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We discuss the numerical treatment of a nonlinear singular second order boundary value

problem in ordinary di�erential equations, posed on an unbounded domain, which represents

the density pro�le equation for the description of the formation of microscopic bubbles in

a non-homogeneous �uid. Due to the fact that the nonlinear di�erential equation has a

singularity at the origin and the boundary value problem is posed on an unbounded domain,

the proposed approaches are complex and require a considerable computational e�ort. This

is the motivation for our present study, where we describe an alternative approach, based

on the reduction of the original problem to an integro-di�erential equation. In this way,

we obtain a Volterra integro-di�erential equation with a singular kernel. The numerical

integration of such equations is not straightforward, due to the singularity. However, in this

paper we show that this equation may be accurately solved by simple product integration

methods, such as the implicit Euler method and a second order method, based on the

trapezoidal rule. We illustrate the proposed methods with some numerical examples.

Keywords: density pro�le equation; singular boundary value problem; integro-di�erential

equation; implicit Euler method.

1. Introduction

1.1. Density Pro�le Equation

The singular boundary value problem we discuss here originates from the Cahn-Hillard
theory, which is used in hydrodynamics to study the behavior of non-homogeneous �uids.
In this theory, an additional term involving the gradient of density (grad ρ) is added to the
classical expression E0(ρ) for the volume free energy, depending on the density ρ of the
medium. Hence, the total volume free energy of a nonhomogeneous �uid can be written
as

E(ρ, grad(ρ)) = E0(ρ) +
σ

2
(grad(ρ))2, (1)

where E0(ρ) is a double-well potential, whose wells de�ne the phases. The potential E0(ρ)
causes an interfacial layer within which the density ρ su�ers large variations [1].

In [2], the density pro�le equation for the description of the formation of microscopical
bubbles in a non-homogeneous �uid (in particular, vapor inside one liquid) is derived.
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Let us brie�y recall how this equation is obtained. The state of a non-homogeneous �uid
(see [2] and [3]) is described by the following system of partial di�erential equations:

ρt + div(ρv⃗) = 0, (2)

dv⃗

dt
+∇(µ(ρ)− γ△ρ) = 0, (3)

where ρ, v⃗ denote the density and the velocity of the �uid, µ represents its chemical
potential and γ is a constant. By considering the case where the motion of the �uid is
potential and stationary, system (2), (3) is reduced to a single equation of the form

γ△ρ = µ(ρ)− µ0, (4)

where µ0 is a constant, depending on the state of the �uid. When searching for a solution
of (4) with spherical symmetry which depends only on the variable r, we introduce as
usual the system of spherical coordinates in IRn and equation (4) is then reduced to the
following ordinary di�erential equation (ODE):

γ

(
ρ′′ +

n− 1

r
ρ′
)

= µ(ρ)− µ0, r ∈ (0,∞). (5)

Since we consider the case of a spherical bubble, ODE (5) is closed with the boundary
conditions

ρ′(0) = 0 (6)

(following from spherical symmetry) and

lim
r→∞

ρ(r) = ρl > 0, (7)

where ρl is the density of the liquid surrounding the bubble. In the simplest models for
non-homogeneous �uids, the chemical potential µ is a third degree polynomial, such that
the di�erence µ−µ0 has 3 real roots. Taking into account that µ(ρl) = µ0, the right-hand
side of (5) may be written in the form

µ(ρ)− µ0 = 4α(ρ− ℘1)(ρ− ℘2)(ρ− ρl), 0 < ℘1 < ℘2 < ρl, α > 0. (8)

Finally, in order to diminish the number of parameters in the equation we introduce the
new variable

x =
ρ− ℘2

℘2 − ℘1

,

de�ne the positive constant λ =
√

α
γ
(℘2 − ℘1) , and denote ξ = ρl−℘2

℘2−℘1
> 0. Then, without

loss of generality, instead of (5)�(7) we can investigate the boundary value problem

x′′(r) +
n− 1

r
x′(r) = 4λ2(x(r) + 1)x(r)(x(r)− ξ), (9)

x′(0) = 0, x(∞) = ξ, (10)

The boundary value problem (9), (10) depends only on 3 parameters: λ, which may be
chosen as λ = 1 without restriction of generality, n is the dimension of the problem, which
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in the physically meaningful case is equal to 3, and ξ, which is varied in the range [0, 1]
such as to re�ect di�erent physical situations.

Note that problem (9), (10) always has the constant solution x(r) ≡ ξ, which physically
corresponds to the case of a homogeneous �uid (without bubbles).

