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For the analysis of huge problems which are very sensitive to the rounding errors,

the software providing rational calculations is developed. Software uses MPI interface for

communication in the distributed computational environment. Improved e�ciency of such

software my be achieved by using heterogeneous computation systems. Local arithmetic

operations with long numbers may be done in parallel mode with a lot of processes per

one operation. This work introduces the research of increasing of the scalability of basic

arithmetic operations.

Abilities of the massive parallelism for the heterogeneous computation systems for

the e�ciency improving are shown. Redundant numerical system with a constant time

of the addition operation is introduced. It allows to design well scaled algorithms for all

basic arithmetic operations with integer numbers. Scalability of the basic integer arithmetic

algorithms is easy applied to rational arithmetic.

Keywords: integer computer arithmetic; heterogeneous computer system; radix

notation; massive parallelism.

Introduction

Reliable computations are the necessary [1] and su�cient [2�4] tool for algorithmic
analysis of large scale unstable problems. The library "Exact computation" [5] provides
such functionality in the distributed computing environment.

Further increasing of e�ectiveness of such software is possible for account of
heterogeneous computing environment allowing to parallelize local arithmetic operations
using more than one process for the basic arithmetic operation.

Quality measure of the sequential algorithm is its computational complexity. Less
computational complexity leads to less time complexity of the algorithm and its more
e�ciency. Computational complexity of parallel algorithm is not indicative since di�erent
operation may be performed simultaneously. Good quality measure of the parallel
algorithm is given by measure of the strong scalability of the parallel algorithm is speedup
over sequential analogs. The best parallel algorithms provide constant or logarithmic (from
the input data size) estimations of the time complexity that leads to O(n) or O(n/ log2 n)
speedup. Linear O(n) speedup usually is given by fully parallel algorithms and O(n/ log2 n)
speedup is given by algorithms that use doubling scheme.
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If the processes k = 0, 1, . . . , n require time tρk for the performing of operation ρ then
time required to complete operation is tρ = max{tρk : k = 0, 1, . . . , n}.

The subject of the paper is development of the completely scalable parallel algorithms
of the basic arithmetic operation with linear O(n) speedup and the well scalable parallel
algorithms with O(n/ log2 n) speedup.

It is demonstrated that the application of redundant positional notations gives the
completely scalable addition/substraction algorithms and relative scalable algorithms for
the rest basic arithmetical operations. The results about scalability algorithms for integer
arithmetics that were announced at the conferences [6�8] are presented in the paper.

1. Heterogenous Computation Systems

Structure of heterogenous computation systems is presented on �g. 1.. Heterogeneous

Fragment of heterogenous system architect

computation system unit consist of the managing CPUs (host side) and the set of devices
(device side). CPU provides operating system functioning and program launch. Devices
provide parallel execution of basic operations over the data objects of program.

Data exchange between host and device memory is carried out via PCI bus, On-chip
and device-device communication is carried out via DMA (direct memory access). All
local on-chip interprocess communications of the "point-to-point" type can be carried out
asynchronously. Collective "one-to-all" data exchange may be carried out in two steps.
First, some process sends data to the shared thread or shared device memory. Second,
recipients read transmitted data. Reading of message from the shared memory may be
performed simultaneously by all recipients.

In summary, such geterogeneous system allows to construct a relatively low-cost, high-
performance computer with low power consumption. However, the transfer speed between
the host CPU and the massive parallel device can become a bottle neck, making it unusable
for applications with intensive CPU-Device-CPU data �ow.

Massive parallel architecture of the devices requires algorithms with high level
parallelism. Less clock rate (than CPU clock) of the device processors also decrease its
e�ciency for sequential tasks.

