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A mathematical model of an artillery shot is represented as a system of non-stationary
one- and two-dimensional differential equations of the multiphase gas dynamics and heat
transfer. Conjunction Euler-Lagrange method is used for the numerical solution of gas-
dynamic equations. The initial mathematical model is approximated by a system of ordinary
differential equations using a vector of correction functions. Correction functions are found
from solutions of multiobjective optimal control problem. Multiobjective optimization is
carried out using a hybrid genetic algorithm. The resulting model is adequate and allows
doing more processing series of calculations the main process parameters (projectile velocity
and maximum pressure) depending on the input parameters. Comparative analysis of
different approximators (linear multiple regression, support vector machines, multi-layer
neural network, radial network, the method of fuzzy decision trees) showed that an
acceptable accuracy 0,4-0,5 % is provided by only non-linear approximation methods, such
as multi-layer and radial neural networks. Constructed approximate models are not require
much computing time and can be implemented in the control systems.

Keywords: mathematical model of the shot; multi-phase gas dynamics; approzimate

models; multi-objective optimization.

Introduction

The present mathematical modeling level allows us to construct the models of very
complex processes and to make a detailed numerical experiment. As a rule, the numerical
implementation of such mathematical models involves time-consuming. In some cases,
calculation results of processes characteristics are required in real time. This can be
the movement control of any objects or any process. Having information on the results
of numerical or natural experiment we can construct mathematical models with lower
dimension, which reproduce the characteristics of these processes by small time consuming.
We consider the example of mathematical models dimension reduction. This example is
related with numerical modeling of artillery shot, which is characterized by the diversity of
occurring physical, chemical and gas-dynamic phenomena. In various barrel systems tests
the operative analysis of a natural experiment is very important in order to improve the
accuracy characteristics and identification of using calculation methods.
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1. Mathematical Model of the Shot

The movement of burning gunpowder elements along the barrel at the shot is a classic
case of heterogeneous system movement, due to processes of heat and mass exchange and
friction between the phases [1].

The main assumptions of the model:

1) distances, at which the flow parameters vary considerably, much more than distances
between the particles and size of the particles;

2) various phases are present simultaneously at all points of space, at the same time
each phase occupies a portion of the mixture;

3) calculation of each phase movement can be performed independently from the
mixture under the condition that appropriated account of the interaction between the
different phases is provided;

4) viscosity and thermal conductivity is significant only in the phases of interaction
processes;

5) particles have the same size on average, collisions, or interaction between the
particles, can be neglected;

6) phases movement is one-dimensional;

7) heat transfer to the burning surface of the grains is not taken into account (heat
wave movement velocity in the gunpowder equals to burning velocity);

8) material of the particles is incompressible;

9) gas parameters inside and outside of the gunpowder elements are same in this
cross-section.

The system of one-dimensional hydro-mechanical equations describing the barrel
system ballistics in terms of mechanics of heterogeneous medium has the form [1]:
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where ¢ is time; z is coordinate; p is gas density; m is mixture porosity (volume of voids
per unit volume); S is variable cross-sectional area of the chamber and the barrel; v,w are
movement velocities for gas and solid phase in the barrel respectively; G is gas coming per
unit volume; ¢ is density of gunpowder material; p is pressure; 7, is hydraulic resistance
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of gunpowder elements per unit volume; I1. is perimeter of the barrel; 7., 7o, are friction
force of gas and gunpowder particles on the barrel surface per unit area respectively;
¢ is internal energy per unit mass of gunpowder gases; () is heating value (potential) of
gunpowder; « is covolume; ¢. is heat flow to the barrel surface; 1) is the relative proportion
of burnt gunpowder; Ay, Sy are the initial volume and surface of grain gunpowder; o ()
is current burning surface to original ratio; w is the linear velocity of gunpowder burning;
k = z—: is adiabatic index; c,, ¢, are heat capacity of gas at constant volume and pressure
respectively.

Received system of equations contains seven variables: gas parameters p, p, €, v, solid
phase velocity w, the mixture porosity m and relative share of burnt gunpowder .

