IIPOI'PAMMUPOBAHUE

MSC 68W10, 65Y04, 65Y05, 65Y10 DOI: 10.14529/mmp150210

PARALLEL ALGORITHMS OF INTEGER ARITHMETIC
IN RADIX NOTATIONS FOR HETEROGENEOUS
COMPUTATION SYSTEMS WITH MASSIVE PARALLELISM

A.V. Panyukov, South Ural State University, Chelyabinsk, Russian Federation,
anatoly.panyukov@gmail.com

V.A. Golodov, South Ural State University, Chelyabinsk, Russian Federation,
avaksa@gmail.com

For the analysis of huge problems which are very sensitive to the rounding errors,
the software providing rational calculations is developed. Software uses MPI interface for
communication in the distributed computational environment. Improved efficiency of such
software my be achieved by using heterogeneous computation systems. Local arithmetic
operations with long numbers may be done in parallel mode with a lot of processes per
one operation. This work introduces the research of increasing of the scalability of basic
arithmetic operations.

Abilities of the massive parallelism for the heterogeneous computation systems for
the efficiency improving are shown. Redundant numerical system with a constant time
of the addition operation is introduced. It allows to design well scaled algorithms for all
basic arithmetic operations with integer numbers. Scalability of the basic integer arithmetic
algorithms is easy applied to rational arithmetic.

Keywords: integer computer arithmetic; heterogeneous computer system; radiz
notation; massive parallelism.

Introduction

Reliable computations are the necessary [1| and sufficient [2—4] tool for algorithmic
analysis of large scale unstable problems. The library "Exact computation" [5] provides
such functionality in the distributed computing environment.

Further increasing of effectiveness of such software is possible for account of
heterogeneous computing environment allowing to parallelize local arithmetic operations
using more than one process for the basic arithmetic operation.

Quality measure of the sequential algorithm is its computational complexity. Less
computational complexity leads to less time complexity of the algorithm and its more
efficiency. Computational complexity of parallel algorithm is not indicative since different
operation may be performed simultaneously. Good quality measure of the parallel
algorithm is given by measure of the strong scalability of the parallel algorithm is speedup
over sequential analogs. The best parallel algorithms provide constant or logarithmic (from
the input data size) estimations of the time complexity that leads to O(n) or O(n/logyn)
speedup. Linear O(n) speedup usually is given by fully parallel algorithms and O(n/log, n)
speedup is given by algorithms that use doubling scheme.

Bectuuk FOYpI'Y. Cepusa «MaTteMaTudecKoe MoJejinpoBaHUe 117
u nporpammupoBanues (Bectuuk FHOYpI'Y MMII). 2015. T. 8, Ne 2, C. 117-126



A.V. Panyukov, V.A. Golodov

If the processes k = 0, 1,...,n require time ¢} for the performing of operation p then
time required to complete operation is ¥ = max{t} : k=0,1,...,n}.

The subject of the paper is development of the completely scalable parallel algorithms
of the basic arithmetic operation with linear O(n) speedup and the well scalable parallel
algorithms with O(n/log, n) speedup.

It is demonstrated that the application of redundant positional notations gives the
completely scalable addition/substraction algorithms and relative scalable algorithms for
the rest basic arithmetical operations. The results about scalability algorithms for integer
arithmetics that were announced at the conferences [6-8| are presented in the paper.

1. Heterogenous Computation Systems

Structure of heterogenous computation systems is presented on fig. 1. Heterogeneous

Program Host
|
Central Host
Processor Memory
Command Unit
queues of
operations 'ﬁ ‘/\‘
Device k @
Thread Control Bus
| I I Device
Function Unit Function Unit Function Unit Memory
Local Registers Local Registers |  Kemels Local Registers
memory memory e e e | memory
Thread 0 Thread 1 Thread n

Fragment of heterogenous system architect

computation system unit consist of the managing CPUs (host side) and the set of devices
(device side). CPU provides operating system functioning and program launch. Devices
provide parallel execution of basic operations over the data objects of program.

