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The article is devoted to the study of some mathematical models arising in filtration
theory. We examine an inverse problem of determining an unknown right-hand side and
coefficients in a pseudoparabolic equation of the third order. Equations of this type and
more general Sobolev-type equations arise in filtration theory, heat and mass transfer,
plasma physics, and in many other fields. We reduce the problem to an operator equation
whose solvability is established with the help of a priori estimates and the fixed point
theorem. Together with the natural smoothness conditions for the data, we require also
some well-posedness condition to be fulfilled which is actually reduced to the condition
of nondegeneracy of some matrix constructed with the use of the data of the problem.
Theorems on existence and uniqueness of solutions to this problem are stated and proven.
Stability estimates are exposed. In the linear case the result is global in time, while in the
nonlinear case it is local. The main function spaces used are the Sobolev spaces.

Keywords: pseudoparabolic equation; existence and wuniqueness theorem; inverse
problem; boundary value problem.

Introduction

Together with a solution U, we determine an unknown right-hand side and coefficients of the
equation
LU+ MU = f, (2,6)€ Q=G x (0,T), (1)

where L, M are the second-order differential operators in the variables x and G is a bounded
domain in R"(n > 1) with boundary I' € C2. The equation is complemented with the initial and
boundary conditions

Ugs=¢, S=Ix(0,T), (2)

U|t:0 = U(](x) (3)

We employ the values of a solution U at separate points as overdetermination conditions. So, our
overdetermination conditions are as follows:

Ul(xzi,t) = a;(t), (i=1,2,..,r), (4)

with x; being arbitrary points in G.

Mathematical models based on the pseudoparabolic equations arise when describing heat
and mass transfer, filtration, wave processes, and many other processes [1, 2]. Many articles are
devoted to the study of solvability of boundary value problems for pseudoparabolic equations
(see, for instance, [3, 4]). In particular, initial, initial-boundary, and periodic problems, the
questions of global (in time) solvability and blow-up of solutions are studied. In the case of
global solvability some investigations are devoted to the questions of asymptotic behavior of
solutions to the direct problems, scattering theory, and stability of soliton-type solutions to both
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one-dimensional and multidimensional equations, in particular, to the Benjamin—-Bona—Mahony—
Burgers and Rosenau—Burgers equations [5, 6]. The semigroup approach to singular Sobolev-
type equations was developed by Sviridyuk and Fedorov [4]. Some results devoted to the theory
of pseudoparabolic equations with an indefinite or noninvertible operator at the higher-order
derivative with respect to time can be found in [7]. The questions of local solvability for nonlinear
pseudoparabolic equations are examined in [8].

The pseudoparabolic equations with a monotone nonlinearity are studied by R.E. Showalter
in [9], where the classical monotonicity method in an expanded form was applied to various
classes of equations of mathematical physics, in particular, to nonlinear Sobolev-type equations
with monotone nonlinearities. The existence of global (in time) solutions for the Boussinesq
equation with a source and finite-time blow-up solutions were studied by Kozhanov in [10]. In
his articles the blow-up of solutions to the first boundary value problem is proven with the use
of the comparison principle for these equations. In particular, the blow-up of a positive solution
is proven and some existence and nonexistence theorems are exhibited.

The question of uniqueness of solutions to the Cauchy problem for the quasilinear
pseudoparabolic equation

up = cAuy + p(u)

is studied in [11] in a class of growing functions ¢(u), with u from some well-posedness class.
The maximum principle for pseudoparabolic equations is also presented in [12]. The method of
the proof of nonexistence of solutions to some boundary value problems relying on the maximum
principle is developed in the articles by Yu.V. Egorov and V.A. Kondratev. The methods of
complex analysis are employed in the study of pseudoparabolic equations in [13]. A principally
new approach called the method of test functions was proposed in [14, 15]. The existence and
nonexistence questions for different mathematical models on the base of Sobolev-type equations
are presented in the well-known monograph [2], where the necessary bibliography can be found.