Initial and boundary conditions:

SR

0< o< Lgm, t=0, v=w=0,p=p,, c=¢€,=7, V=1

r=0, t>20, v=0;
T =1Ten, 20, V=10

Boundary movement x = x., and projectile velocity are determined by the equations
of projectile movement:

dt :Scn (p_ppr)_Ft7 (2>
d@en _
dt - cny

where Ly, is length of the chamber; f = RT, is gunpowder force; R is gas constant; T,
is the gunpowder burning temperature at the constant volume; § = k — 1; ¢ is projectile
mass; F; is resistance force during the projectile movement in the barrel; S, is area of
the barrel; p,, is compressed air pressure in front of the projectile (back pressure); v, is
projectile velocity; z., is the path of the projectile in the barrel; p,,,, 1, are the initial
values of the relevant parameters.

Since the share of friction and heat transfer to the surface of the barrel in the total
balance of momentum and energy of the shot is small, we can use the approximate
dependencies neglecting the contact heat transfer and friction of particles on the barrel:

A
g = Nud— (T'—T.), 7Te=mc=0.125¢pv|v|, T =0,
k
where Nu is Nusselt number; X is thermal conductivity coefficient of gunpowder gases; T’
is temperature of the gunpowder gases; T, is surface temperature of the barrel, dj, is barrel
diameter; ¢ is resistance coefficient of the gunpowder grains in the layer.
Surface temperature of the barrel is defined by the equation:

dn 2 [ Nul\’ )
an _ T—1T,— i), n(0) =0,
- () Vi, 1(0)

where n = (T. —T,), T, is initial temperature of the barrel surface; c.,d., \. are heat
capacity, density and thermal conductivity of barrel material.

The air initially located in the chamber and the heating particles entering the flow
with the gaseous igniter burning products and creating considerable heat flows deposited
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on the gunpowder surface are taken into account to describe the ignition process. In
the gas-dynamic system of equation, which takes into account the gradual ignition, it is
additionally accepted:

1) burning products of various parts of the charge, igniter and air are the homogeneous
non-reactive mixture with the same velocities, pressures and temperatures;

2) the gases nature for different brands of igniter is the same;

3) grains of the igniter move with gunpowder elements;

4) inner and outer surfaces of the gunpowder elements in a given section are ignited
at the same time;

5) deposition of incandescent particles in ignited part of the charge is neglected;

6) gunpowder burning velocity is determined on the basis of approximate methods of
non-stationary and erosive burning [1].

2. Numerical Solution of the Model Equations

Conjunction Euler-Lagrange (CEL) method [1] is used for the numerical solution of
equations (1). The scheme of this method belongs to the class of homogeneous conservative
schemes that by introducing pseudoviscosity allow to keep "through" account of gas-
dynamic parameters in the shock waves presence. Pseudoviscosity component included
in the pressure and "smears" the shock wave front on several intervals of grid, so
that the values of the functions vary continuously passing through the leap and satisfy
conservation law of Rankine-Gyugonio. The upstream differences are used to approximate
the convective terms. Due to shifted grids, CEL-method has the second order of accuracy,
which ensures fast convergence of the solution regarding to the step along the coordinate.

To simplify the model (1), (2) we consider the processes occurring in the shot, by
assumption that pressure, density and temperature of gas are taken average over the
burning chamber volume. Accounting of combustion products movement will be made on
the bases of some functions selected on the results of numerical simulation for solutions
of equations (1), (2). For average over volume parameters we have the following system of
ordinary differential equations [2]:

b _ KRy —1) + L) (M (1= 2) = Sonvenpe]

dt  1—ap p(l—ep o
WpdT kR Op p
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de
o, (3
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W—Scnvcn+7a

as well as equation (2).
Here W is free volume of the chamber and the barrel; 7}, is isobaric temperature; x
is heat loss coefficient; p. is density behind the projectile associated with pressure p. in

back of projectile space p. = M = juX is gas coming from combustion products;

RT>

Pe
Y. (e) is relationship between the burning surface area and thickness of the burnt body;
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gunpowder burning velocity is determined by the dependence u = u;p; u; is unit burning
velocity.