Data exchange between host and device memory is carried out via PCI bus, On-chip
and device-device communication is carried out via DMA (direct memory access). All
local on-chip interprocess communications of the "point-to-point" type can be carried out
asynchronously. Collective "one-to-all" data exchange may be carried out in two steps.
First, some process sends data to the shared thread or shared device memory. Second,
recipients read transmitted data. Reading of message from the shared memory may be
performed simultaneously by all recipients.

In summary, such geterogeneous system allows to construct a relatively low-cost, high-
performance computer with low power consumption. However, the transfer speed between
the host CPU and the massive parallel device can become a bottle neck, making it unusable
for applications with intensive CPU-Device-CPU data flow.

Massive parallel architecture of the devices requires algorithms with high level
parallelism. Less clock rate (than CPU clock) of the device processors also decrease its
efficiency for sequential tasks.

Features of the devices may dramatically vary from one to another therefore we
consider only pseudocode of algorithms.

118 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2015, vol. 8, no. 2, pp. 117-126



IMTPOTPAMMUWPOBAHUE

2. Analysis of Parallel Algorithms for Integer Arithmetic
Operations in the Classical Radix Notation

2.1. Addition of the Nonnegative Number

Classical addition algorithm for n-digit numbers is fully sequential. The possible
approach for parallel execution of the addition is two step procedure: first one is parallel
digit-by-digit summation, second one is parallel carry propagation from all digits where
carries are non zero. The second step can be performed after the first one is completed
but the operations at each step are fully parallel.

Algorithm may be implemented by the two fully parallel procedures Digit Addition and
Carry _Propagation. Some global procedure global Add is need to define lengths of the
summands and create the required quantity of the parallel processes. Further it is required
to call procedure _global Add to get the result of addition (a,—1 ... ag)r+ (bpm-1 - .. bo)r-
Lets estimate the time for the execution of such algorithm as well as possible speedup
compared with classical sequential algorithm.

It is known that the binary notation is applied for presentation of numbers in computer
memory. Therefore the value R = 2" is accepted as the base of the radix. Here r is word
length of the utilized registers. Usually modern computers use 32- or 64-bit registers. We
use the noted values of R and r.

Thus, each of parallel processes of the procedure Digit Addition requires time for the
addition of single digits and calculating corresponding digit of the result and carry, denote
it as ts. The time of the execution of procedure Carry Propagation can vary from 0 in the
best case to (n — 1) - ts in worst case, we neglect overhead for while loop. An Full time of
execution of addition algorithm depends on values of input arguments. The full time varies
from s to n - s plus overhead on fork of the process. Time of the execution of addition by
strictly sequential algorithm (i.e. digit after the digit) in above terms is exactly n - ts.

Lets estimate the mean time of the execution of our parallel algorithm on the
assumption that the arguments belong to uniform distribution. Assume that n = m for
simplicity.

The probability of the non zero carry in one of the processes is equal to

271 271

1 1 1 1
=1

=1

Probability to have sum of two digits a; + b; = 2" — 1 is equal to

27—1 271 1 1 1

4=P{ b= X pla e - r ey ©

Consider the probability of carry propagation chain with length k£ > [

n—I[—1
P = P{ U

1=0

(a; +b; >2"—1) ﬂ(aiﬂ» +bip;=2" — 1)] } = (n —)pq. (3)

Modern processors can address up to few terabyte of operating memory but we have
probabilities P, < ¢!~!, | = 0,1,...,m even for very long numbers when the digit is an
r-bit number where r = 32 or r = 64.

Bectuuk FOYpI'Y. Cepusa «MaTteMaTudecKoe MoJejinpoBaHUe 119
u nporpammupoBanues (Bectuuk FHOYpI'Y MMII). 2015. T. 8, Ne 2, C. 117-126



A.V. Panyukov, V.A. Golodov

It is easy to see that the value of the probability P, < q, therefore, in the asymptotic
behavior the mean execution time of the algorithm is equal to 2ts. Thus, the considered
algorithm has at the average n/2 speedup in comparison with the sequential addition
algorithm.