We are interested in computing a monotonously increasing solution for 0 < r < ∞,
the so called "bubble-type solution". When such a solution exists it has exactly one zero
R in that interval, where R is interpreted as the bubble radius. Furthermore, it can be
shown that −1 < x(0) < 0 and −1 < x(r) < ξ, r > 0. The derivative of the solution
attains a maximum at some value r̂ < R, and tends to 0 at in�nity. Finally, it turns out
that the solution features an interior layer, which becomes sharper for ξ → 1. All these
properties have been discussed in [4] (see also [5] and [6]).

1.2. Existence and Uniqueness of Solution

It is worth to remark that the existence of a strictly increasing solution to the problem
(9), (10) is far from being a simple question. In [4], it was shown (using a variational
approach developed in [7]), that such a solution can exist only if ξ satis�es 0 < ξ < 1.
Furthermore, based on the results of [8], it is possible to show that this restriction on ξ
is also a su�cient condition for the existence of such a solution. These results agree with
the experimental evidence and the numerical simulations reported, for example, in [2].

It is worth to remark that the density pro�le equation can be extended to a more
general context, where the free energy of the mixture of �uids is given by

E(ρ, grad(ρ)) = E0(ρ) +
c

p
|grad(ρ)|p, (11)

where p > 1 and c > 0. In the case p = 2, expression (11) reduces to (1).
In the general case, the di�erential operator on the left-hand side of (9) has the form

of the so-called radial p-Laplacian,

r1−n(rn−1|x′(r)|p−2x′(r))′ = fp(x), r > 0, (12)

where fp is a function which has the same roots and the same sign as the right-hand side
of (9), but has more complex form, which depends on p. In this general formulation, we
look for a strictly increasing solution of (12), which satis�es the boundary conditions (10).
The existence and uniqueness of solution of this problem was discussed in [9], where the
numerical solution of this boundary value problem by collocation methods was described.

A di�erent numerical approach to the solution of problem (9), (10), (12) was introduced
in [10], where the singular boundary value problem is reduced to a sequence of auxiliary
intitial value problems, which are solved by means of computational methods with global
error control.

2. Integral Formulation

Equation (9) may be written in the form

r1−n(rn−1x′(r))′ = f(x(r)), (13)
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where f(x) = 4λ2(x − ξ)(x + 1)x, 0 < ξ < 1, λ is a positive number (tipically λ = 1).
According to the integral method we rewrite equation (13) in the form

x′(r) =

∫ r

0

τn−1

rn−1
f(x(τ))dτ, r > 0. (14)

Note that (14) is a Volterra integro-di�erential equation of the �rst kind with a singular
kernel. The numerical integration of such equations is not straightforward, due to the
singularity.

In the theory of singular integral and integro-di�erential equations, product integration
methods have been often used to solve problems of this type. These methods are
recommended when the considered integrand function is the product of two parts, one
of which is singular. This approach was �rst introduced by Weiss in [11, 12]. A detailed
description of the methods is given in the monographs [13�15]. Their history can be found
in the survey paper [16].

Taking into account the form of the integral on the right-hand side of equation (14),
we have decided to apply product integration methods to its numerical solution.

We recall that we search for a function x which satis�es the boundary conditions
x′(0) = 0 and

lim
r→∞

x(r) = ξ. (15)

The �rst of these conditions is satis�ed by any solution of (14). In order to satisfy the
second boundary condition we need to know that equations (14) and (13) have only 3
kinds of solutions:

1. If x(0) < x∗, then the solution x(r) blows up at a �nite r;

2. If x(0) > x∗, then the solution x(r) is oscillatory and limr→∞ x(r) = 0;

3. If x(0) = x∗, then the solution x(r) is monotonic and limr→∞ x(r) = ξ.

Obviously, what we need is to �nd a solution of the third type. Moreover, we know
that the value x∗ is determined uniquely for each ξ and satis�es x∗ ∈ [−1, 0]; we have
x∗ → −1, as ξ → 1, and x∗ → 0, as ξ → 0 (see [4]).

3. Numerical Methods

In order to solve the boundary value problem (14), (15) we have implemented a �rst
order and a second order method.

3.1. First Order Method

In the �rst case, we use the implicit Euler method to approximate equation (14). First
we introduce a uniform mesh on the interval [0, T ]: ri = ih, i = 1, ..., N , with stepsize h,
such that Nh = T . Then we approximate the solution x by a vector xh = (x0, x1, . . . , xN),
such that xi ≈ x(ri).

The components of this vector must satisfy the equation:

xi+1 − xi =
h2

rn−1
i+1

i+1∑
j=1

(rj)
n−1f(xj), i = 1, ..., N − 1. (16)
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This results from approximating x′(r) by (x(r)−x(r−h))/h and using the right rectangles
rule to approximate integral on the left-hand side of (14).

