÷àéøåãî ïóòè ðåæóùåãî èíñòðóìåíòà, ïðè óñëîâèè, ÷òî îòðåçàííàÿ îò
ëèñòà ÷àñòü íå òðåáîâàëà áû äîïîëíèòåëüíûõ ðàçðåçàíèé. Â ñòàòüå ðàññìàòðèâàåòñÿ
çàäà÷à ïîñòðîåíèÿ ïóòè êèòàéñêîãî ïî÷òàëüîíà â ïëîñêîì ãðàôå, ÿâëÿþùåìóñÿ ìîäå-
ëüþ ðàñêðîéíîãî ïëàíà. Íà ýòîò ïóòü íàëîæåíî óñëîâèå óïîðÿäî÷åííîãî îõâàòûâàíèÿ
(ò.å. öèêë èç ïðîéäåííûõ ðåáåð íå îõâàòûâàåò åùå íå ïðîéäåííûõ). Òàêîé ïóòü åùå áó-
äåì íàçûâàòü OE-ïóòåì. Äàííîå îãðàíè÷åíèå è îçíà÷àåò îòñóòñòâèå äîïîëíèòåëüíûõ
ðàçðåçàíèé äëÿ äåòàëåé. Â ñòàòüå ðàññìàòðèâàåòñÿ ðåêóðñèâíûé àëãîðèòì ïîñòðîåíèÿ
òàêèõ öåïåé. Äîêàçàíî, ÷òî àëãîðèòì èìååò ïîëèíîìèàëüíóþ ñëîæíîñòü. Ðàçðàáîòàí-
íîå ïðîãðàììíîå îáåñïå÷åíèå ïîçâîëÿåò ðåøèòü çàäà÷ó äëÿ ïðîèçâîëüíîãî ïëîñêîãî
ãðàôà. Ïðîãðàììà ïðîòåñòèðîâàíà äëÿ ðàçëè÷íûõ òèïîâ ïëîñêèõ ãðàôîâ.

Êëþ÷åâûå ñëîâà: ïëîñêèé ãðàô; çàäà÷à êèòàéñêîãî ïî÷òàëüîíà; ìàðøðóò; óïîðÿ-

äî÷åííîå îõâàòûâàíèå; àëãîðèòì; ïðîãðàììíàÿ ðåàëèçàöèÿ.

Ëèòåðàòóðà

1. Êàíòîðîâè÷, Ë.Â. Ðàöèîíàëüíûé ðàñêðîé ïðîìûøëåííûõ ìàòåðèàëîâ / Ë.Â. Êàí-
òîðîâè÷, Â.À. Çàëãàëëåð. � ÑÏá.: Íåâñêèé Äèàëåêò, 2012. � 304 ñ.

2. Ôëÿéøíåð, Ã. Ýéëåðîâû ãðàôû è ñìåæíûå âîïðîñû / Ã. Ôëÿéøíåð. � Ì.: Ìèð,
2002. � 335 ñ.

3. Fleischner, H. Eulerian Graphs and Related Topics. Part 1, V. 2 / H. Fleischner. �
Ann. Discrete Mathematics, 1991. � � 50. � 356 p.

4. Szeider, S. Finding Paths in Graphs Avoiding Forbidden Transitions / S. Szeider //
Discrete Applied Mathematics. � 2003. � � 126. � P. 261�273.

5. Zitnik, A. Planar graphs with Eulerian Petrie walks / A. Zitnik // Discrete
Mathematics. � 2002. � V. 244. � P. 539�549.

6. Pisanski, Ò. Straight-ahead walks in Eulerian graphs / T. Pisanski, T.W. Tucker,
A. Zitnik // Discrete Mathematics. � 2004. � � 281. � P. 237�246.

7. Chebikin, D. On k-edge-ordered graphs / D. Chebikin // Discrete Mathematics. �
2004. � � 281. � P. 115�128.

100 Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå è ïðîãðàììèðîâàíèå≫

ÏÐÎÃÐÀÌÌÈÐÎÂÀÍÈÅ

8. Panioukova, T.A. Algorithms for Construction of Ordered Enclosing Traces in Planar
Eulerian Graphs / T.A. Panioukova, A.V. Panyukov // The International Workshop
on Computer Science and Information Technologies' 2003, Proceedings of Workshop,
Ufa, September 16 � 18, 2003/ Ufa State Technical University. � Ufa, 2003. � V. 1. �
Ð. 134�138.

9. Panyukova, T. Chain sequences with ordered enclosing / T. Panyukova // Journal of
Computer and System Sciences International. � 2007. � V. 6, � 1. � P. 83�92.

10. Panyukov, A.V. The Algorithm for Tracing of Flat Euler Cycles with
Ordered Enclosing / A.V. Panyukov, T.A. Panioukova // Èçâåñòèÿ ×åëÿ-
áèíñêîãî íàó÷íîãî öåíòðà. � 2000. � � 4 (9). � P. 18�22. Available at:
http://elibrary.ru/download/18130929.pdf (accessed November 20, 2000)

11. Ïàíþêîâà, Ò.À. Öåïè ñ óïîðÿäî÷åííûì îõâàòûâàíèåì â ïëîñêèõ ãðàôàõ /
Ò.À. Ïàíþêîâà // Äèñêðåòíûé àíàëèç è èññëåäîâàíèå îïåðàöèé. ×àñòü 2. � 2006.
� Ò. 13, � 2. � Ñ. 31�43.

12. Ïàíþêîâà, Ò.À. Îïòèìàëüíûå Ýéëåðîâû ïîêðûòèÿ äëÿ ïëîñêèõ ãðàôîâ / Ò.À. Ïà-
íþêîâà // Äèñêðåòíûé àíàëèç è èññëåäîâàíèå îïåðàöèé. � 2011. � Ò. 18, � 2. �
C. 64�74.

Òàòüÿíà Àíàòîëüåâíà Ïàíþêîâà, êàíäèäàò ôèçèêî-ìàòåìàòè÷åñêèõ íàóê, äîöåíò,
êàôåäðà ≪Ýêîíîìèêî-ìàòåìàòè÷åñêèå ìåòîäû è ñòàòèñòèêà≫, Þæíî-Óðàëüñêèé ãî-
ñóäàðñòâåííûé óíèâåðñèòåò (ã. ×åëÿáèíñê, Ðîññèéñêàÿ Ôåäåðàöèÿ), kwark@mail.ru.

Ïîñòóïèëà â ðåäàêöèþ 15 àâãóñòà 2014 ã.

2014, òîì 7, � 4 101

