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Solving of integral equations of the first kind is an ill-posed problem. It is known that all
problems can be divided into three disjoint classes: correct problems, ill-posed regularizable
problems and ill-posed not regularizable problems. Problems of the first class are so good
that no regularization method for them is needed. Problems of the third class are so bad
that no one regularization method is applicable to them. A natural application field of
the regularization method is the problems from the second class. But how to know that
a particular integral equation belongs to the second class rather than to the third class?
For this purpose a large number of sufficient regularizability conditions were constructed. In
this article one infinite series of sufficient conditions for regularizability of integral equations
constructed with the help of duality theory of Banach spaces is investigated. This method of
constructing of sufficient conditions proved to be effective in solving of ill-posed problems.
It is proved that these conditions are not pairwise equivalent even if we are restricted by
the equations with the smooth symmetric kernels.
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1. Introduction

In 1963 a new method for solving of ill-posed problems called as regularization method was
proposed by A.N. Tikhonov [1]. The subsequent development of the science has shown a great
efficiency of the regularization method. However, soon it became clear that this method does
not provide a satisfactory solution in all cases. Problems for which there is a convergence of
the regularization method became known as regularizable problems. Thus all ill-posed problems
can be divided into two classes: regularizable problems and non-regularizable problems. In 2]
an example of the non-regularizable integral equation was constructed. So, finding conditions for
the regularizability of a problem is an important and actual problem. In papers [3-8] using the
duality theory of Banach spaces the regularizability conditions were investigated. In paper [9]
integro-differential equations were considered and in paper [10] some multidimensional integral
equations were investigated.

2. Sufficient Regularizability Conditions of Integral Equations

Let F and F be Banach spaces and A : E — F be a linear continuous injective operator.

Definition 1. Mapping A" is called a regularizable if there exists a family of mappings Rs :
F — E, where 6§ € (0,0¢) such that

lim sup ||Rsy—z||=0
070 y:|ly— Az|| <5

for any x € E.
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In this case, a family of operators {Rs} is called a regularizer for the operator A~!. The
operator equation Az =y is called a regularizable equation, if the mapping A~! is a regularizable
mapping. In this case a family of elements {z5 = Rsys} gives a satisfactory approximate solution
to the problem of finding of a solution to the operator equation Az =y when a right-hand side
ys of this equation is given approximately with a precision d.

Consider the classical situation when E = C(0, 1) and F' = L2(0, 1). Assume that the operator
A is also continuous in the Lso-norm. Then the operator A can be extended by continuity to the
various subspaces M such that C'(0,1) C M C Ls(0,1).

In the papers [4,5] the following theorems giving some sufficient conditions for the
regularizability are proved.

Theorem 1. If the integral operator A : C(0,1) — L2(0,1) is injective and its extension to some
L,(0,1), p > 2 has a finite-dimensional kernel, then the mapping A~Y is reqularizable.

Theorem 2. If the integral operator A : C(0,1) — Ly(0,1) is injective and its extension to
Loo(0,1) has a finite-dimensional kernel, then the mapping A~" is reqularizable.

Theorem 3. If the integral operator A : C(0,1) — Ly(0,1) is injective and its extension to

N Ly(0,1) has a finite-dimensional kernel, then the mapping A~ is regularizable.
p>2

Thus we have an infinite series of regularizability conditions for the integral equations at
various values of p > 2. The question arises here: are any of these conditions equivalent, if the
integral operators with the smooth symmetric kernels are considered? In paper [6] the negative
answer for all conditions from Theorem 1 is given. All these conditions are not pairwise equivalent.
In paper [7] it is proved that any condition from Theorem 1 is not equivalent to the condition from
Theorem 2. The question about equivalence of conditions from Theorems 1 and 3, and conditions
from Theorems 2 and 3 remains open. In the next section a negative answer to this question is
given.

3. Comparison of Regularizability Conditions

Consider the integral operator

1
Q: flx) /0 K () f(t) dt, (1)

acting from C(0, 1) to L2(0,1). Let K (x,t) be a continuous function on the unit square [0, 1]x 0, 1].
Then the operator @Q is also continuous according to Lo-norm in C(0,1). Let us denote by Q
an extension of the operator @ to L2(0,1). The operator @ is assumed to be injective, as we
investigate the regularizability of Q~!. However, the operator @ is not necessarily be injective.
Moreover, in the given above theorems a connection between ker  and regularizability of mapping
Q! is established.

