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Solving of integral equations of the �rst kind is an ill-posed problem. It is known that all

problems can be divided into three disjoint classes: correct problems, ill-posed regularizable

problems and ill-posed not regularizable problems. Problems of the �rst class are so good

that no regularization method for them is needed. Problems of the third class are so bad

that no one regularization method is applicable to them. A natural application �eld of

the regularization method is the problems from the second class. But how to know that

a particular integral equation belongs to the second class rather than to the third class?

For this purpose a large number of su�cient regularizability conditions were constructed. In

this article one in�nite series of su�cient conditions for regularizability of integral equations

constructed with the help of duality theory of Banach spaces is investigated. This method of

constructing of su�cient conditions proved to be e�ective in solving of ill-posed problems.

It is proved that these conditions are not pairwise equivalent even if we are restricted by

the equations with the smooth symmetric kernels.
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1. Introduction

In 1963 a new method for solving of ill-posed problems called as regularization method was
proposed by A.N. Tikhonov [1]. The subsequent development of the science has shown a great
e�ciency of the regularization method. However, soon it became clear that this method does
not provide a satisfactory solution in all cases. Problems for which there is a convergence of
the regularization method became known as regularizable problems. Thus all ill-posed problems
can be divided into two classes: regularizable problems and non-regularizable problems. In [2]
an example of the non-regularizable integral equation was constructed. So, �nding conditions for
the regularizability of a problem is an important and actual problem. In papers [3�8] using the
duality theory of Banach spaces the regularizability conditions were investigated. In paper [9]
integro-di�erential equations were considered and in paper [10] some multidimensional integral
equations were investigated.

2. Su�cient Regularizability Conditions of Integral Equations

Let E and F be Banach spaces and A : E → F be a linear continuous injective operator.

De�nition 1. Mapping A−1 is called a regularizable if there exists a family of mappings Rδ :
F → E, where δ ∈ (0, δ0) such that

lim
δ→0

sup
y:∥y−Ax∥≤δ

∥Rδy − x∥ = 0

for any x ∈ E.
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In this case, a family of operators {Rδ} is called a regularizer for the operator A−1. The
operator equation Ax = y is called a regularizable equation, if the mapping A−1 is a regularizable
mapping. In this case a family of elements {xδ = Rδ yδ} gives a satisfactory approximate solution
to the problem of �nding of a solution to the operator equation Ax = y when a right-hand side
yδ of this equation is given approximately with a precision δ.

Consider the classical situation when E = C(0, 1) and F = L2(0, 1). Assume that the operator
A is also continuous in the L2-norm. Then the operator A can be extended by continuity to the
various subspaces M such that C(0, 1) ⊂M ⊂ L2(0, 1).

In the papers [4, 5] the following theorems giving some su�cient conditions for the
regularizability are proved.

Theorem 1. If the integral operator A : C(0, 1) → L2(0, 1) is injective and its extension to some

Lp(0, 1), p ≥ 2 has a �nite-dimensional kernel, then the mapping A−1 is regularizable.

Theorem 2. If the integral operator A : C(0, 1) → L2(0, 1) is injective and its extension to

L∞(0, 1) has a �nite-dimensional kernel, then the mapping A−1 is regularizable.

Theorem 3. If the integral operator A : C(0, 1) → L2(0, 1) is injective and its extension to∩
p≥2

Lp(0, 1) has a �nite-dimensional kernel, then the mapping A−1 is regularizable.

Thus we have an in�nite series of regularizability conditions for the integral equations at
various values of p ≥ 2. The question arises here: are any of these conditions equivalent, if the
integral operators with the smooth symmetric kernels are considered? In paper [6] the negative
answer for all conditions from Theorem 1 is given. All these conditions are not pairwise equivalent.
In paper [7] it is proved that any condition from Theorem 1 is not equivalent to the condition from
Theorem 2. The question about equivalence of conditions from Theorems 1 and 3, and conditions
from Theorems 2 and 3 remains open. In the next section a negative answer to this question is
given.