The inverse problems for Sobolev-type equations are not studied well. In |1, 16| the authors
consider a model that discribes filtration of a fluid in a fractured media. They state some inverse
problems, including a problem close to that of out article, and establish local existence and
uniqueness theorems under an integral overdetermination condition on the boundary. Moreover,
some properties of solutions to inverse problems of this type are derived there. The problem
of recovering of a kernel of an integral operator occurring in Sobolev-type equations when some
functional of a solution is given is examined in [17]. The coefficient inverse problems are considered
in [18]. The uniqueness theorem is proven and an algorithm for solving an inverse problem for
the equation

up — Ay = alu+ b(y)u, +oly) +6(tz,y),  (a,y) € B2, >0,

is specified. The unknowns are wu(t,z), b(y), c(y), and a constant a and the functions
u(t,x,0),uy(t,z,0), and u(0,z,y) are given. Here 6(¢, z,y) is the Dirac delta function.

One more problem is considered in [19], where the value of a functional of a solution allows us
to recover a scalar function depending on ¢ which is a factor before an element of a given Banach
space on the right-hand side of an abstract Sobolev-type equation. A similar problem is treated
in [20], where an element of a Banach space is recovered under the integral overdetermination
condition. We can refer also to [21]|, where some inverse problems for composite type equations
are considered.

Point out a series of monographs and articles [22-26|, where essential advancements in the
theory of inverse problems for parabolic equations and systems are made. In particular, the inverse
problems in the same statement but for parabolic equations and systems are treated in [27-29].

The main result of the article is Theorem 3, where existence and uniqueness of a solution to the
problem (1) — (4) are proven and a stability estimate is obtained. The problem of determination
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a right-hand side (a source function) is linear and the result in this case is global in time (see
[30]).

1. Preliminaries

In the article we employ the Sobolev spaces W, (G) and the Holder spaces C%(G). The
space of strongly measurable functions on [0, 7] with values in a Banach space H is denoted by
L,(0,T; H). The condition I' € C?™ means that, for every zo € I, there exists a neighborhood
U (the coordinate neighborhood) and a coordinate system y (local coordinate system), obtained
after a rotation and translation of the initial system in which

UNG={yeR":y € B ,w{) <y, <wy)+d},
UNR*"\G)={yeR":w(y) = <yn <w(¥/)},
rnu= {y € R"™: y, EE; Yn :w(y/)}’
where v = (y1,%2,..,Yn-1), Br = {v/ : |¢/| < r}, § > 01is a constant, and w € C?*™(B,).
Without loss of generality, we can assume that the axis y, of the local coordinate system is

directed along the normal to I' at zg.
Let L and M be second-order operators of the form:

LU = Y ay(z,t)Use; + > ai(x, 1)Uy, + ao(w, 1)U,
ij=1 i=1

MU = Z bij(l‘,t)Uxixj + Z bz(x,t)le + bo(ZL‘,t)U.
2,j=1 =1

Here L is assumed to be elliptic. Thus, there exists a constant § > 0 such that

m

Z aij&i&j > 0olé|* VEER", V (z,t) €Q. (5)

i,j=1
Write out the conditions on the coefficients of L, M. Fix a parameter p > n and assume that

aij € C(Q), ai,a0 € C([0,T); Ly(G)) (i,j =1,2,..,n),
agp(z,t) <0 ae. in Q, (6)

bij € Ly(0,T; Loo(G)), bi,bo € Lp(Q) (4,5 = 1,2,..,n). (7)
Under these conditions on the coefficients of L, the following theorem is valid.

Theorem 1. For every f € L,(Q), the Dirichlet problem
Lu=f, ulr=0, (8)
has a unique solution u € L,(0,T; W2(G)) satisfying the estimate
||u||W5(G) < || fllz, (@) almost everywhere on (0, T),

where ¢ is a constant independent of f and t.

Proof. The solvability of problems (8) (depending on a parameter t) results from the uniqueness
of solutions (see the maximum principle in [31, Chap. 9|) and the Fredholm property of these
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problems. An estimate for solutions can be justified with the use of the continuity of coefficients
in ¢; indeed, in some neighborhood of every point ¢ty € [0,7] there is an estimate of the form
lullwze) < cllLullr, () with a constant ¢ independent of ¢. These estimate ensure the presence
of a global estimate which is claimed.