Theorem 4. There exists an injective integral operator acting from C(0,1) to L2(0,1) with the
smooth symmetric kernel, extension of which to any L,(0,1), p > 2 has an infinite-dimensional

kernel and extension to () Lp(0,1) has a finite-dimensional kernel.
p=2

Proof. Integral operator ) constructed in the proof of Theorem 3 from [7] satisfies all conditions
and the statement of Theorem 4. This is easy to see by looking at the corresponding proof.
OdJ

Corollary 1. The sufficient regularizability conditions from Theorems 1 and 3 are not equivalent.
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Proof. Indeed, for the operator from Theorem 4 by virtue of Theorem 3 it follows the
regularizability of mapping A~!, while Theorem 1 does not give an answer about its
regularizability.

O
Theorem 5. There exists an injective integral operator acting from C(0,1) to Lo(0,1) with the

smooth symmetric kernel, extension of which to () Ly(0,1) has an infinite-dimensional kernel,
p>2

but its extension to Loo(0,1) has a finite-dimensional kernel.

Proof. Let us introduce a sequence of the intervals

1 1

We denote by hy(x) the functions defined on [0, 1] having the support in J; and such that

hkz(x) € ﬂ LP(O’ ]-)7

p=>2

but hx(x) € Loo(0,1) for k € N. It is easy to see that such functions exist. Indeed,

Inx e m L,(0,1)
p=22

1
/ |Inz|P dx
0

converges for any p > 2, but Inz & Lo (0,1). If we now linearly mapping the interval [0, 1] on the
internal Ji then the function Inx transforms to a function which satisfies all conditions required
from the function hy(x).

Denote by M a closure of the linear span of functions hg(x)

since the integral

M = span{hy(z) : k € N},

i.e. the smallest closed subspace from L2(0,1) containing all the functions hi(z) for k € N. As
usual C§°(a,b) is a subspace of C*°(a,b) consisting of functions with a compact support, i.e.
infinitely differentiable and vanish in neighborhoods of the points a and b.

Consider the following lemma from [2].

Lemma 1. Let h(t) € La(a,b) and

H= {f(t) € La(a,b) : /abf(t)h(t) dt = 0} .

Then
H()Cg(a,b) = H.

Let us verify that the functions from C§°(a,b) are dense not only in the hyperplanes, but
also in N = M, which is an orthogonal complement to M, i.e. the following equality

N()Cg(0,1) =N (2)

holds.
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Let f € N and € > 0. We show that there exists a function from C§°(0,1) NN and such that
IIf — gl|| < e. Choose a number n such that

1 2

Fyde <. (3)
1— 1 4
on—+1
Since the function f(t) is orthogonal to the functions hi(t), & € N, by virtue of Lemma 1
applied to the function hg(t) there exists a family of functions {fx(¢), k = 1,2,...,n} for which

the following conditions are fulfilled

L. fk(t)GCSO(Jk), k:1727"'an;
2. fe(®)hi(t)dt =0, k=1,2,...,m; 4
T (4)
€
. — < — =
3 ka f|JkH = 2(7’L+1)7 k 172) 7n7

where f|, is a restriction of the function f(¢) on the interval Ji. Besides, there exists a function
fo(t) € C§°(0, %) in the interval Jy = [0, 3] such that

€

| < Wt 1) (5)

”fO - f’Jo

Now consider the function

fk(t), forte Ji, k=0,1,...,n;
g(t) = 1
07 forte[l—m,l}

Using (4) we obtain that g € C§°(0,1) N N since for any k € N

/Ewmwﬁ:/g@mwﬁ:m
0 Ti

and therefore, for any m(t) € M we get

/ L (ymt) di = 0.
0

Finally, because of (3), (4) and (5) and from the following relation

lg — fll—\// ))2dt < / 2dt+—<
T 4

it follows that N (C§°(0,1) = N.

Further, from (2) it follows that in N there exists a complete orthonormal system of functions
{1 (t)} belonging to C5°(0, 1). It is true because we are able to choose a full linearly independent
sequence of functions from N () C§°(0, 1), orthogonalization of which gives us the necessary system
of functions {y,(t)}.
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Now consider the integral operator @, given by formula (1) with the kernel of the form
oo
K(z,t) = ZanSOn(m)@/)n(t)a (6)
n=1

where {¢,(x)} is an arbitrary orthonormal system of infinitely differentiable functions on [0, 1],
{tn(t)} is the constructed above system of functions and

-1
1
ap = — <max( sup |en(z)l,..., sup |¢£L")(m)\)> X

- 2
n z€[0,1] x€[0,1]