At each step, for a given i we solve a nonlinear equation for xi+1. This is done by the
�xed point method, using the intial approximation x0

i+1 = xi.
As we said before, the bissection method is needed to determine the right value of x∗.

According to this method, we start with a certain interval [a, b] ⊂ [−1, 0], such that a) if
x(0) = a , then the solution x(r) (approximated by the implicit Euler method) is of the �rst
type; a) if x(0) = b , then the solution x(r) is of the second type; this means that we must
have x∗ ∈ [a, b]. Then, as usual, we construct a sequences of intervals [ak, bk],k = 1, 2, . . .
such that [ak, bk] ⊂ [ak−1, bk−1] , bk − ak = (bk−1 − ak−1)/2 and x∗ ∈ [ak, bk]. The iteration
process stops when bk − ak < ϵ, for a given ϵ.

3.2. Second Order Method

In this case we approximate equation (14) by the second order scheme

3xi+2 − 4xi+1 − xi

2h
=

1

rn−1
i+2

h

2

(
2

i+1∑
j=1

(rj)
n−1f(xj) + rn−1

i+2 f(xi+2)

)
, i = 0, ..., N −2. (17)

In order to compute x1 we use the approximate formula

x1 = x0 +
h2

2n
f(x0), (18)

wich follows from the asymptotic behavior of x near the origin (see, for example [4]).
For each value of i (starting with i = 0) we determine xi+2 by solving the nonlinear

equation (17) by the �xed point method.

4. Numerical Results

In this section we present the results of some numerical experiments we have carried
out to test the performance of the proposed methods. All the programs were implemented
in MATLAB.

Since the problem under consideration is solvable if and only if 0 < ξ < 1 (see Sec. 1.2)
we have applied our methods for values of ξ within this interval. In table 1 we present the
values of x(0) obtained by the implicit Euler and the second order method, with h = 0, 001.
For comparison, we give also the values presented in [10]. Note that the numerical scheme
used in this work envolves an ODE solver with variable step size, with control of the global
error at each step, so that it provides accuracy of about 8 digits. We see that the results
obtained by the second order method are in good agreement with the ones presented in [10]
(they have in general 3 common digits); in the case of the implicit Euler method, about 2
digits are correct. As it happens with other methods, when ξ is close to 1, it is particularly
di�cult to approximate the solution. The convergence of the implicit Euler method was
tested in various examples. Some results are displayed in Table 2, where we consider the
approximation of x(1), in the case ξ = 0, 5, with di�erent stepsizes. With the purpose of
checking the convergence order, we compute the following coe�cient:

K = log2

(
|xh − xh/2|
|xh/2 − xh/4|

)
.
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Table 1

Values of x(0) (density at the bubble center) obtained
by di�erent methods, as a function of ξ

ξ x(0) (1st order) x(0) ( 2nd order) Result in [10]
0,1 −0,2999 −0,3046 −0,3047
0,2 −0,5597 −0,5679 −0,5672
0,3 −0,7636 −0,7708 −0,7707
0,4 −0,8990 −0,9031 −0,9031
0,5 −0,9696 −0,9712 −0,9711
0,6 −0,9950 −0,9953 −0,9953
0,7 −0,9998 −0,9998 −0,9998
0,8 −0,99992178 −0,99992178 −0,9999995

These results indicate that the implicit Euler method has the �rst order of convergence,
when applied to this problem, as it could be expected. The same conclusion follows from the
results displayed in Table 3, where the implicit Euler method is applied to the computation
of x(0), for the same value of ξ.

Table 2

Convergence order of the approximations of x(1)
by the implicit Euler method in the case ξ = 0, 5

h x(1) K
1/10 −0,6252 0,9615
1/20 −0,6215 1,078
1/40 −0,6196 1,169
1/80 −0,6187 −
1/160 −0,6182 −

Finally, the same value was approximated using the method described in Sec. 3.2.
Once again, the numerical results displayed in Table 4 con�rm that this method has the
second order of convergence, as expected.

Table 3

Convergence order of the approximations of x(0)
by the implicit Euler method in the case ξ = 0, 5

h x(0) K
1/100 −0,96958965 1,00002
1/200 −0,97036934 1,00000
1/400 −0,97075918
1/800 −0,97095410
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Table 4

Convergence order of the approximations of x(0)
by the method of Sec. 3.2 in the case ξ = 0, 5

h x (0) K
1/100 −0,97113484 1,88
1/200 −0,97112361 1,66
1/400 −0,97112057
1/800 −0,97111961

5. Conclusions and Future Work

In this work we have analysed new algorithms for the numerical solution of a
nonlinear singular boundary value problem, arising in the mathematical modelling of
mixtures of �uids. The integral formulation provides an alternative approach to analyze
the problem and obtain numerical approximations. The advantage of this approach is that
the resulting integro-di�erential equation can be e�ciently solved by simple methods, with
low computational complexity. So far, we have applied only the �rst and the second order
methods, and therefore the accuracy of the results is not so high as in the case of the more
sophisticated methods used in other works. In the future we intend to apply the integral
approach with discretization methods of higher order. Another possible direction of future
research is the extension of this approach to the case of the density pro�le equation with
degenerate Lapplacian (see (11)).