We introduce the vector of correction functions ® = [y (€), oy (t), e (), 0u ()],
responsible for the approximation of the model (3) to the mathematical model (1):

=X+ Nw; (4)
X = X0¥x; (5)
wO (1 - fi (7)) vZ,
Ye ™ oW, T
Pe = 1+ w f (_) ) (6>
2q L
U = Uy yP; (7)
02-1
) = — . 8
Here © = SS—;; Wy, = SpLj is combustion chamber volume; Sy, L, are sectional area
Len + Lk

and length of the combustion chamber; z =

k
The controls ¢y, ¢, have meaning for e < e, and therefore are accepted depending
on the size of the burnt body. The value of ¥y = “ i (4) is determined by the mass of
€k

charge w and body thickness ey.
During burning it is assumed that igniter has the same burning velocity as gunpowder,
and the area of the burning surface depends on the thickness of the burnt body

Oy, 2¢ \ 2
5, (€) = 1- =2
)= 5D, ( Dw>
where w,,, 0,,, D,, are mass, density, diameter of igniter particulars. The typical value xo =
0,9. Initial values for equations (3), (8): p(0) = p,, T (0) = T,,,e(0) = 0, W (0) =W,
Ven (0) = 0.

Dependencies P (t) = p(t), P.(t) = p.(t), Ven (t) = vep, (t) obtained by numerical
solution of equations (1), (2) are used to calculate the functions ®. Functions @ should

ensure the minimum values of the deviations of variables p (t), p.(t), ven (t), calculated
for equations (3), (8) from values P (t), P.(t), V., (t) for the time of the shot #;:

1,@®) = [ ()= PO &t = min.
1.(®) = [ o) = R0 dt = min, )

LM®:AW%®—%MWﬁﬁgm

After substituting expressions (4) — (7) in equations (3), (8) we obtain a system of
ordinary differential equations for the phase variables X = (p, T,e,VV,Um)T with the
control ®. The system of equations (3), (8) together and conditions for minimum of
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functionals (9) represent the optimal control problem. The system of equations (3), (8) is
solved numerically by the Runge-Kutta method with fourth-order accuracy with a step
At. Controls @ are replaced by linear functions on intervals of time and the burnt body

t;, tiv1], to =0, tn, =tk [ej, €j+1], €0 =0, en, = €
P — P
Yj+1 — Yj
where Ng is number of intervals. Thus the optimal control problem is reduced to the finite-
dimensional problem of multicriteria optimization to determine the values ®;. Multicriteria
optimization problem is solved by use of a hybrid multipopulation genetic algorithm [3].

We consider the following algorithm, which does not require the introduction of
additional sub-populations and user interaction in the choice of optimal Pareto solutions
[3].

Suppose we are given the problem of multi-criteria optimization:

¢)<y):¢)]+ (y_yj)7 j:07N<I>_17 y:<tue)7

F (x) — min,
or
F; (x) — min, ¢ =1, N.

Just as in the case of one criterion the population by given size R is formed. From
this population the individuals (solutions x) are chosen, that are the bests for each of N
criteria with criteria values

F)(x),i=1,N.

Individual, a leader in a given population, is defined by the rule:

x’ = arg Lrnin <max ‘sz (x) — F? (X)‘):| . (10)
i=1,R \i=1,N

Selecting for crossing is carried out by the tournament. Solution obtained in a result
of a number of iterations is unique and Pareto optimal. Genetic algorithm with a real
encoding is used as an optimization method.

Fig. 1 shows relationships P (t), P.(t), obtained from the numerical solution of
equations (1), (2) and used as a standard for the selection of corrective functions ®
(black circles show pressure on the bottom of the channel, light circles show pressure
on the bottom of the projectile). Fig. 2 shows dependence V,, (¢) (black circles). Relations
p(t), pe(t), ven (1), calculated on equations (3), (8) according to corrective functions, are
shown at the same figures (bold line in fig. 1 shows pressure on the bottom of the channel,
light line shows pressure on the bottom of the projectile). Velocity of the projectile v, (t)
in fig. 2 is a bold line.