Time of the addition in the the worst case may de decreased due to the improvement
of the carry propagation algorithm. Elements of the chain of sequential carries may be
processed in parallel. Carry propagation chains don’t overlap.

Algorithm ACP releases advanced carry propagation scheme.

ACP1. Set L =1, assume V(i) = i for each process i =0,1,2,...,n.

ACP2. While exist i = 0,1,2,...,n with ¢; = 1, for all i : i = (L — 1)mod2L perform
steps ACP3-ACPS.

ACPS. Set j =min{i+ L, n — 1}.

ACP4.1. If ¢; = 1 then set sy = tyy +1 = (5{/0) 57‘}’;) - sé(j)s?/(j)>2 ,

eVl = Sy tv) = (57;(;.) o slv(j)sg(j)) (ki <k < V() (b = 0,c0 = 0), V() = V(i).

ACP/.2. Else if ¢; # 2" — 1 or V(i) # i, set V(j) = V(3).

ACPS. Set L=2L.

ACP6. Stop.

Under joining the low process with index L2* sends to higher process with index
(L + 1)2* absent ripple carry flag mark it as NotCarry, itself carry ¢, and possible ripple
carry verge V. High joining process with index (L + 1)2* in the case of the presence
of transfer from the low-order fragment L2* is produced into all necessary digits (from
L2% + 1-th to V((L 4 1)2%)-th). The verge of the propagation of the ripple-through carry
in the united fragment is also refined. Excess processes are terminated for all cases.

Lets examine time complexity of addition with advanced carry propagation procedure.
This loop is carried out by any of the processes not more than [log, n] times. During the
appropriate optimization at heterogeneous environment these operators can be executed in
parallel for one tick. Each of the active processes also executes no more than one receiving
communication and not more than one sending communication. Their preparation and
execution can be carried out for two tics.

Thus, the mean time of the advanced carry propagation scheme is equal to 3s, and in
the worst case it is equal to 3s[log, n].

In the asymptotic behavior of the mean time of the execution of addition with the
application of advanced carry propagation algorithm is equal to 4s, i.e., exceeds mean
time with the application of simple carry propagation algorithm in 4/3 times. However,
already with the presence of the carry circuits of length of more than two digits the
effectiveness of advanced carry propagation algorithm usage is undoubted.

2.2. The Binary Relations

>, #} may be carried

), (a £ ) = ~(a = b),

Checking truth of any binary relation apb : p € {<, <, =,>
out through the relations p € {=,>}. Indeed (a < b) = —=(a > b
(a>b)=(a>b)V(a=0), (a<b)==(a>0D).

Idea of the algorithm is following. Initially data are split up n separated processes

i=0,1,...,n—1, and p; and ¢; are results of comparisons p; = (a; = b;) and ¢; = (a; > b;)
for fragments ¢« = 0,1,...,n — 1.
120 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming

& Computer Software (Bulletin SUSU MMCS), 2015, vol. 8, no. 2, pp. 117-126



IMTPOTPAMMUWPOBAHUE

The k-th iteration of the algorithm handles the fragments associated with the processes
of 12F and (I +1)2* and combines them to one fragment associated with the process (2871,
Values of p; and ¢; are recalculated by formulas r = po;1&pai, s = @oir1|(P2ir1&G2i),
P2iy1 = true, pa; = true, quiy1 = false, qui = false, p; =1, ¢; = s.

Sequential comparison algorithm requires at mean n/2 operations of digit comparison.
It is easy to see that palallel algorithm requires [log, n| of parallel steps. Average speedup
over the sequential algorithm is n/2[log, n] times.

2.3. Determination of the Number Significant Digits

For the efficient usage of computational resources under execution of arithmetic
operations it is necessary to know the number of significant digits.

Number of significant digits of the difference after subtraction can be determined only
after operation completion. Therefore, the way to compute completion is an important
part of the efficient arithmetics.

Algorithm for this operation is optimized simplified version of the binary relation
algorithm which requires [log, n| of parallel steps. So determination of the number of
significant digits is used only straight after the subtraction operation and may be performed
with [log, n] parallel steps.