Features of the devices may dramatically vary from one to another therefore we
consider only pseudocode of algorithms.
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2. Analysis of Parallel Algorithms for Integer Arithmetic
Operations in the Classical Radix Notation

2.1. Addition of the Nonnegative Number

Classical addition algorithm for n-digit numbers is fully sequential. The possible
approach for parallel execution of the addition is two step procedure: �rst one is parallel
digit-by-digit summation, second one is parallel carry propagation from all digits where
carries are non zero. The second step can be performed after the �rst one is completed
but the operations at each step are fully parallel.

Algorithm may be implemented by the two fully parallel procedures Digit_Addition and
Carry_Propagation. Some global procedure _global_Add is need to de�ne lengths of the
summands and create the required quantity of the parallel processes. Further it is required
to call procedure _global_Add to get the result of addition (an−1 . . . a0)R+(bm−1 . . . b0)R.
Lets estimate the time for the execution of such algorithm as well as possible speedup
compared with classical sequential algorithm.

It is known that the binary notation is applied for presentation of numbers in computer
memory. Therefore the value R = 2r is accepted as the base of the radix. Here r is word
length of the utilized registers. Usually modern computers use 32- or 64-bit registers. We
use the noted values of R and r.

Thus, each of parallel processes of the procedure Digit_Addition requires time for the
addition of single digits and calculating corresponding digit of the result and carry, denote
it as ts. The time of the execution of procedure Carry_Propagation can vary from 0 in the
best case to (n− 1) · ts in worst case, we neglect overhead for while loop. An Full time of
execution of addition algorithm depends on values of input arguments. The full time varies
from s to n · s plus overhead on fork of the process. Time of the execution of addition by
strictly sequential algorithm (i.e. digit after the digit) in above terms is exactly n · ts.

Lets estimate the mean time of the execution of our parallel algorithm on the
assumption that the arguments belong to uniform distribution. Assume that n = m for
simplicity.

The probability of the non zero carry in one of the processes is equal to

p = P {ai + bi ≥ 2r} =
2r−1∑
l=1

P {ai = l}P {bi ≥ 2r − l} =
2r−1∑
l=1

1

2r
· l

2r
=

1

2

(
1− 1

2r

)
. (1)

Probability to have sum of two digits ai + bi = 2r − 1 is equal to

q = P {ai + bi = 2r − 1} =
2r−1∑
l=0

P {ai = l}P {bi = 2r − 1− l} =
2r−1∑
l=0

1

2r
· 1

2r
=

1

2r
. (2)

Consider the probability of carry propagation chain with length k ≥ l

Pl = P

{
n−l−1∪
i=0

[
(ai + bi ≥ 2r − 1)

l∩
j=1

(ai+j + bi+j = 2r − 1)

]}
= (n− l)pql. (3)

Modern processors can address up to few terabyte of operating memory but we have
probabilities Pl ≤ ql−1, l = 0, 1, . . . ,m even for very long numbers when the digit is an
r-bit number where r = 32 or r = 64.
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It is easy to see that the value of the probability P2 ≤ q, therefore, in the asymptotic
behavior the mean execution time of the algorithm is equal to 2ts. Thus, the considered
algorithm has at the average n/2 speedup in comparison with the sequential addition
algorithm.

Time of the addition in the the worst case may de decreased due to the improvement
of the carry propagation algorithm. Elements of the chain of sequential carries may be
processed in parallel. Carry propagation chains don't overlap.

Algorithm ACP releases advanced carry propagation scheme.
ÀCP1. Set L = 1, assume V (i) = i for each process i = 0, 1, 2, . . . , n.
ÀCP2. While exist i = 0, 1, 2, . . . , n with ci = 1, for all i : i ≡ (L− 1)mod2L perform

steps ÀCP3�ÀCP5.
ÀCP3. Set j = min {i+ L, n− 1}.
ÀCP4.1. If ci = 1 then set sV (j) = tV (j) + 1 =

(
srV (j) s

r−1
V (j) . . . s

1
V (j)s

0
V (j)

)
2
,

cV (j) = srV (j), tV (j) =
(
sr−1
V (j) . . . s

1
V (j)s

0
V (j)

)
, (∀k : i < k < V (j)) (tk = 0, ck = 0) , V (j) = V (i).