O
Lemma 1. If b € Ly(G) with ¢ > n for p < n and q > p for p > n then there exists a constant
c > 0 such that for all functions u € WZ?(G) the following estimate is valid:

16VU @) < cllbllz, @) 1Ulwzc)- (9)

If b € Ly(G) with ¢ > n/2 for p < n/2 and ¢ > p for p > n/2 then there exists a constant ¢ > 0
such that, for all functions u € WPZ(G), we have

16Uz, < cllbllzy)IUllwz(c)- (10)

Proof. Prove the former statement, the latter is established by analogy. Fix i = 1,2,...,n. The
Holder inequality yields

180z 12, = ( / b |Us Pdz) 7 < ( / bjodz)s ( / s |5 da) 5.
G G G

By the embedding theorems (see [34]), we have the estimate

1UzillL o (@) < cllUllwz), a>n, p<n.

q
q—p
Thus
16Uz || ) < clUllwz): = l1bllr,c)-

The estimate (10) is obtained similarly.

Let Q7 =G x (0,7).

Theorem 2. (solvability of the direct problem). Assume that f € Ly(Q), Up(z) € WPQ(G) and

ot € Ly(0,T; WpQ*l/p(G)), where p € (n,00), and conditions (6), (7) for the coefficients hold
together with the consistency conditions

p(x,0)[r = Uo(z)|r. (11)
Then there exists a unique solution to problem (1) — (3) such that
U,Us € L(0, T W2(G)), U(t) € C([0, T W(G)).

If o =0, Uy(x) =0, then there exists a constant ¢ > 0 independent of v € [0,T] such that a
solution to problem (1) — (3) meets the estimate

U Lo 0wz(ay) + 1Utll L, 00w2(6)) < cllfllz,@m)-

Proof. Consider the segment [0, 7]. Find a function ® such that

Oy € Ly(0, T;WH(G) 0 Bls =, Plimo = Up(z).
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It can be constructed as follows:
t
&= +Uy, o= /1/)0(%7)617'7 Ao =0, olr = ¢
0

(the existence of a function )y follows from the known results (see, for instance, [31]). Make the
change V = U — ®. Function V satisfies the conditions

LVi+ MV = f— L& —M® =g, V|g=0, Vl]eo=0.

Using Theorem 1 we can obtain that
t
vV + /L—lMV(T,x) dr = L'y,
0

Conditions (6) and Lemma 1 justify the estimate (7 < T)

t
| /L_lMV 7|l oz < eV licomwz ) (12)
0

where 1/p + 1/q = 1, which together with the fixed point theorem allows us to prove the claim
on solvability on some time interval [0, 7] (073 /1 < 1). The global theorem results by repetition
of the arguments at the segment [79, 270], [270,370], etc. It is easy to see that a solution meets
the estimate from the theorem.

Consider the interval (0,7) (v < T') and prove the estimate of the theorem. Consider problem
(1) = (3), (4), where Uy =0, ¢ =0, and

foz{ g fiz € L(Q).

There exists a unique solution U to problem (1) — (3) satisfying the estimate:
10N Lo, sw2(0) + 10el Ly0mmzy < elfolly@ = el fllL,@- (13)

By the uniqueness theorem, a solution U agrees with a solution U to the problem (1) - (3), with
Up =0 and ¢ = 0 on [0,7]. Thus, we can rewrite (13) as follows

U Lo 0sw2(G)) + 10t L, 0w2(6)) < el f I, @n)-
O
Remark. We can easily formulate an analogue of this theorem for any p € (1,00). But to
obtain the main results we need a condition p > n for p. Hence, we state the above theorems in
this case.

2. The Main Results

We consider the inverse problem of determining the unknown functions occurring in the right-
hand side of the equation, and in the operator itself. In this case the problem is nonlinear. We
assume that the right-hand side of (1) is represented as

70
f:ch(t)fz(:B,t)—l—fg(l’,t), fz GLOO(OaTaLp(G)) (Z: 1,2,..,7‘0), (14)

i=1
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where the functions f; are given. We suppose also that some coefficients of the operator M
depending on t are unknown and operator M has the form

MU =MU+ > cp(t)MU,
k=ro+1

MU = 3 b (2, )Us,a, + 3 b (@, 6)Us, + b (2, ).
1,j=1 i=1

Consistency conditions:
aZ(O) = Uo(xi,t), (i: 1,2,..,7”). (15)

Construct the function ® € C([0,T]; W7 (G)) (p > n) such that &, € L,(0,T; W}(G)),
Q|i—0 = Up(z), ®|s = ¢ (see the proof of theorem 2). Construct also the matrix B with the rows