2.4. Multiplication of the Multidigit Number on the Digit

Algorithm M calculates the product (cy,...,co)r of given non-negative integers
a=(ap_1,...,a0)r, and b = (bo) g represented in the radix notation with the base R = 2".

M1 [Initialization]. Fork n+1 proceses.

M2 [Digit-on-digit multiplication]. Each process i = 0,1,...,n — 1 calculates
(w} @) = ali] [] - .

M3 [Addtition]. Each process i =0,1,2,...,n— 1 calculates

11l = }*TJ ,

cli] = (Y 4+ z}_,) mod R.

M} [Carry propagation]. Each process i = 0,1,..., n— 1 sets c[i + 1]+ = f][i].

M5 [Finish]. (c[n] c[n — 1] ... ¢[0]) g is result of the algorithm.

Algorithm calculates product of the number b on the digits a;, ¢ = 0,...,n—1 (line 3).
Product of two digits is a two-digit number (z1 z2)g < (27 —1)? = 2"(2" —2) + 1, i.e. value
of the carry x; (lines 4,9, and 10) is not more than 2" — 2. Therefore there are no carry
propagation chains (lines 11, 12, 13. 14) with length more than 1 and we have ¢; < 2" — 1
foralle=0,...,n—1,n.

From the description of Algorithm M it is evident that the expenditures of time for
stages M2-M/ is tm + 2ts where tm is time to calculate the result of the digit on digit
multiplication and ¢s is time to calculate sum of two digits and carry. Thus Algorithm M
has speedup n times over sequential algorithm of calculating number on digit product.

2.5. Multiplication of the Two Multidigit Numbers

We can calculate the product of the two multidigit numbers of length n and m
correspondingly using Algorithm M and reduction scheme to calculate sum of the partial
results.

Bectuuk FOYpI'Y. Cepusa «MaTteMaTudecKoe MoJejinpoBaHUe 121
u nporpammupoBanues (Bectuuk FHOYpI'Y MMII). 2015. T. 8, Ne 2, C. 117-126



A.V. Panyukov, V.A. Golodov

The time of execution of such procedure consist of time to perform in parallel
Algorithm M for all digit of one number and [log, m]| additions of (n + m — 2)-digit
numbers.

Thus, average execution time does not exceed tm + ts(2 + logym). In the worst case
execution time not exceed the value tm + ts(2 + (n + m)logy,m).

Algorithm M uses n and there are m digit to multiply first number on. Consequently,
the total quantity of created processes is equal to mn.

In the worst case with increasing length of operands the time of execution slightly
exceeds the linear function, whereas execution time of the classical sequential algorithm
of multiplication of two numbers has the quadratic dependence on length of operands.

2.6. Division

The classical algorithm of the long division cannot be performed in parallel. It requires
(n+m—1) sequential operations of the multiplication-subtraction with m-digital numbers.
In the papers |7, 9] the solution of the problem of increasing of the effectiveness of the
algorithm for the operation of division by means of the Newton’s method application is
proposed.

In order to divide integer w = (uln—1]uln] ... u[l]u[0])r by integer
v = (v[m — 1] ... v[0])g it is proposed to find sufficiently precise approximation for number
1/v, then to multiply it on u, which will give the approximation for u/v. It is obvious
that the length of integral answer is not more than n —m + 1. Number 1/v contains not
more than m nonsignificant zeros in the high-order digits, for obtaining the correct result
of division it is sufficient that the approximate value of 1/v would still contain at least
n —m + 1 significant digits. Thus, the necessary precision of the value 1/v is determined
by value R~"*1,

The application of Newton’s method to the problem of finding of the root of equation
f(z) =0, where f(z) =v — 1/, consists of the sequential calculation of

T =2 —v-xp) a2, k=0,1,2,...,

where z( is initial approximation calculated with the necessary precision. Function
f(z) = v — 1/x is twice continuously differentiable and strictly convex when z > 1.
In this case the Newton’s method possesses the quadratic speed of convergence, i.e., a
quantity of correctly calculated discharges after the execution of sequential iteration will
double. The initial approximation xg = 1/(v[m — 1]) of value 1/v has an error

1 1 v—ovm-—1].-R™! 1

vm—1]-R™1t v  wv-vm-—-1]-R™1 T v-vm-1] ~ ’

i.e. it correctly calculates m digits. Thus, a quantity of iterations, which it will be necessary
to carry out according to the Newton’s method, will be not more than the value 4log,(n +
1) — log,m.