3. Comparison of Regularizability Conditions

Consider the integral operator

Q : f(x) →
∫ 1

0
K(x, t)f(t) dt, (1)

acting from C(0, 1) to L2(0, 1). LetK(x, t) be a continuous function on the unit square [0, 1]×[0, 1].
Then the operator Q is also continuous according to L2-norm in C(0, 1). Let us denote by Q
an extension of the operator Q to L2(0, 1). The operator Q is assumed to be injective, as we
investigate the regularizability of Q−1. However, the operator Q is not necessarily be injective.
Moreover, in the given above theorems a connection between kerQ and regularizability of mapping
Q−1 is established.

Theorem 4. There exists an injective integral operator acting from C(0, 1) to L2(0, 1) with the

smooth symmetric kernel, extension of which to any Lp(0, 1), p ≥ 2 has an in�nite-dimensional

kernel and extension to
∩
p≥2

Lp(0, 1) has a �nite-dimensional kernel.

Proof. Integral operator Q constructed in the proof of Theorem 3 from [7] satis�es all conditions
and the statement of Theorem 4. This is easy to see by looking at the corresponding proof.

2

Corollary 1. The su�cient regularizability conditions from Theorems 1 and 3 are not equivalent.
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Proof. Indeed, for the operator from Theorem 4 by virtue of Theorem 3 it follows the
regularizability of mapping A−1, while Theorem 1 does not give an answer about its
regularizability.

2

Theorem 5. There exists an injective integral operator acting from C(0, 1) to L2(0, 1) with the

smooth symmetric kernel, extension of which to
∩
p≥2

Lp(0, 1) has an in�nite-dimensional kernel,

but its extension to L∞(0, 1) has a �nite-dimensional kernel.

Proof. Let us introduce a sequence of the intervals

Jk =
[
1− 1

2k
, 1− 1

2k+1

]
, k ∈ N.

We denote by hk(x) the functions de�ned on [0, 1] having the support in Jk and such that

hk(x) ∈
∩
p≥2

Lp(0, 1),

but hk(x) ̸∈ L∞(0, 1) for k ∈ N. It is easy to see that such functions exist. Indeed,

lnx ∈
∩
p≥2

Lp(0, 1)

since the integral ∫ 1

0
| lnx|p dx

converges for any p ≥ 2, but lnx ̸∈ L∞(0, 1). If we now linearly mapping the interval [0, 1] on the
internal Jk then the function lnx transforms to a function which satis�es all conditions required
from the function hk(x).

Denote by M a closure of the linear span of functions hk(x)

M = span{hk(x) : k ∈ N},

i.e. the smallest closed subspace from L2(0, 1) containing all the functions hk(x) for k ∈ N. As
usual C∞

0 (a, b) is a subspace of C∞(a, b) consisting of functions with a compact support, i.e.
in�nitely di�erentiable and vanish in neighborhoods of the points a and b.

Consider the following lemma from [2].

Lemma 1. Let h(t) ∈ L2(a, b) and

H =

{
f(t) ∈ L2(a, b) :

∫ b

a
f(t)h(t) dt = 0

}
.

Then

H
∩
C∞
0 (a, b) = H.

Let us verify that the functions from C∞
0 (a, b) are dense not only in the hyperplanes, but

also in N =M⊥, which is an orthogonal complement to M , i.e. the following equality

N
∩
C∞
0 (0, 1) = N (2)

holds.
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Let f ∈ N and ε > 0. We show that there exists a function from C∞
0 (0, 1)∩N and such that

∥f − g∥ < ε. Choose a number n such that∫ 1

1− 1
2n+1

f2(t) dt ≤ ε2

4
. (3)

Since the function f(t) is orthogonal to the functions hk(t), k ∈ N, by virtue of Lemma 1
applied to the function hk(t) there exists a family of functions {fk(t), k = 1, 2, . . . , n} for which
the following conditions are ful�lled

1. fk(t) ∈ C∞
0 (Jk), k = 1, 2, . . . , n;

2.