L7 (g, t), L falwj, t), ooy L frg (2, 1), =L My 1@ (25, 8), ooy — L7 M, ® (5, 1),
where 7 = 1,2, ...,r, and assume that there exists dp > 0 such that
|det B| > §p a.e. on [0,T]. (16)

Here L~'f; is a solution U; to the problem LU; = f;, U;|4—o = 0, U;|s = 0. We assume that the
coefficients of the operator

LU = Z i (2, t)Upz; + Zai(x,t)Uxi + ao(z, t)U,
ij=1 i=1
meet conditions (6) and the coefficients of M; the conditions
bY; € Loo(Q), b}, b6 € Loo(0,T5 Lyp(G)) (4,5 =1,2,..,n, k=rq,...,7). (17)

In this case, locally in time, conditions (16) does not depend on the choice of function ®. Indeed,
let ®; and ®5 be such functions. Consider

|L71Mi(1)1(1‘j, t) — LilMi(I)Q(.Z'j, t)‘ < CHMZ'(I)l(l', t) — MZ‘(PQ(Q}, t)HLp(G) <

< cf| @iz, 1) — Po(z, t)|lwz() < ct!/9)|dy, — Potllz, 0,mw2(G))-

This inequality shows that if By and Bs are matrices constructed using ®; and ®9, respectively,
and | det Bq| > 69 > 0, then we can find vy > 0 such that, for t € [0,7], | det B2| > dp/2 > 0 and
thus on the interval [0, 7] | det B;| > d0/2 > 0 for i =1, 2.

Theorem 3. Let conditions (5), (6), (15) — (17) be fulfilled. Then there exists a constant o > 0
such that on the interval [0,~o] problem (1) — (4) has a unique solution (U,cy,...,c;) such that

U € C([0,%]; W2(G)), Us € Lp([0,%]; Wo(G)), ci(t) € Lp(0,7) (i =1,2,...,7),

Proof. Let
® e C([0,T; WHG)) = @ € Lp([0,T]; WHG))

be a solution to the problem (see Theorem 2)

Lq)t+Mr0q):an <I>|t=0 :U(]v (I)‘S:SO
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In this case the function V = U — @ is a solution to the problem

0 r
LVi+ MV =3 ci(t) fi(z,t) = > c(®)M;®, V= =0, V]s=0. (18)
i=1 i=ro+1
There exists 79 > 0 such that condition (16), with dp/2 rather than dg, holds on [0, v0]. Note that
U is solution to problem (1) — (4). In this case

Vi), t) = a;(t) — (z;,1) = a;(1). (19)
The function ® € W2(G; W, (0,T)) after a possible modification on a set of zero measure possesses

the property ® € CO‘(@ Wlp(O T)), a < 2= (see (5.4) in [35]). In particular, ®(z;,t) € WZ}(O, T),
and thus

aj(t) e Wy(0,7) (j=1,2,..,7). (20)
Inverting L in (18), we have
T0 r
Vit LTIMV =) ()L fi(a,t) — > ci(t) L7 M. (21)
=1 i=ro+1

Note that L7'M;®(zj,t) and L7 'M;®(x;,t) € L(0,T) for almost all t. Actually,
L™ M;®(x,t) € W3(G; Lp(0,T)) and thereby L™'M;®(xj,t) € Ly(0,T) (see [35, (5.4)]). In this
case we have
LM ® (g, )| 10,1y < NIMi® (5, 8) || oo (0,138, (G)) <

@z, )| L0, 7w2(6)) < @l Lo, rw2(6))-
Thus,

L7 M@ (25, ) Lowo.1) < €ll®lleqo ez (22)
Similarly, we can prove that L™!f;(z,t) € Loo(0,T) and this trace is defined. Let = z; in (21).
We have

T

Vt(:L‘j,t)—l—L_lMV(l‘j,t):Zoci(t)L_lfi(l’jat)_ > )L M® ().
=1

i=ro+1

The overdetermination condition yields

T 70
ajr + LM V(g t) + > () LMV (zj,t) = > () L7 fi(wy, t)—
=1

1=ro+1
r (23)
— Y () L7IM;®(xj, ) (j=1,2,..,7).
i=ro+1

We can rewrite equation (23) in the form

o + LilMTOV(.%'l, t) + Z ci(t)LflMiV(xl, t)

i=ro+1
Bé= (24)
Gpt + LM, V (2, t) + ZT: ci(t) LMV (2, 1)
i=ro+1
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As a result, we infer