On the k-th iteration (k = 0,1,2,...,1 < logy(n + 1) — log, m) variable = represents
(251 — 1)-digit number. Therefore at this cycle body with aid of parallel algorithms
one operation of multiplication of variable z by the m-digit number b, one operation
of subtraction of (2%)-digital numbers, and one operation of multiplication of (2¥)-digital
numbers are performed. Consequently, time necessary for fulfilment of the cycle body does

122 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2015, vol. 8, no. 2, pp. 117-126



IMTPOTPAMMUWPOBAHUE

not exceed value 2tm + ts - (2 + log, m + k) at the average case and value 2tm + ts - (4 +
2%k + 2,5 - 2% + 3mlog, m + k) at the worst case.
Since

E k= l(l;l)’ zl: ok _ ol+l _ 1,
k=0 k=

0
I [ !

Z 2 3 2 +1_ 3
k=0 (k-2%) = k=0 ¥ 5=0 A= \/21 e e < 2z+1\/g’

the time of execution in the average and the worst cases will not exceed the values
O (loan -log, (%1)) and O ("7“ log23/2 (%)) respectively.
The multiplication of two n-digit numbers completes the execution of procedure D.

This step requires at the average O(log,n) time and O(n -log, n) in the worst case. Thus,
the final estimations of the execution time of division in the average and worst cases will

be equal respectively O (loggn - log, (”“)) and O (%l 10g23/2 (%1) + n10g2n>.

3. Usage of Sign Radix Notation

The notation system given above is unsigned, digits in the position system on the base
R are numbers 0, 1, 2, ..., R—2, R—1. One of the drawback of this is that it requires the
comparison of numbers to find the result of addition and subtraction. It may be avoided
by the application of sign radix notation. The digits on the sign radix notation on the base

R are integers
R R R R
—|=1,—|= L,...,—10,1,2,....|=|—2, |=| — 1.
\‘2J7 \‘2J+ Y Y 707 ) Y ”72—‘ 7’72—‘

Note that with odd R the number of positive and negative numbers is equal, and with
even R a number of positive numbers is less than the number of negative ones.

Designate presentation of the number at the sign position radix notation with base
R=2"as (ap_1,...,a0)+r, and its digits as a; = (a] ' a} % ... a} a¥)ss, i =10,1,...,n — 1.
High bit of the digit presentation is its sign (0 for positive, and 1 for negative). So digits
at the sign radix notation are the objects of the sign integer type.

Note that all basic algorithms, for the unsigned numeration systems, with exception
of the algorithms of addition / subtraction, will not change. The algorithms of addition /
subtraction are united into the common algorithm.

Addition procedure calculates the sum of the unsigned presentations of signed
integer data type (i.e. for positive numbers in high-order digit zero, for negative numbers
in the elder ones digit), and forms the sum and carry into the next digit: in the absence
register overflow the carry is zero, the sign of result does not change, but in its presence the
sign of result changes to the opposite and the carry of the corresponding sign is formed.

Application of sign position systems simplifies the algorithm of algebraic addition, but
it does not solve the problem of ripple-through carries propagation.

The accelerated calculation of the chain of ripple-through carry and its propagation is
possible also for unsigned systems. Advantages and disadvantages of the accelerated carry
propagation are the same as for unsigned radix notation. The truth of binary relations
in the sign systems is easily realized by means of the subtraction operation. The sign of

Bectuuk FOYpI'Y. Cepusa «MaTteMaTudecKoe MoJejinpoBaHUe 123
u nporpammupoBanues (Bectuuk FHOYpI'Y MMII). 2015. T. 8, Ne 2, C. 117-126



A.V. Panyukov, V.A. Golodov

the number is determined by the sign of high-order digit. Algorithms of definition of a
number of significant digits, multiplication and division are the same as in the unsigned
radix notation.