Research was supported by RFBR grant No 15-01-03228.
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ÈÍÒÅÃÐÀËÜÍÛÉ ÌÅÒÎÄ ÄËß ×ÈÑËÅÍÍÎÃÎ
ÐÅØÅÍÈß ÍÅËÈÍÅÉÍÛÕ ÑÈÍÃÓËßÐÍÛÕ
ÊÐÀÅÂÛÕ ÇÀÄÀ×

Ì.Â. Áóëàòîâ, Ï.Ì. Ëèìà, Äî Òèåí Òõàíü

Â ñòàòüå ïðåäëîæåíû ÷èñëåííûå ìåòîäû ðåøåíèÿ íåëèíåéíîé êðàåâîé çàäà÷è äëÿ

îáûêíîâåííîãî äèôôåðåíöèàëüíîãî óðàâíåíèÿ âòîðîãî ïîðÿäêà, çàäàííîãî íà ïîëóîñè

è íåðàçðåøåííîãî îòíîñèòåëüíî ãëàâíîé ÷àñòè. Òàêèå çàäà÷è îïèñûâàþò ïëîòíîñòü

ìèêðîñêîïè÷åñêèõ ïóçûðüêîâ â íåîäíîðîäíîé æèäêîñòè. Â ñâÿçè ñ òåì, ÷òî èñõîäíîå

íåëèíåéíîå äèôôåðåíöèàëüíîå óðàâíåíèå íåðàçðåøåíî îòíîñèòåëüíî ãëàâíîé ÷àñòè, è
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êðàåâàÿ çàäà÷à ðàññìàòðèâàåòñÿ íà ïîëóîñè, òî ðàíåå ðàçðàáîòàííûå ïîäõîäû ÿâëÿ-

þòñÿ ñëîæíûìè è òðåáóþò çíà÷èòåëüíûõ âû÷èñëèòåëüíûõ çàòðàò. Èìåííî ýòîò ôàêò

ïîñëóæèë ìîòèâàöèåé äëÿ äàííîé ñòàòüè, ãäå ìû îïèñûâàåì àëüòåðíàòèâíûé ïîäõîä,

â êîòîðîì ïðåäëîæåíî çàïèñàòü èñõîäíóþ çàäà÷ó â âèäå èíòåãðî-äèôôåðåíöèàëüíîãî

óðàâíåíèÿ òèïà Âîëüòåððà ñ îñîáåííîñòüþ â ÿäðå. Èòàê, èñõîäíóþ çàäà÷ó ìû çàïè-

ñàëè â âèäå èíòåãðî-äèôôåðåíöèàëüíîãî óðàâíåíèÿ òèïà Âîëüòåððà ñ ñèíãóëÿðíûì

ÿäðîì è, â âèäó ñïåöèôèêè èñõîäíîé çàäà÷è, óñëîâèåì íà ïðàâîì êîíöå. ×èñëåííîå

èíòåãðèðîâàíèå òàêèõ óðàâíåíèé òàêæå äîñòàòî÷íî ñëîæíàÿ çàäà÷à. Â äàííîé ðàáî-

òå ìû ïðåäëàãàåì ñïåöèàëüíûå ìåòîäû ðåøåíèÿ òàêèõ óðàâíåíèé ïåðâîãî è âòîðîãî

ïîðÿäêîâ. Ïðèâåäåíû ÷èñëåííûå ðàñ÷åòû ìîäåëüíûõ ïðèìåðîâ ïî ïðåäëàãàåìûì àë-

ãîðèòìàì. Äàííûå ðàñ÷åòû ïîêàçàëè ïåðñïåêòèâíîñòü äàëüíåéøåãî ðàçâèòèÿ òàêîãî

ïîäõîäà.

Êëþ÷åâûå ñëîâà: óðàâíåíèå ïëîòíîñòè; ñèíãóëÿðíàÿ êðàåâàÿ çàäà÷à; èíòåãðî-

äèôôåðåíöèàëüíîå óðàâíåíèå; íåÿâíûé ìåòîä Ýéëåðà.
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