ÀCP4.2. Else if ci ̸= 2r − 1 or V (i) ̸= i, set V (j) = V (i).
ÀCP5. Set L=2L.
ÀCP6. Stop.
Under joining the low process with index L2k sends to higher process with index

(L+ 1)2k absent ripple carry �ag mark it as NotCarry, itself carry c, and possible ripple
carry verge V . High joining process with index (L + 1)2k in the case of the presence
of transfer from the low-order fragment L2k is produced into all necessary digits (from
L2k + 1-th to V ((L+ 1)2k)-th). The verge of the propagation of the ripple-through carry
in the united fragment is also re�ned. Excess processes are terminated for all cases.

Lets examine time complexity of addition with advanced carry propagation procedure.
This loop is carried out by any of the processes not more than ⌈log2 n⌉ times. During the
appropriate optimization at heterogeneous environment these operators can be executed in
parallel for one tick. Each of the active processes also executes no more than one receiving
communication and not more than one sending communication. Their preparation and
execution can be carried out for two tics.

Thus, the mean time of the advanced carry propagation scheme is equal to 3s, and in
the worst case it is equal to 3s⌈log2 n⌉.

In the asymptotic behavior of the mean time of the execution of addition with the
application of advanced carry propagation algorithm is equal to 4s, i.e., exceeds mean
time with the application of simple carry propagation algorithm in 4/3 times. However,
already with the presence of the carry circuits of length of more than two digits the
e�ectiveness of advanced carry propagation algorithm usage is undoubted.

2.2. The Binary Relations

Checking truth of any binary relation aρb : ρ ∈ {<,≤,=,≥, >, ̸=} may be carried
out through the relations ρ ∈ {=, >}. Indeed (a ≤ b) = ¬(a > b), (a ̸= b) = ¬(a = b),
(a ≥ b) = (a > b) ∨ (a = b), (a < b) = ¬(a ≥ b).

Idea of the algorithm is following. Initially data are split up n separated processes
i = 0, 1, . . . , n−1, and pi and qi are results of comparisons pi = (ai = bi) and qi = (ai > bi)
for fragments i = 0, 1, . . . , n− 1.

120 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2015, vol. 8, no. 2, pp. 117�126



ÏÐÎÃÐÀÌÌÈÐÎÂÀÍÈÅ

The k-th iteration of the algorithm handles the fragments associated with the processes
of l2k and (l+1)2k and combines them to one fragment associated with the process l2k−1.
Values of pi and qi are recalculated by formulas r = p2i+1&p2i, s = q2i+1|(p2i+1&q2i),
p2i+1 = true, p2i = true, q2i+1 = false, q2i = false, pi = r, qi = s.

Sequential comparison algorithm requires at mean n/2 operations of digit comparison.
It is easy to see that palallel algorithm requires ⌈log2 n⌉ of parallel steps. Average speedup
over the sequential algorithm is n/2⌈log2 n⌉ times.

2.3. Determination of the Number Signi�cant Digits

For the e�cient usage of computational resources under execution of arithmetic
operations it is necessary to know the number of signi�cant digits.

Number of signi�cant digits of the di�erence after subtraction can be determined only
after operation completion. Therefore, the way to compute completion is an important
part of the e�cient arithmetics.

Algorithm for this operation is optimized simpli�ed version of the binary relation
algorithm which requires ⌈log2 n⌉ of parallel steps. So determination of the number of
signi�cant digits is used only straight after the subtraction operation and may be performed
with ⌈log2 n⌉ parallel steps.

2.4. Multiplication of the Multidigit Number on the Digit

Algorithm M calculates the product (cn, ..., c0)R of given non-negative integers
a = (an−1, ..., a0)R, and b = (b0)R represented in the radix notation with the base R = 2r.