4. Usage of Redundant Radix Notation

Parallel algorithms of all arithmetic operations presented above show at the average
high speedup over sequential versions. Mean computing time of results of addition,
subtraction, multiplication by the single-column number has the value O(1), the mean
computing time of binary relations has a value of O(logn), multiplication and division of
the numbers of word length n does not exceed value O(loga n). However, in the worst case
the computing time of results of any operation with n-digital numbers requires O(n) time
with the usual carry propagation and O(log, n) with the accelerated carry propagation.
The reason for deviations from the average value is the fact that with the execution of
addition (subtraction) for carry propagation there appear the chains of the length of more
than one. To exclude the noted precedents to the usage of redundant radix notation [7] is
helpful.

The natural n-digital number N in the radix notation with the base R is presented in
the form of ordered set of numbers

n—1
N = (a1 ...alao)R:ZaZRl, ap_1, ... a1, a0 € D={0,1,2,...,R—1}.
1=0

This presentation is unique. The uniqueness of presentation is reached because the set of
numbers D contains exactly R elements that present the section of natural series including
zero. The expansion of the set of numbers D will lead to the expansion of presentation for
number .

Consider the method of expanding of the set of numbers D, which makes it possible
to perform the operation of addition (subtraction) in time O(1). Let the computing
system use 2"-bit registers. Let us accept the number base R = 2!, Therefore any digit

a; has non-redundant representation (0aj ... a}af),. Under redundant representation
r—1
7 9

we suppose that a; may be presented with possible nonzero delayed carry a
a; = (a]"al"? ... a a?)Q.

Look over one of the possible methods of realization of addition algorithm. Let the
i-th digits of terms have form

SO

a; = (a/ " a]™? ... afad),, bi=(byTbITE L b)),

i.e. present binary r-digital numbers. After completing of digit-by-digit sum in each
position there will be obtained an (r + 1)-digital result
si=a;+b=(a " a* ... a] a?)2 + (BT b b?)2 = (sisi" ... s s?)2.

K3 K3

Use two elder bits for the transfer into the next digit, and obtain resulting r-digital form

~ r—2 r—3 1.0 r r—1 _ fzr—1 xr—2 ~1 ~0
8; = (O 0s;, “s; " ... s si)2 + (si_1 31‘—1)2 = (31‘ s, 7.8 Si)2~

Thus, executing the operation of addition may be performed fully parallel for all cases.

124 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2015, vol. 8, no. 2, pp. 117-126



IMTPOTPAMMUWPOBAHUE

Presented approach uses a radix notation with the redundant digit set. We use of the
redundant bit of the digit as the postponed carry that makes it possible to perform the
operation of addition in constant time.

Since the algorithms of multiplication and division are correct in this numerical
notation and contain the operation of addition only, i.e. use makes the time of the execution
of these operations is not worse than those estimations of the mean time of execution for
algorithms examined above.

Disadvantage of the redundant radix notation is in the plurality of the number
presentation, which makes effective calculation of binary relations and quantity of
significant places possible only after the global carry propagation, that removes the
redundancy of representation. Let us recall that in the asymptotic behavior the probability
of appearance of additional carry approaches zero.

Conclusion

Effective realization of local arithmetic operations with big numbers requires device
with enough amount of random-access memory. If the numbers are so huge that the volume
of device’s random-access memory is not sufficient then operations may be performed
on several devices. Moreover, interface between the central processor and the device or
between the devices has restrictions on capacity, latency and bandwith. The effectiveness
of arithmetic operations with huge numbers is a subject of further researches. It is possible
that implementation of Toom-Cook or Karatsuba rapid multiplication algorithms [9] will
be effective for this case.