∫
Jk

fk(t)hk(t) dt = 0, k = 1, 2, . . . , n;

3. ∥fk − f |Jk∥ ≤ ε

2(n+ 1)
, k = 1, 2, . . . , n,

(4)

where f |Jk is a restriction of the function f(t) on the interval Jk. Besides, there exists a function
f0(t) ∈ C∞

0 (0, 12) in the interval J0 = [0, 12 ] such that

∥f0 − f |J0∥ ≤ ε

2(n+ 1)
. (5)

Now consider the function

g(t) =

{
fk(t), for t ∈ Jk, k = 0, 1, . . . , n;

0, for t ∈ [1− 1
2n+1 , 1].

Using (4) we obtain that g ∈ C∞
0 (0, 1) ∩N since for any k ∈ N∫ 1

0
g(t)hk(t) dt =

∫
Jk

g(t)hk(t) dt = 0,

and therefore, for any m(t) ∈M we get∫ 1

0
g(t)m(t) dt = 0.

Finally, because of (3), (4) and (5) and from the following relation

∥g − f∥ =

√∫ 1

0
(g(t)− f(t))2 dt ≤

√√√√ n∑
k=0

∫
Jk

(g(t)− f(t))2 dt+
ε2

4
≤

≤
n∑

k=0

√∫
Jk

(g(t)− f(t))2 dt+
ε

2
≤

n∑
k=0

ε

2(n+ 1)
+
ε

2
= ε

it follows that N
∩
C∞
0 (0, 1) = N .

Further, from (2) it follows that in N there exists a complete orthonormal system of functions
{ψn(t)} belonging to C∞

0 (0, 1). It is true because we are able to choose a full linearly independent
sequence of functions fromN

∩
C∞
0 (0, 1), orthogonalization of which gives us the necessary system

of functions {ψn(t)}.
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Now consider the integral operator Q, given by formula (1) with the kernel of the form

K(x, t) =
∞∑
n=1

anφn(x)ψn(t), (6)

where {φn(x)} is an arbitrary orthonormal system of in�nitely di�erentiable functions on [0, 1],
{ψn(t)} is the constructed above system of functions and

an =
1

n2

(
max( sup

x∈[0,1]
|φn(x)|, . . . , sup

x∈[0,1]
|φ(n)

n (x)|)

)−1

×

×

(
max( sup

t∈[0,1]
|ψn(t)|, . . . , sup

t∈[0,1]
|ψ(n)

n (t)|)

)−1

.

Then it is clear that the series from (6) converges uniformly and the series obtained from it
by any-times termwise di�erentiation are also converges uniformly. Therefore the function K(x, t)
is an in�nitely di�erentiable function on the unit square [0, 1]× [0, 1].

We show that kerQ =M . In fact, if

∫ 1

0
K(x, t)f(t) dt =

∫ 1

0

∞∑
n=1

anφn(x)ψn(t)f(t) dt = 0, (7)

then
∞∑
n=1

anbnφn(x) = 0, (8)

where

bn =

∫ 1

0
f(t)ψn(t) dt

is the n-th Fourier coe�cient of function f(t) by the system of functions {ψn(t)}. According to
the Lebesgue theorem the series from (7) can be integrated term by term. From (8), since the
system {φn(x)} is orthonormal and an ̸= 0, it follows that bn = 0 for n ∈ N, i.e. f(t) ∈ N⊥ =M .
It is obvious that if f(t) ∈M then f(t) ∈ kerQ.

So, we proved that kerQ = M . If we take φn = ψn, then the kernel of the operator Q is
symmetric. It follows that the operator Q satis�es all conditions and statement of the theorem.
Indeed, operator Q is an integral operator with a smooth symmetric kernel, it is injective on
C(0, 1), since all the functions in M , except the identical zero, are discontinuous. Its extension to∩
p≥2

Lp(0, 1) has an in�nite-dimensional kernel because it contains all the functions hk(t), k ∈ N.

