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We discuss the numerical treatment of a nonlinear singular second order boundary value
problem in ordinary differential equations, posed on an unbounded domain, which represents
the density profile equation for the description of the formation of microscopic bubbles in
a non-homogeneous fluid. Due to the fact that the nonlinear differential equation has a
singularity at the origin and the boundary value problem is posed on an unbounded domain,
the proposed approaches are complex and require a considerable computational effort. This
is the motivation for our present study, where we describe an alternative approach, based
on the reduction of the original problem to an integro-differential equation. In this way,
we obtain a Volterra integro-differential equation with a singular kernel. The numerical
integration of such equations is not straightforward, due to the singularity. However, in this
paper we show that this equation may be accurately solved by simple product integration
methods, such as the implicit Euler method and a second order method, based on the
trapezoidal rule. We illustrate the proposed methods with some numerical examples.

Keywords: density profile equation; singular boundary value problem; integro-differential
equation; implicit Fuler method.

1. Introduction
1.1. Density Profile Equation

The singular boundary value problem we discuss here originates from the Cahn-Hillard
theory, which is used in hydrodynamics to study the behavior of non-homogeneous fluids.
In this theory, an additional term involving the gradient of density (grad p) is added to the
classical expression Ey(p) for the volume free energy, depending on the density p of the
medium. Hence, the total volume free energy of a nonhomogeneous fluid can be written
as

E(p,grad(p)) = Eolp) + 5 (grad(p))’. (1)

where Ey(p) is a double-well potential, whose wells define the phases. The potential Eq(p)
causes an interfacial layer within which the density p suffers large variations [1].

In 2], the density profile equation for the description of the formation of microscopical
bubbles in a non-homogeneous fluid (in particular, vapor inside one liquid) is derived.
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Let us briefly recall how this equation is obtained. The state of a non-homogeneous fluid
(see [2] and [3]) is described by the following system of partial differential equations:

pi + div(pt) =0, (2)
V(o) ~20) =, ®)

where p, U denote the density and the velocity of the fluid, p represents its chemical
potential and v is a constant. By considering the case where the motion of the fluid is
potential and stationary, system (2), (3) is reduced to a single equation of the form

YAp = p(p) — po, (4)

where (i is a constant, depending on the state of the fluid. When searching for a solution
of (4) with spherical symmetry which depends only on the variable r, we introduce as
usual the system of spherical coordinates in IR™ and equation (4) is then reduced to the
following ordinary differential equation (ODE):

v (p” + nT_lp’) = p(p) —po, 1€ (0,00). (5)

Since we consider the case of a spherical bubble, ODE (5) is closed with the boundary
conditions

p'(0) =0 (6)
(following from spherical symmetry) and

lim p(r) = p >0, (7)

r—00

where p; is the density of the liquid surrounding the bubble. In the simplest models for
non-homogeneous fluids, the chemical potential p is a third degree polynomial, such that
the difference p — i has 3 real roots. Taking into account that pu(p;) = po, the right-hand
side of (5) may be written in the form

p(p) — po = 4a(p — 1) (p — 92)(p — m1), 0<p1<gp2<p, a>0. (8)

Finally, in order to diminish the number of parameters in the equation we introduce the
new variable

P2

Tr = )

P2 — 91
define the positive constant A = \/%(m — 1) , and denote £ = ﬁ > 0. Then, without

loss of generality, instead of (5)—(7) we can investigate the boundary value problem
-1

(1) + ! (r) = AN (r) + Da(r) (2(r) — &), (9)
Z'(0) =0, z(o0)=2¢, (10)

The boundary value problem (9), (10) depends only on 3 parameters: A\, which may be
chosen as A = 1 without restriction of generality, n is the dimension of the problem, which
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in the physically meaningful case is equal to 3, and &, which is varied in the range [0, 1]
such as to reflect different physical situations.

Note that problem (9), (10) always has the constant solution z(r) = £, which physically
corresponds to the case of a homogeneous fluid (without bubbles).

We are interested in computing a monotonously increasing solution for 0 < r < oo,
the so called "bubble-type solution". When such a solution exists it has exactly one zero
R in that interval, where R is interpreted as the bubble radius. Furthermore, it can be
shown that —1 < z(0) < 0 and —1 < z(r) < &, r > 0. The derivative of the solution
attains a maximum at some value 7 < R, and tends to 0 at infinity. Finally, it turns out
that the solution features an interior layer, which becomes sharper for & — 1. All these
properties have been discussed in [4] (see also [5] and [6]).