References / Jlutreparypa

1. Beaumont O., Philippe B. Linear Interval Tolerance Problem and Linear Programming
Ttechniques. Reliable Computing, 2001, vol. 6, no. 4, pp. 365-390.

2. Panyukov A.V., Gorbik V.V. Using Massively Parallel Computations for Absolutely Precise
Solution of the Linear Programming Problems. Automation and Remote Control, 2012,
vol. 73, no. 2, pp. 276-290.

3. Panyukov A.V. Exact and Guaranteed Accuracy Solutions of Linear Programming Problems
by Distributed Computer Systems with mpi. Tambov University Reports. Series: Natural and
Technical Sciences, 2010, vol. 15, no. 4, pp. 1392-1404.

4. Panyukov A.V., Golodov V.A.Computing the Best Possible Pseudo-Solutions to Interval
Linear Systems of Equations. 15th GAMM-IMACS International Symposium on Scientific
Computing, Computer Arithmetic and Verified Numeric (SCAN’2012, Novosibirsk, Russia,
September 23-29, 2012): Book of abstracts, Institute of Computational Technologies
Publisher, 2012, pp. 134-135.

5. Golodov V.A., Panyukov A.V. Library of Classes "Ezact Computation” Programs, Data Bases
and Topologies of VLIS. Official bulletin of Russian Agency of Patients and Trademarks,
Moscow, FIPS, 2013. [Tononor, B.A. Bubanoreka knaccos «Exact computation 2.0», Homep
roc. peructpanun 2013612818 or 14 mapra 2013 r. / B.A. Tomozos, A.B. ITaniokos // IIpo-
rpammbl st 9BM, 6a3bl JaHHBIX, TOMOJIOTHH WHTErPaJbHBIX MEKpocxeM. OdurmaabHbrit
Grosterens Poccniickoro areHTCTBa 10 TTaTeHTaM U TOBapHbIM 3uakam. — M.: ®UIIC, 2013.]

6. Panyukov A.V., Lesovoi S.Yu. Using of Massive Parallel Calculations for Integer Arithmetics
Realisation. Vol. 2. Perm, PermGTU, 2010. [[Tamroxos, A.B. Ilpumenenue MacCHBHO-
MapaslIeTbHBIX BBIUUCICHUH 7S PeaJnu3alini OCHOBHBIX OTEPAIlnil IeJ0INCIeHHON apnd-
meruku / [Taniokos A.B., Jlecosoit C.}O. — Ilepmb: Uzn-so [epmI TV, 2010.]

Bectauk FOYpI'Y. Cepusa «MartemaTudecKoe MoJejinpoBaHue 125
u nporpammupoBaHues (Becruunk HOYpI'Y MMII). 2015. T. 8, Ne 2, C. 117-126




A.V. Panyukov, V.A. Golodov

7. Panyukov A.V. Application of Redundant Positional Notations for Increasing of Arithmetic
Algorithms Scalability. 15th GAMM-IMACS International Symposium on Scientific
Computing, Computer Arithmetic and Verified Numeric (SCAN’2012, Novosibirsk, Russia,
September 23-29, 2012): Book of abstracts, Institute of Computational Technologies

Publisher, 2012.
8. Golodov V.A. Distributed Symbolic Rational-Fractional Calculations on the Processors

of Series of x86 and x64. Proceeding of international conference "Parallel computational
technologies" (Nowvosibirsk, 2012, on March 26 to 30), Chelyabinsk: Publishing center of

SUSU, 2012, p. 774.
9. Knuth D.E. The Art of Computer Programming. Addison-Wesley Longman, 1981, vol. 2,

p- 688.
Received September 16, 2014

YK 004.222 DOI: 10.14529 /mmp150210

ITAPAJIJIEJIBHBIE AJITOPUTMBI ITEJIOUYNCJIEHHONI
APUOMETUKN B ITIO3UIINMOHHBIX CUCTEMAX
CUnCJIEHUA J1d TETEPOI'EHHBIX KOMIIBIOTEPHBIX
CUCTEM C MACCOBBIM ITAPAJIJIEJIN3MOM