But extension of the operator Q to L∞(0, 1) has a null kernel because all the functions in M ,
except identical zero, are not bounded. Theorem is proved.

2

Corollary 2. Su�cient regularizability conditions from Theorems 2 and 3 are not equivalent.

Proof. In fact, for the operator Q constructed in Theorem 5, from Theorem 2 it follows the
regularizability of Q−1, while Theorem 3 does not give an answer about regularizability of Q−1.

2
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ÎÁ ÓÑËÎÂÈßÕ ÐÅÃÓËßÐÈÇÓÅÌÎÑÒÈ ÈÍÒÅÃÐÀËÜÍÛÕ
ÓÐÀÂÍÅÍÈÉ

Ë.Ä. Ìåíèõåñ, Â.Â. Êàðà÷èê

Ðåøåíèå èíòåãðàëüíûõ óðàâíåíèé ïåðâîãî ðîäà ïðåäñòàâëÿåò ñîáîé íåêîððåêòíóþ

çàäà÷ó. Êàê èçâåñòíî, âñå çàäà÷è ìîæíî ðàçáèòü íà òðè íåïåðåñåêàþùèõñÿ êëàññà: êîð-

ðåêòíûå çàäà÷è, íåêîððåêòíûå ðåãóëÿðèçóåìûå çàäà÷è, íåêîððåêòíûå íåðåãóëÿðèçóå-

ìûå çàäà÷è. Çàäà÷è èç ïåðâîãî êëàññà íàñòîëüêî õîðîøè, ÷òî ìåòîä ðåãóëÿðèçàöèè

äëÿ íèõ íå íóæåí. Çàäà÷è òðåòüåãî êëàññà íàñòîëüêî ïëîõè, ÷òî ìåòîä ðåãóëÿðèçàöèè

ê íèì íå ïðèìåíèì. Åñòåñòâåííûì ïîëåì ïðèìåíåíèÿ ìåòîäà ðåãóëÿðèçàöèè ÿâëÿþòñÿ
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çàäà÷è âòîðîãî êëàññà. Íî êàê óçíàòü, ÷òî äàííîå èíòåãðàëüíîå óðàâíåíèå ïðèíàäëå-

æèò êî âòîðîìó, à íå ê òðåòüåìó êëàññó. Äëÿ ýòîãî áûëî ïîñòðîåíî áîëüøîå êîëè÷åñòâî

äîñòàòî÷íûõ óñëîâèé ðåãóëÿðèçóåìîñòè. Â äàííîé ñòàòüå èññëåäóåòñÿ îäíà áåñêîíå÷íàÿ

ñåðèÿ äîñòàòî÷íûõ óñëîâèé ðåãóëÿðèçóåìîñòè èíòåãðàëüíûõ óðàâíåíèé, ïîñòðîåííûõ

ñ ïîìîùüþ òåîðèè äâîéñòâåííîñòè áàíàõîâûõ ïðîñòðàíñòâ. Ýòîò ìåòîä ïîñòðîåíèÿ äî-

ñòàòî÷íûõ óñëîâèé ïîêàçàë ñâîþ ýôôåêòèâíîñòü ïðè ðåøåíèè íåêîððåêòíûõ çàäà÷.

Äîêàçàíî, ÷òî ýòè óñëîâèÿ ÿâëÿþòñÿ ïîïàðíî íå ýêâèâàëåíòíûìè, äàæå åñëè îãðàíè-

÷èòüñÿ óðàâíåíèÿìè ñ ãëàäêèìè ñèììåòðè÷íûìè ÿäðàìè.

Êëþ÷åâûå ñëîâà: èíòåãðàëüíûå óðàâíåíèÿ; ðåãóëÿðèçóåìîñòü; ãëàäêèå ñèììåò-

ðè÷íûå ÿäðà.
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