1.2. Existence and Uniqueness of Solution

It is worth to remark that the existence of a strictly increasing solution to the problem
(9), (10) is far from being a simple question. In [4], it was shown (using a variational
approach developed in [7]), that such a solution can exist only if £ satisfies 0 < & < 1.
Furthermore, based on the results of [8], it is possible to show that this restriction on &
is also a sufficient condition for the existence of such a solution. These results agree with
the experimental evidence and the numerical simulations reported, for example, in [2].

It is worth to remark that the density profile equation can be extended to a more
general context, where the free energy of the mixture of fluids is given by

E(p,grad(p)) = Eo(p) + glgrad(p)\’% (11)

where p > 1 and ¢ > 0. In the case p = 2, expression (11) reduces to (1).
In the general case, the differential operator on the left-hand side of (9) has the form
of the so-called radial p-Laplacian,

P P ) = fyla) >0, (12

where f, is a function which has the same roots and the same sign as the right-hand side
of (9), but has more complex form, which depends on p. In this general formulation, we
look for a strictly increasing solution of (12), which satisfies the boundary conditions (10).
The existence and uniqueness of solution of this problem was discussed in [9], where the
numerical solution of this boundary value problem by collocation methods was described.

A different numerical approach to the solution of problem (9), (10), (12) was introduced
in [10], where the singular boundary value problem is reduced to a sequence of auxiliary
intitial value problems, which are solved by means of computational methods with global
error control.

2. Integral Formulation

Equation (9) may be written in the form

T () = f(x(r)), (13)
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where f(z) = 4\?(z — &)(z + 1)z, 0 < € < 1, X is a positive number (tipically A = 1).
According to the integral method we rewrite equation (13) in the form

2(r) = /O r :: fa(r)dr, >0, (14)

Note that (14) is a Volterra integro-differential equation of the first kind with a singular
kernel. The numerical integration of such equations is not straightforward, due to the
singularity.

In the theory of singular integral and integro-differential equations, product integration
methods have been often used to solve problems of this type. These methods are
recommended when the considered integrand function is the product of two parts, one
of which is singular. This approach was first introduced by Weiss in [11,12]. A detailed
description of the methods is given in the monographs [13-15]. Their history can be found
in the survey paper [16].

Taking into account the form of the integral on the right-hand side of equation (14),
we have decided to apply product integration methods to its numerical solution.

We recall that we search for a function x which satisfies the boundary conditions
2'(0) = 0 and

lim z(r) = ¢&. (15)

r—00
The first of these conditions is satisfied by any solution of (14). In order to satisfy the
second boundary condition we need to know that equations (14) and (13) have only 3
kinds of solutions:

1. If (0) < z*, then the solution x(r) blows up at a finite r;

(7)
2. If (0) > z*, then the solution z(r) is oscillatory and lim,_,, z(r) = 0;

3. If 2(0) = z*, then the solution z(r) is monotonic and lim, . z(r) = &.

Obviously, what we need is to find a solution of the third type. Moreover, we know
that the value z* is determined uniquely for each £ and satisfies z* € [—1,0]; we have
¥ — —1,as & —» 1, and 2* — 0, as £ — 0 (see [4]).

3. Numerical Methods

In order to solve the boundary value problem (14), (15) we have implemented a first
order and a second order method.

3.1. First Order Method

In the first case, we use the implicit Euler method to approximate equation (14). First
we introduce a uniform mesh on the interval [0,T): r; = ih,i = 1,..., N, with stepsize h,
such that Nh = T. Then we approximate the solution x by a vector x; = (xg, z1,...,2nN),
such that z; = x(r;).

The components of this vector must satisfy the equation:

h2 +1
— n—1 -
Tiy1 — T = — g (rj)" " f(z;), i=1..,N—1 (16)
T’H—l j=1
8 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming

& Computer Software (Bulletin SUSU MMCS), 2015, vol. 8, no. 4, pp. 5-13



MATEMATNYECKOE MOJIE/INPOBAHUE

This results from approximating z’(r) by (x(r) —x(r—h))/h and using the right rectangles
rule to approximate integral on the left-hand side of (14).