A.B. Ilanrwxos, B.A. I'onodos

s anropuTMHIECKOTO aHATIN3a KPYIMHOMACIITAOHBIX MPODJIeM, T1yBCTBUTEIBHBIX K
omubKaM OKPYIVIEHHs, Pa3pabaTbiBAeTCs MPOrpaMMHOE ODECIevdeHne, PeaTn3yionee TO9-
HBIE IPOOHO-PAIMOHAILHBIE BBIUMCIEHUS B PACIPEICIEHHON BRIYUCIUTEIHLHON Cpeme ¢ Uc-
monb3oBanueM MPl komvysukanmii. b deKTUBHOCTE TPOrPAMMHOTO ODECIIEUEHUST MOZKET
OBITh yBeJIMYeHa, 3a CYeT MPUMEHEHUsI T€TEPOreHHBIX BBITUCIUTEIbHBIX CUCTEM, TIO3BOJISIO-
IIIX BBITIOIHSTE JIOKAJILHBIE apU(DMETHIECKHE ONEPAIHH ¢ TACTAMU GOJBINON PAa3psIHOCTH
mapaJIeabHO OOJBIIHM YHUCJIOM MporeccoB. Pabora mocBsIneHa MOBBIMIEHUIO MaCIIadupye-
MOCTH &JIFOPUTMOB OCHOBHBIX apU(DPMETHIECKUX OIEPAInii.

[Tokazana BO3MOXKHOCTH MOBBIIEHNS 3(DMEKTUBHOCTH TPOTPAMMHOTO 0DECTIeUeHus 33,
CYEeT MPUMEHEHHUsI MACCOBOTO MAPAJLIENN3Ma, B TeTEPOTEHHBIX BBIYUCIUTETBHBIX CHCTEMAX.
Ncnonb3oBanne n3bbITOYHON MTOZUIMOHHON CUCTEMBI CIUCIIEHHUS, TPEIJIOKEHHON B pabore,
MO3BOJIAET BBITIOIHATE OMEPAIUIO aIredpandecKoro CJIOXKEHUs 38 KOHCTAHTHOE BPEM, UTO
[O3BOJIAET MOCTPOUTH XOPOIIO MACHITAOUPYEMbIe AJTOPUTMBbI BBIITOJHEHUS BCEX OCHOBHBIX
apuMeTHIEeCKUX OMEPANVii ¢ IIEJbIMUA YuCIaMu. MaciTabupyeMocTh OCHOBHBIX AJITOPUT-
MOB [EJIOYNCTEHHONH apndMeTHKHN Jerko MepeHOCUTCs Ha JPOOHO-PAIMOHAJILHYIO apudMme-
THKY.

Karoueevie caosa: 6a306vie apupmemuveckue onepauul; Maccu6ho NapaiiesbHbe CUu-
CMEMbL; 2€MEPO2EHHBLE CUCTNEMbL; NOSUUUOHHBLE CUCTNEMbL CHUCAEHUS.

Anarosnmit BacunwpeBnu IlaHOKOB, I0KTOp (DU3HKO-MaTeMaTHIeCKHX HAyK, IPO-
deccop, Kadeapa <IKOHOMHUKO-MATEMATHUIECKHE METOABI U CTATUCTHKA>, HOKHO-
Ypaabckuii rocygapcrsenubiii yuusepcurer (r. Yessibunck, Poccuiickas Peneparsi),
anatoly.panyukov@gmail.com.

Banentun Anekcanapoud [0/10/10B, KaHaugaT (HU3HKO-MATEeMATHIECKHX HaYK,
JIONEHT, Kadeapa <DKOHOMUKO-MATEMATHIECKHEe METOJBl W CTaTUCTHKa>, HOxKHO-
Ypanabckuii rocygapcTsenubiii yausepcurer (. Yensibunck, Poccuiickas Pegeparst),
avaksa@gmail.com.

Hocmynuaa 6 pedakyuro 16 cenmabpa 201/ e.

126 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2015, vol. 8, no. 2, pp. 117-126