Ì1 [Initialization]. Fork n+1 proceses.
Ì2 [Digit-on-digit multiplication]. Each process i = 0, 1, . . . , n − 1 calculates

(x1
i x

0
i )R = a[i] [i] · b.
Ì3 [Addtition]. Each process i = 0, 1, 2, . . . , n− 1 calculates

f [i] =
⌊
x0
i+x1

i−1

R

⌋
,

c[i] =
(
x0
i + x1

i−1

)
mod R.

Ì4 [Carry propagation]. Each process i = 0, 1, . . . , n− 1 sets c[i+ 1]+ = f [i].
Ì5 [Finish]. (c[n] c[n− 1] ... c[0])R is result of the algorithm.
Algorithm calculates product of the number b on the digits ai, i = 0, . . . , n−1 (line 3).

Product of two digits is a two-digit number (x1 x2)R ≤ (2r−1)2 = 2r(2r−2)+1, i.e. value
of the carry x1 (lines 4,9, and 10) is not more than 2r − 2. Therefore there are no carry
propagation chains (lines 11, 12, 13. 14) with length more than 1 and we have ti ≤ 2r − 1
for all i = 0, . . . , n− 1, n.

From the description of Algorithm M it is evident that the expenditures of time for
stages Ì2-M4 is tm + 2ts where tm is time to calculate the result of the digit on digit
multiplication and ts is time to calculate sum of two digits and carry. Thus Algorithm M
has speedup n times over sequential algorithm of calculating number on digit product.

2.5. Multiplication of the Two Multidigit Numbers

We can calculate the product of the two multidigit numbers of length n and m
correspondingly using Algorithm M and reduction scheme to calculate sum of the partial
results.
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The time of execution of such procedure consist of time to perform in parallel
Algorithm M for all digit of one number and ⌈log2m⌉ additions of (n + m − 2)-digit
numbers.

Thus, average execution time does not exceed tm + ts(2 + log2m). In the worst case
execution time not exceed the value tm+ ts(2 + (n+m)log2m).

Algorithm M uses n and there are m digit to multiply �rst number on. Consequently,
the total quantity of created processes is equal to mn.

In the worst case with increasing length of operands the time of execution slightly
exceeds the linear function, whereas execution time of the classical sequential algorithm
of multiplication of two numbers has the quadratic dependence on length of operands.

2.6. Division

The classical algorithm of the long division cannot be performed in parallel. It requires
(n+m−1) sequential operations of the multiplication-subtraction withm-digital numbers.
In the papers [7, 9] the solution of the problem of increasing of the e�ectiveness of the
algorithm for the operation of division by means of the Newton's method application is
proposed.

In order to divide integer u = (u[n− 1] u[n] . . . u[1] u[0])R by integer
v = (v[m− 1] ... v[0])R it is proposed to �nd su�ciently precise approximation for number
1/v, then to multiply it on u, which will give the approximation for u/v. It is obvious
that the length of integral answer is not more than n−m + 1. Number 1/v contains not
more than m nonsigni�cant zeros in the high-order digits, for obtaining the correct result
of division it is su�cient that the approximate value of 1/v would still contain at least
n−m+ 1 signi�cant digits. Thus, the necessary precision of the value 1/v is determined
by value R−n+1.

The application of Newton's method to the problem of �nding of the root of equation
f(x) = 0, where f(x) = v − 1/x, consists of the sequential calculation of

xk+1 = (2− v · xk) · xk, k = 0, 1, 2, . . . ,

where x0 is initial approximation calculated with the necessary precision. Function
f(x) = v − 1/x is twice continuously di�erentiable and strictly convex when x > 1.
In this case the Newton's method possesses the quadratic speed of convergence, i.e., a
quantity of correctly calculated discharges after the execution of sequential iteration will
double. The initial approximation x0 = 1/(v[m− 1]) of value 1/v has an error

1

v[m− 1] ·Rm−1
− 1

v
=

v − v[m− 1] ·Rm−1

v · v[m− 1] ·Rm−1
≤ 1

v · v[m− 1]
≤ R−m+1,

i.e. it correctly calculatesm digits. Thus, a quantity of iterations, which it will be necessary
to carry out according to the Newton's method, will be not more than the value 4log2(n+
1)− log2m.