At each step, for a given ¢ we solve a nonlinear equation for x; ;. This is done by the
fixed point method, using the intial approximation :E?_H = x;.

As we said before, the bissection method is needed to determine the right value of x*.
According to this method, we start with a certain interval [a,b] C [—1,0], such that a) if
z(0) = a, then the solution z(r) (approximated by the implicit Euler method) is of the first
type; a) if (0) = b, then the solution x(r) is of the second type; this means that we must
have z* € [a, b]. Then, as usual, we construct a sequences of intervals [ag, bg].k = 1,2,...
such that [ag, bg| C [ag—1,bk-1] , bx — ax = (bg—1 — ax—1)/2 and x* € [ay, bg|. The iteration
process stops when b, — ap < ¢, for a given e.

3.2. Second Order Method

In this case we approximate equation (14) by the second order scheme

30 — 4T — T4 1 h A
2 e 2D ) ) PR (i) | i =0, N =2, (17)
2h Tivo 2 =

In order to compute x; we use the approximate formula

2

T1 = To+ ;L—nf(xo), (18)

wich follows from the asymptotic behavior of « near the origin (see, for example [4]).
For each value of i (starting with ¢ = 0) we determine z; o by solving the nonlinear
equation (17) by the fixed point method.

4. Numerical Results

In this section we present the results of some numerical experiments we have carried
out to test the performance of the proposed methods. All the programs were implemented
in MATLAB.

Since the problem under consideration is solvable if and only if 0 < £ < 1 (see Sec. 1.2)
we have applied our methods for values of £ within this interval. In table 1 we present the
values of (0) obtained by the implicit Euler and the second order method, with A = 0, 001.
For comparison, we give also the values presented in [10]. Note that the numerical scheme
used in this work envolves an ODE solver with variable step size, with control of the global
error at each step, so that it provides accuracy of about 8 digits. We see that the results
obtained by the second order method are in good agreement with the ones presented in [10]
(they have in general 3 common digits); in the case of the implicit Euler method, about 2
digits are correct. As it happens with other methods, when £ is close to 1, it is particularly
difficult to approximate the solution. The convergence of the implicit Euler method was
tested in various examples. Some results are displayed in Table 2, where we consider the
approximation of x(1), in the case £ = 0,5, with different stepsizes. With the purpose of
checking the convergence order, we compute the following coefficient:

K = log, (M) '

|$h/2 - Ih/4|
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Table 1

Values of z(0) (density at the bubble center) obtained
by different methods, as a function of £

¢ | x(0) (1st order) | x(0) ( 2nd order) | Result in [10]
0,1 —0,2999 —0,3046 —0,3047
0,2 0,5597 —0,5679 —0,5672
0,3 —0,7636 —0,7708 —0,7707
0,4 —0,8990 —0,9031 —0,9031
0,5 —0,9696 —-0,9712 —-0,9711
0,6 —0,9950 —0,9953 —0,9953
0,7 —0,9998 —0,9998 —0,9998
0,8 | —0,99992178 —0,99992178 —0,9999995

These results indicate that the implicit Euler method has the first order of convergence,
when applied to this problem, as it could be expected. The same conclusion follows from the
results displayed in Table 3, where the implicit Euler method is applied to the computation
of 2(0), for the same value of .

Table 2

Convergence order of the approximations of z(1)
by the implicit Euler method in the case £ = 0,5

h x(1) K
1/10 | —0,6252 | 0,9615
1/20 | —0,6215 | 1,078
1/40 | —0,6196 | 1,169
1/80 | —0,6187 —
1/160 | —0,6182 —

Finally, the same value was approximated using the method described in Sec. 3.2.
Once again, the numerical results displayed in Table 4 confirm that this method has the
second order of convergence, as expected.