As you can see, the selection of the corrective functions provides reproduction of firing

process in the basic details. Change of correction functions is shown in fig. 3: ¢y (i) is

dependence 1; ¢, (i) is dependence 2; ¢, (i) is dependence 3; ¢, (é) is dependence 4.

Let us consider the following level of dimension reduction of mathematical model —
approximation of point features. On the example of artillery shot it is the dependence
of the maximum pressure p™** in the chamber and muzzle velocity v2)** from the initial
process parameters (vector z = (p

T . .
max pmax)T) . As the impact parameters we consider

max
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Fig. 1. Pressure curves at the bottom of the channel and the bottom of the projectile

Ven, m/s
1000

900
800
700
600
500
400
300
200
100

0 1
0 0.005 0.01 0.015 0.02 0.025

Fig. 2. Velocity of the projectile

vector Y = (T, ex, u1,0, o) in the range [0.95; 1.05] of nominal values. Under the random
distribution of the parameters Y from the solution of equations (3), (8) for given values
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Fig. 3. Correction functions

of the correction functions ® we obtained H = 1000 points (z,Y) i J = 1,H. On these
data we carry out comparative analysis of different approximators:

1) multiple regression equation;

2) support vector method,

3) multilayer neural network;

4) radial network;

5) the method of fuzzy decision trees.

Multiple regression equation is z = b + (w,Y), where the coefficients b, w are found
by the method of least squares.

In support vector method 2(Y) = 20 (A5 — A\) K(Y,Y") +b, summation is carried
out for (A; —X,) # 0, where K(Y,Y’') = exp (—0,5(Y = Y)To (Y —Y')) is a kernel
function. Coefficients A;, A,, which are Lagrange multipliers in the quadratic programming
problem, are calculated iteratively [4] on available data set, o is a covariance matrix.

In multilayer neural network the input signal is converted by the layers according to
the expressions:

I
\'}—‘
5
N
I
\'I—‘
=
o
)
p=}
~—r

k ~ k-1 ok Ey s
U; = wiq; g = g(ug), 1 U)=——"—"""F -,
Z i T+ oxp(—Bu)

=Y, z=q",

where N}, is the number of neurons in the kth layer; K¢ is the number of layers in the
neural network; wfj are weighting coefficients; ¢ (u) is activation function with optimization

parameter (3.
_lx=a.

Radial network performs conversion z(Y) = S>%_ w, exp 57 } , where L is the
h

number of centers of radial neurons with values Cy; coefficients wy,, o), are determined by
training.
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In the method of fuzzy decision trees the decision tree [3] is constructed on a data set.
Constructed decision tree is considered as a set of fuzzy rules by the form

R.: f ﬂYjEAjrthenzisBr, r=1,Kg.

Condition Y; € Aj;, corresponds to the separation of the set of points on the breakdown
>
Y; 2 w; and means entering of value Y; in the fuzzy intervals on the left and right of

parameter w; with the given membership functions. For a given vector Y the degrees of
truth for each rule o, r = 1, K, are defined. As a result, an aggregated output signal is
determined by formula:

Kg n
z (Y) = K; ZO&,« (wm + ZU)MY}'> .
Drm1 O 15 j=1
Coefficients w,; are determined by available training selection using the procedure of

pseudoinversion.

Selection of 1000 points is divided into the training selection (750 points) and the test
selection (250 points). On the test selection the standard error was calculated for each
approximator. The results are given in table. The best result was shown by the radial

Table
The standard error
Approximator | p™ax yimax
1 10,43 5,07
2 3,23 4,32
3 3,88 4,45
4 2,28 4,05
5 6,89 5,05

max

network. Error for maximum pressure p™®* is 2,28 MPa or 0,52%, for muzzle velocity v
error is 4,05 m/s or 0,43%. Number of centers of radial functions is L = 100, o, = 2. The
linear dependence (1st approximator) showed the worst results. This is well illustrated
by the graphs for comparing of the approximated value p;'** with p™®* calculated from
equations (3), (8). Fig. 4 corresponds to the linear approximator, and fig. 5 corresponds
to the radial approximator.