On the k-th iteration (k = 0, 1, 2, . . . , l < log2(n + 1) − log2m) variable x represents
(2k+1 − 1)-digit number. Therefore at this cycle body with aid of parallel algorithms
one operation of multiplication of variable x by the m-digit number b, one operation
of subtraction of (2k)-digital numbers, and one operation of multiplication of (2k)-digital
numbers are performed. Consequently, time necessary for ful�lment of the cycle body does
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not exceed value 2tm+ ts · (2 + log2 m+ k) at the average case and value 2tm+ ts · (4 +
2kk + 2, 5 · 2k + 3m log2 m+ k) at the worst case.

Since

l∑
k=0

k = l(l+1)
2

,
l∑

k=0

2k = 2l+1 − 1,

l∑
k=0

(
k · 2k

)
≤

√
l∑

k=0

k2
l∑

k=0

4k =
√

2l3+3l2+l
6

· 4l+1−1
3

≤ 2l+1
√

l3

3
,

the time of execution in the average and the worst cases will not exceed the values

O
(
log2n · log2

(
n+1
m

))
and O

(
n+1
m

log2
3/2

(
n+1
m

))
respectively.

The multiplication of two n-digit numbers completes the execution of procedure D.
This step requires at the average O(log2 n) time and O(n · log2 n) in the worst case. Thus,
the �nal estimations of the execution time of division in the average and worst cases will

be equal respectively O
(
log2n · log2

(
n+1
m

))
and O

(
n+1
m

log2
3/2

(
n+1
m

)
+ n log2n

)
.

3. Usage of Sign Radix Notation

The notation system given above is unsigned, digits in the position system on the base
R are numbers 0, 1, 2, . . . , R−2, R−1. One of the drawback of this is that it requires the
comparison of numbers to �nd the result of addition and subtraction. It may be avoided
by the application of sign radix notation. The digits on the sign radix notation on the base
R are integers

−
⌊
R

2

⌋
, −

⌊
R

2

⌋
+ 1, . . . ,−1, 0, 1, 2, . . . ,

⌈
R

2

⌉
− 2,

⌈
R

2

⌉
− 1.

Note that with odd R the number of positive and negative numbers is equal, and with
even R a number of positive numbers is less than the number of negative ones.

Designate presentation of the number at the sign position radix notation with base
R = 2r as (an−1, ..., a0)±R, and its digits as ai = (ar−1

i ar−2
i . . . a1i a

0
i )±2, i = 0, 1, . . . , n− 1.

High bit of the digit presentation is its sign (0 for positive, and 1 for negative). So digits
at the sign radix notation are the objects of the sign integer type.

Note that all basic algorithms, for the unsigned numeration systems, with exception
of the algorithms of addition / subtraction, will not change. The algorithms of addition /
subtraction are united into the common algorithm.

Addition procedure calculates the sum of the unsigned presentations of signed

integer data type (i.e. for positive numbers in high-order digit zero, for negative numbers
in the elder ones digit), and forms the sum and carry into the next digit: in the absence
register over�ow the carry is zero, the sign of result does not change, but in its presence the
sign of result changes to the opposite and the carry of the corresponding sign is formed.

Application of sign position systems simpli�es the algorithm of algebraic addition, but
it does not solve the problem of ripple-through carries propagation.

The accelerated calculation of the chain of ripple-through carry and its propagation is
possible also for unsigned systems. Advantages and disadvantages of the accelerated carry
propagation are the same as for unsigned radix notation. The truth of binary relations
in the sign systems is easily realized by means of the subtraction operation. The sign of
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the number is determined by the sign of high-order digit. Algorithms of de�nition of a
number of signi�cant digits, multiplication and division are the same as in the unsigned
radix notation.