.,
a1+ LM V(g t) + Y. ci(t) LMV (2, t)
i=ro+1

.,
Grt + LM V(e t) + Y. ci(t) L7IMV (2, 1)
1=ro+1

The right-hand side can be viewed as an operator R(¢) taking the vector ¢(¢) in a solution V' (z,t)
to problem (18) and then taking V(z,t) into the right-hand side of (25). Investigate properties
of this operator. Fix

. . Qit

Ry =2||B™"dl|1,0,m), &=
drt

By construction, &;; € L,(0,T"). Due to the fact that the entries of the matrix B belong to
Loo(0,T), we have that B~'& € L,(0,T). By Theorem 2, for every vector-function

ct) € Broy = {ce LP(077) : HE”LP(O,')/) < Ro}, 7 < T,

the problem
ro r
LV, + MV =3 ci(t) fi(z,t) — > ()L M;®, V]—o =0, V]s=0, (26)
=1 i=rot1

is uniquely solvable. For A > 0, we have that

1 gl 1/p
—At p —Atp
supe IV (t.9)lwpio) < 5717 ( | Willzae dt) . 1)
From (26) it follows that

IVillwz ez, 0 < UMV IIwz@ee M z,0m+

T

70
Il Z%Ci(t)fi(x,t) - E+1Ci(t)L_lMiq)”Lp(G)e_/\tHLP(O,y)) < (28)
i= i=rQ

< iz (el 0 + DIIVee ™ L, 0wz)) + ez, 0.):

where constant cg is independent of A > 0,7 < T'. Choosing a sufficiently large A > 0 and
estimating ||¢]| 1, (0,y) through Ry we obtain

Vil L, 0wz + IV Iz, 07mw26) < c2lldlr,04) < c(Ro), (29)

where ¢(Rp) is independent of ¢ € Bp, ~. Obtain the remaining estimates. Let &1, be a vector-
function from L,(0,7) and V!, V2 be corresponding solutions to (26). Thus, we infer

r ro r
LV + My Vit S M=) filat)— Y ci(t)M;9. (30)
j=ro+1 j=1 j=ro+1
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Note that the functions V* satisfy estimate (29). Subtracting equations (30) for i = 1,2 and
denoting w = V! — V2, we arrive at the relation
70

Lo+ Mg+ % ch(O)(Mjw) = 35 (ch — ) (t) fi(w, t)—
Jj=ro+1 Jj=1

(31)
' T
- Y (- BAOMVE— Y (- )Mo,
j=1”0+1 j=7‘0+1
Inequality (29) and the previous arguments yield
[wtll L, 0w2(@) + 1wl 0mw2(6) < callet = ellL,0)- (32)

Also we have estimate (29), where the constant c3 is independent of . The estimate holds for all
c(t) € Bry,y- Proceed with the estimate for the operator R. In view of (32) we have that

IR(c) = R(*) L, (0.) <

<e Y NLTIM (VE = V) (g, 1)+ 3 e LTI MV (g, t) — G LMV (4, 1) | 00) <

7j=1 i=ro+1
T T
<2 X (e = WL MV (@5, t) 5,0+
=1 i=ro+1
e (LM V (g, t) = LMV, 1) 1, 0,9)) + callet = llr,0,)-
(33)
We estimate the first summands on the right-hand side as follows:
(e} = LMV (s, 1) 1,00 < llei = Elln,m 1L MV (@5, ) Lo 0,7)-
By the embedding theorems and Theorem 1, we derive that
IL MV (g, ) o0y < IMiVH Lo (0,38, (G)) <
AV @, ) w0z < 071/q||‘/}1||Lp(0,y;Wg(G)) (g+3=0.
Next, we have the estimate
(e — )L "MV (25, 0) |1, 000) < vl = €11, (0.4)s (34)
where constant ¢; depends on Ry, but independent of ~. Similarly, we justify the inequality
lef (LM M(VE (g, 1) = VE(25,0))) | g0 < BollV (@,t) = V(@ )| Lo 0wz (@) < )
O 35
< Roey VUVt = VRl 0mswz(ay) < v9llel = L, 0.):
From (34), (35), and (33) it follows that
IR(c") = R(A) L0 < evlle! = |1, 0,)- (36)
Choose g so that
c'yé/q =1/2.
In this case, for all
', ? e BRry .~
Bectuuk FOYpI'Y. Cepusa «MaTtemaTudecKoe MoJejinpoBaHUe 113