Conclusion

Application of the methods of knowledge and data extraction, and genetic algorithms
allows us to construct the adequate mathematical models that can be implemented in
various control systems.
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Fig. 4. Comparison of the approximated and calculated pressures (linear approximator)
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ITOCTPOEHUE AIIITPOKCUMUWPVYROIMINX
MATEMATNYECKNX MOJEJIEN 110 PE3YJ/IETATAM
YU CJIEHHBIX 9KCIIEPIMEHTOB

B.A. Tenewnes, U.I. Pycax, B.I. Cygpusaros, M.A. Epmonaes, /I.I. Hegedos

MaremaTnyeckasi MOJIeJIb apTUJLJIEPUIACKOIO BBICTPEJIA [IPEJCTABIEHA B BUJIE CUCTEMBI
HECTAIMOHAPHBIX OJIHO- U JIByMEPHBIX JudepeHIaabHbIX ypaBHEHU MHOMO(Ma3HOM ra30-
JMHAMUKA U TelyioobMena. [ljisi YucjeHHOro penreHns ra30nHAMIYECKUX YpPaBHEHUN nc-
ITOJTb3YETCsl COBMECTHBII 3i1IepoBO-jIarpankeB meros. Vcxomnas MaremaTndeckass MOJIEb
AIIIPOKCUMUPYETCS CUCTEMOI OOBIKHOBEHHBIX An(pepeHInaJbHbIX YPaBHEHUN C IIpUMe-
HEHUEM BeKTOpa KoppekTupyomux ¢pyHkuuii. Koppekrupyomue GyHKIME HAXOAATCA U3
peIHeHI/ISI thOFOKpI/ITepI/IaﬂbHOﬁ 3a/la49M OIITUMaJIbHOI'O praBJIeHI/IH. MHOFOKpI/ITepI/IaHbHaH
ONITUMUBAIIMS OCYIIECTBJISIETCSI C IPUMEHEeHneM I'MOPUIHOTO TeHeTHIecKoro ajaropurma. I1o-
JIyY€HHAsT MOJIEJIb SIBJISIETCS aJIeKBATHON U MIO3BOJISIET ITPOBECTU OOJIBIIY IO BBIYUCIATETHHY IO
CEpPHI0 PACYETOB OCHOBHBIX IIAPAMETPOB IIPOIECca (CKOPOCTH CHAPAIA M MAKCHMAJIHLHOIO
JIABJIEHNs) B 3aBUCHMOCTH OT UCXOJHBIX napameTpoB. CpaBHUTEIbHBIN aHAIN3 PAITYHBIX
AIIIPOKCUMATOPOB (JIMHE{HAsT MHOYKECTBEHHASI PETPECCHs], METOJI, OIIOPHBIX BEKTOPOB, MHO-
rocJIOHAasl HEHPOHHASI CeTh, PAMAJIbHASI CETh, METOJ[ HEUETKUX JEePEBbEB DEIeHUi) Mo~
KazaJ, 9To npuemyemyio ToaHocTh 0.4-0.5% obecrnednmBaoT TOJIBKO METOABI HEJUHEHHOM
AIIIPOKCUMAITAH, TaKNe KaK MHOTOCJIOWHAas W paJanajabHas HeHpoHHbIe ceTH. IlocTpoentbie
AIIIPOKCUMUPYIOIINE MOJEIU He TPeOYIOT OOJIBbIINX 3aTPAT BHIYUCIUTEILHOIO BPEMEHU U
MOI'YT OBITH PEAJIN30BAHBI B CHCTEMAX YIIPaBJIEHUS.

Karouesnie ca06a: Mamemamuyeckas MoOeab GuiCPens; Mio20asnas 2a300UHaMUKa;
ANNPOKCUMUPYIOULUE MOOEAU; MHOLOKDUMEPUAAOHAA ONTNUMUSAUUA.
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