4. Usage of Redundant Radix Notation

Parallel algorithms of all arithmetic operations presented above show at the average
high speedup over sequential versions. Mean computing time of results of addition,
subtraction, multiplication by the single-column number has the value O(1), the mean
computing time of binary relations has a value of O(log n), multiplication and division of
the numbers of word length n does not exceed value O(log22 n). However, in the worst case
the computing time of results of any operation with n-digital numbers requires O(n) time
with the usual carry propagation and O(log2 n) with the accelerated carry propagation.
The reason for deviations from the average value is the fact that with the execution of
addition (subtraction) for carry propagation there appear the chains of the length of more
than one. To exclude the noted precedents to the usage of redundant radix notation [7] is
helpful.

The natural n-digital number N in the radix notation with the base R is presented in
the form of ordered set of numbers

N = (an−1 . . . a1 a0)R =
n−1∑
l=0

alR
l, an−1, . . . , a1, a0 ∈ D = {0, 1, 2, . . . , R− 1} .

This presentation is unique. The uniqueness of presentation is reached because the set of
numbers D contains exactly R elements that present the section of natural series including
zero. The expansion of the set of numbers D will lead to the expansion of presentation for
number N .

Consider the method of expanding of the set of numbers D, which makes it possible
to perform the operation of addition (subtraction) in time O(1). Let the computing
system use 2r-bit registers. Let us accept the number base R = 2r−1. Therefore any digit
ai has non-redundant representation

(
0 ar−2

i . . . a1i a
0
i

)
2
. Under redundant representation

we suppose that ai may be presented with possible nonzero delayed carry ar−1
i , so

ai =
(
ar−1
i ar−2

i . . . a1i a
0
i

)
2
.

Look over one of the possible methods of realization of addition algorithm. Let the
i-th digits of terms have form

ai =
(
ar−1
i ar−2

i . . . a1i a
0
i

)
2
, bi =

(
br−1
i br−2

i . . . b1i b
0
i

)
2

i.e. present binary r-digital numbers. After completing of digit-by-digit sum in each
position there will be obtained an (r + 1)-digital result

si = ai + bi =
(
ar−1
i ar−2

i . . . a1i a
0
i

)
2
+
(
br−1
i br−2

i . . . b1i b
0
i

)
2
=

(
sri s

r−1
i . . . s1i s

0
i

)
2
.

Use two elder bits for the transfer into the next digit, and obtain resulting r-digital form

s̃i =
(
0 0 sr−2

i sr−3
i . . . s1i s

0
i

)
2
+
(
sri−1 s

r−1
i−1

)
2
=

(
s̃r−1
i s̃r−2

i . . . s̃1i s̃
0
i

)
2
.

Thus, executing the operation of addition may be performed fully parallel for all cases.
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Presented approach uses a radix notation with the redundant digit set. We use of the
redundant bit of the digit as the postponed carry that makes it possible to perform the
operation of addition in constant time.

Since the algorithms of multiplication and division are correct in this numerical
notation and contain the operation of addition only, i.e. use makes the time of the execution
of these operations is not worse than those estimations of the mean time of execution for
algorithms examined above.

Disadvantage of the redundant radix notation is in the plurality of the number
presentation, which makes e�ective calculation of binary relations and quantity of
signi�cant places possible only after the global carry propagation, that removes the
redundancy of representation. Let us recall that in the asymptotic behavior the probability
of appearance of additional carry approaches zero.