u nporpammupoBanues (Becruuk FOYpI'Y MMII). 2015. T. 8, Ne 2. C. 105-116



S.G. Pyatkov, S.N. Shergin

with v < 79, we have inequality (36). Moreover,

and

R(¢) = R(¢) — R(0) + R(0)

Ry Ry

1
|R(E) Ly 0,) < [1R(O)]|y0,4) + §||E1|Lq(0,7) <5 t5 = Ry.

Thus, R takes the ball Bg, -, into itself and is contractive. By the fixed-point theorem, equation
(26) is solvable. By construction, V' is a solution to (18). The fact that V meets (19) is proven
by analogy with arguments those of in the linear case (see [30]).

O
Conclusion. Thus, we proved that the inverse problems under consideration are well-posed

at least locally in time. The results obtained allow to construct new numerical algorithms for
solving problems of form (1) — (4).

The authors were supported by the Russian Foundation for Basic Research (Grant 15-01-

06582).
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HEKOTOPBIE MATEMATNYECKUWE MOJJIEJIN
®UNJILTPAIIMOHHON TEOPUN

C.I. IIasmxos, C.H. Illepzun

Pabora mocssiinena paccMOTPEHNIO OOPATHBIX 33144 [JIsT HEKOTOPBIX MATEMATHIECKUX
Mozeseil, BOBHUKAIONNX B Teopuu (puiabrparuu. Mbl paccMaTpuBaeM OOpPATHYIO 3a0aTy
06 ompemesieHny HEM3BECTHOM MpaBoil dacTh U KOIP@PUITHEHTOB B IICEBIOIAPAOOTNIECKOM
YPABHEHHH TPETHEro MOPs/IKa. Y PABHEHUs TAKOro Tuiia u 6osee obmwme ypasuerus: Cobo-
JIEBCKOTO THUIA BOBHUKAKT B TEOPUU (DUIBTPAIMN, DU OMTUCAHUH TPOIECCOB TETLIO W MAaCCO-
mepeHoca, (pusmke Maa3Mbl 1 BO MHOTHX APYTUX 00JACTSX. 3372493 CBOIUTCS K HEKOTOPOMY
OTEPATOPHOMY YPABHEHUIO, PA3PEINMOCTh KOTOPOTO YCTAHABIMBAETCS MIPY TOMOIIHA AIIpH-
OPHBIX OIEHOK W TEOPEMbI 0 HETIOABMKHOM Touke. Kpome ecrecTBeHHBIX yCI0BHIl MIAIKOCTH
JIAHHBIX, MBI TpeOyeM TaKzKe BBIMOJTHEHUsS] HEKOTOPOrO YCIOBUsT KOPPEKTHOCTH, KOTOPOE IO
CYIIECTBY CBOIUTCS K YCJOBUIO HEBBIPOXKIEHHOCTH HEKOTOPON MaTpHUIIbI, TIOCTPOEHHOHN MO
MaHHBIM 3a7a49u. POPMYJIUPYIOTCS W JTOKA3BIBAIOTCS TEOPEMbI O CYIECTBOBAHUM U €IUH-
CTBEHHOCTH PeIeHusl MOCTaBJIeHHON 3aaadu. [IpuBoauTrcsa orenka ycroiiunBoctr. B nuneii-
HOM CJIy9ae Pe3yIbTaT ABISeTCs TI00ATbHBIM [0 BPEMEHH, & B HEJIMHEHHOM JTIOKAJTBHBIM 110
BpeMeHu. B KauecTBe OCHOBHBIX POCTPAHCTB paccMmarpuBaioTces npocrpancrsa C.J1. Cobo-
JieBa.

Kmouesvie crosa: ypasrerue ncegdonapaboiuneckozo muna; meopeme CYyuecmeosarus

U eJUHCTNBEHHOCTNU PEWeHUA; 00pammai 3a60a4a; kpaesas 3a0a4a.
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