Table 3

Convergence order of the approximations of x(0)
by the implicit Euler method in the case £ = 0,5

h x(0) K
1/100 | —0,96958965 | 1,00002
1/200 | —0,97036934 | 1,00000
1/400 | —0,97075918
1/800 | —0,97095410
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Table 4

Convergence order of the approximations of z(0)
by the method of Sec. 3.2 in the case £ = 0,5
h x (0) K

1/100 | —0,97113484 | 1,88

1/200 | —0,97112361 | 1,66

1/400 | —0,97112057

1/800 | —0,97111961

5. Conclusions and Future Work

In this work we have analysed new algorithms for the numerical solution of a
nonlinear singular boundary value problem, arising in the mathematical modelling of
mixtures of fluids. The integral formulation provides an alternative approach to analyze
the problem and obtain numerical approximations. The advantage of this approach is that
the resulting integro-differential equation can be efficiently solved by simple methods, with
low computational complexity. So far, we have applied only the first and the second order
methods, and therefore the accuracy of the results is not so high as in the case of the more
sophisticated methods used in other works. In the future we intend to apply the integral
approach with discretization methods of higher order. Another possible direction of future
research is the extension of this approach to the case of the density profile equation with
degenerate Lapplacian (see (11)).

Research was supported by RFBR grant No 15-01-03228.
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MHTETPAJILHBIN METO/, 1)1 YNCJIEHHOIO
PEIITEHU Y HEJIMHENHBIX CUHTYJIAPHBIX
KPAEBBIX 3AJIAY

M.B. Byaamos, II.M. Jluma, /o Tuen Txanv

B crarbe mpeioKeHbl YNCIeHHBIE METOIbI PEIICHs HETMHEHHOM KPaeBOi 3a,0a4u 1715
O0OBIKHOBEHHOTO /T (DepeHImaIbHOrO yPABHEHN S BTOPOT0 MOPSAIKA, 3aJaHHOTO Ha MOJIYOCH
1 HEPaA3PEHIECHHOIrO0 OTHOCHUTE/IBbHO IJIAaBHOM 9aCTH. TaKI/Ie 3aJa491 OIINCbIBAIOT IIJIOTHOCTD
MUKPDOCKOITUYIECCKUX MMY3bIPHKOB B HeO,ELHOpO,HHOfI KHIKOCTH. B CBA3H C TEeM, YTO UCXOOHOEe

nesuHeitnoe nuddepeHimaibHOe ypaBHEHNE HEPA3PEIIEHO OTHOCUTEIBHO TVIABHOW 9aCTH, U
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KpaeBad 337292 PacCMaTPUBAETCS HA MOJYOCH, TO paHee pPazpabOTAHHBIE MTOIXOMAbI sBJIs-
FOTCS CJIOKHBIME U TPEOYIOT 3HAYUTEIbHBIX BBIYUCIUTEIbHBIX 3arpar. UMeHHO 31oT dakT
MOCJIYYKUJI MOTUBAITUEH NJIsi JAHHOW CTaThU, TJE MBI OMUCHIBAEM AJbTEPHATHBHBIN TOIXO],
B KOTODPOM TIPEJJIOKEHO 3aNKNCaTh UCXOIHYIO 33Ja9y B BUIe WHTErpo-auddepeHnnamLHOro
ypaBHeHus Tura Boabreppa ¢ 0cobeHHOCTHIO B siape. MTak, ucxoaHyio 3a1ady Mbl 3alld-
camu B BuAe HHTErpo-nudepeHuaIsHor0 ypaBHeHus: Tuia BoabTeppa ¢ CHHTYJISPHBIM
SIPOM M, B BUJY CIENMUMUKE UCXOTHON 3a7a49u, yCJIOBHEM HA IIPABOM KOHIE. UwCIeHHOe
WHTErPUPOBAHNE TAKUX YPABHEHWH TaKyKe JOCTATOYHO CIOYKHAs 3a7ada. B mamHHON pabo-
Te MbI TPEIJIAraeM CIEIHAJBHBIE METOIbI PEIeHNsT TAKUX yPABHEHUH MepBOro U BTOPOTO
mopsKOB. IIpuBeIeHBI YUCIEHHBIE PACUETHI MOJENBHBIX TPUMEDPOB TI0 MPEJIAraeMbIM aJl-
ropur™MaM. JlaHHBIE PACYEThl MOKA3AJIU MEPCIEKTUBHOCTH MAJTBHEHIIIEr0 PAa3BUTHs TAKOTO
MOJIXO/1A.

Karoueene cr06a: ypasHenue NAOMHOCIY; CUHZYAAPHAA KPGEBAA 3a0a4a; unmezpo-
dupdepenyuarvroe ypasuenue; nHeasroli memod Jisepa.
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