-1
x <maX( sup [¢n (b)), .., sup [V (t)|)> :
t€[0,1] t€[0,1]
Then it is clear that the series from (6) converges uniformly and the series obtained from it
by any-times termwise differentiation are also converges uniformly. Therefore the function K (z,t)
is an infinitely differentiable function on the unit square [0, 1] x [0, 1].
We show that ker Q@ = M. In fact, if

1 1 o©
/O K (. 0)f(t) dt = /0 > )i (1)5(0) =0 (7)

then

> anbngn(x) =0, (8)
n=1

where
1
by = /0 F(E)n(t) dt

is the n-th Fourier coefficient of function f(¢) by the system of functions {t,(t)}. According to
the Lebesgue theorem the series from (7) can be integrated term by term. From (8), since the
system {¢,(x)} is orthonormal and a,, # 0, it follows that b, = 0 for n € N, i.e. f(t) € N+t = M.
It is obvious that if f(t) € M then f(t) € ker Q.

So, we proved that ker @ = M. If we take ¢, = v, then the kernel of the operator Q is
symmetric. It follows that the operator () satisfies all conditions and statement of the theorem.
Indeed, operator @ is an integral operator with a smooth symmetric kernel, it is injective on
C(0,1), since all the functions in M, except the identical zero, are discontinuous. Its extension to

() Lp(0,1) has an infinite-dimensional kernel because it contains all the functions hy(t), k € N.
p=2

But extension of the operator @ to Lo (0,1) has a null kernel because all the functions in M,
except identical zero, are not bounded. Theorem is proved.

d

Corollary 2. Sufficient regularizability conditions from Theorems 2 and 3 are not equivalent.

Proof. In fact, for the operator () constructed in Theorem 5, from Theorem 2 it follows the
regularizability of @1, while Theorem 3 does not give an answer about regularizability of @~!.

d
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OB YCJIOBUYX PETVJJISAPN3VEMOCTU NHTEI'PAJIBHBIX
YPABHEHU

JI.]I. Menuxec, B.B. Kapauux

Permtennie naTErpanbHbIX yPABHEHUN TIEPBOTO POIA MPEICTABIAIET CODOOI HEKOPPEKTHYIO
3amaqay. Kak m3BecTHO, BCe 3a/1a91 MOXKHO PA30UTh HA TPU HEMEPECEKAIOIIXCS KJIacca: KOp-
PEeKTHBIE 33/1a91, HEKOPPEKTHBIE PEryAIpU3yeMble 33/1a9M, HEKOPPEKTHBIE HEPETYIApU3ye-
MbI€ 3aJa9d. 3aJAYN U3 TMEPBOTO K/ACCA HACTOJBKO XOPOIIH, YTO METOI PEry/isipU3aluu
JIJIsT HUX He HYXKeH. 3aa9¥ TPEThero KJIAcCa HACTOIBKO MJIOXH, YTO METOJ|, PEry s pU3aIii

K HUM He IIPDUMEHHUM. EcrecrBennniv mosem IpUMEHCHUS MEeTOa PEeryadpu3aiun dBJId0TCA
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3a/ma4qn BTOPoro kinacca. Ho kak y3HaTh, 9TO JAHHOE WHTEIPAJIBLHOE YPABHEHWE TTPUHAIIE-
2KHUT KO BTOPOMY, & He K TpeTbeMy Kjaccy. [l 31oro 66110 IOCTPOEHO OOBIIOE KOJTTIECTBO
JOCTATOYHBIX YCJIOBUI PEryasipu3yeMocTn. B maHHO# cTaThe ucciemnyercs oaHa 6eCKOHeTHAsT
cepus MOCTATOYHBIX YCJIOBUH DPEryASpU3yeMOCTH WHTETPAJBHBIX YPABHEHHUH, TOCTPOEHHBIX
C TIOMOIIBIO TEOPUH JBOMCTBEHHOCTH BAHAXOBBIX MTPOCTPAHCTB. DTOT METO/T TOCTPOEHUS J10-
CTATOYHBIX YCJOBHI MOKa3as cBOO 3 (OEKTUBHOCTD MPU PEIIeHNH HEKOPPEKTHBIX 33/1ad9.
JlokazaHO, 9TO ITU YCIOBUS SBISIOTCS HOMAPHO HE IKBUBAJEHTHBIMU, JAXKe €CJIU OrPAHU-
YUTHCS YPABHEHUSIMU € TJIAIKUMHU CUMMETPUIHBIMHI SIPAMUA.

Karonesvie cro6a: unmezpasvousie YpaSHEHUS; PE2YAAPUIYEMOCTID; 2A00KUE CUMMEM-

punHbie Adpa.
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