Conclusion

E�ective realization of local arithmetic operations with big numbers requires device
with enough amount of random-access memory. If the numbers are so huge that the volume
of device's random-access memory is not su�cient then operations may be performed
on several devices. Moreover, interface between the central processor and the device or
between the devices has restrictions on capacity, latency and bandwith. The e�ectiveness
of arithmetic operations with huge numbers is a subject of further researches. It is possible
that implementation of Toom-Cook or Karatsuba rapid multiplication algorithms [9] will
be e�ective for this case.
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ÏÀÐÀËËÅËÜÍÛÅ ÀËÃÎÐÈÒÌÛ ÖÅËÎ×ÈÑËÅÍÍÎÉ
ÀÐÈÔÌÅÒÈÊÈ Â ÏÎÇÈÖÈÎÍÍÛÕ ÑÈÑÒÅÌÀÕ
Ñ×ÈÑËÅÍÈß ÄËß ÃÅÒÅÐÎÃÅÍÍÛÕ ÊÎÌÏÜÞÒÅÐÍÛÕ
ÑÈÑÒÅÌ C ÌÀÑÑÎÂÛÌ ÏÀÐÀËËÅËÈÇÌÎÌ

À.Â. Ïàíþêîâ, Â.À. Ãîëîäîâ

Äëÿ àëãîðèòìè÷åñêîãî àíàëèçà êðóïíîìàñøòàáíûõ ïðîáëåì, ÷óâñòâèòåëüíûõ ê

îøèáêàì îêðóãëåíèÿ, ðàçðàáàòûâàåòñÿ ïðîãðàììíîå îáåñïå÷åíèå, ðåàëèçóþùåå òî÷-

íûå äðîáíî-ðàöèîíàëüíûå âû÷èñëåíèÿ â ðàñïðåäåëåííîé âû÷èñëèòåëüíîé ñðåäå ñ èñ-

ïîëüçîâàíèåì MPI êîììóíèêàöèé. Ýôôåêòèâíîñòü ïðîãðàììíîãî îáåñïå÷åíèÿ ìîæåò

áûòü óâåëè÷åíà çà ñ÷åò ïðèìåíåíèÿ ãåòåðîãåííûõ âû÷èñëèòåëüíûõ ñèñòåì, ïîçâîëÿþ-

ùèõ âûïîëíÿòü ëîêàëüíûå àðèôìåòè÷åñêèå îïåðàöèè ñ ÷èñëàìè áîëüøîé ðàçðÿäíîñòè

ïàðàëëåëüíî áîëüøèì ÷èñëîì ïðîöåññîâ. Ðàáîòà ïîñâÿùåíà ïîâûøåíèþ ìàñøàáèðóå-

ìîñòè àëãîðèòìîâ îñíîâíûõ àðèôìåòè÷åñêèõ îïåðàöèé.

Ïîêàçàíà âîçìîæíîñòü ïîâûøåíèÿ ýôôåêòèâíîñòè ïðîãðàììíîãî îáåñïå÷åíèÿ çà

ñ÷åò ïðèìåíåíèÿ ìàññîâîãî ïàðàëëåëèçìà â ãåòåðîãåííûõ âû÷èñëèòåëüíûõ ñèñòåìàõ.

Èñïîëüçîâàíèå èçáûòî÷íîé ïîçèöèîííîé ñèñòåìû ñ÷èñëåíèÿ, ïðåäëîæåííîé â ðàáîòå,

ïîçâîëÿåò âûïîëíÿòü îïåðàöèþ àëãåáðàè÷åñêîãî ñëîæåíèÿ çà êîíñòàíòíîå âðåìÿ, ÷òî

ïîçâîëÿåò ïîñòðîèòü õîðîøî ìàñøòàáèðóåìûå àëãîðèòìû âûïîëíåíèÿ âñåõ îñíîâíûõ

àðèôìåòè÷åñêèõ îïåðàöèé ñ öåëûìè ÷èñëàìè. Ìàñøòàáèðóåìîñòü îñíîâíûõ àëãîðèò-

ìîâ öåëî÷èñëåííîé àðèôìåòèêè ëåãêî ïåðåíîñèòñÿ íà äðîáíî-ðàöèîíàëüíóþ àðèôìå-

òèêó.
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