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For a given set and a given (generally speaking, multivalued) mapping of this set into
itself, we study the problem on the existence of fixed points of this mapping, i.e., of points
contained in their images. We agsume that the given set is nonempty and the given mapping
is defined on the entire set. In these conditions, we give the description (redefinition) of the
set of fixed points in the set-theoretic terms. This general idea is concretized for cases where
the set is endowed with a topological structure and the mapping has additional properties
associated with this structure. In particular, we provide necessary and sufficient conditions
for the existence of fixed points of mappings with closed graph in Hausdorff topological
spaces as well as in metric spaces. An example illustrating the possibilities and advantages
of the proposed approach is given. The immediate applications of these results to the search
of equilibrium states in game problems are also given: we describe the sets of saddle points
in the minimax problem (an analogue of the Fan theorem) and of Nash equilibrium points
in the game with many participants in cases where the sets of strategies of players are
Hausdorff spaces or metrizable topological spaces.
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Introduction

If one consider an automorphism F' of a set X as the dynamics of a system with
discrete time and the state space X, then many sufficient conditions for the existence of
fixed points can be treated as conditions that prevent the formation of cycles (consisting
of several points):

— "the contraction principle": the distance between the images of two arbitrary points
is less than the distance between these points (a cycle has to be contracted to a point);

— "the directionality principle": the set X is partially ordered and the mapping F is
isotonic with respect to this order (only single-point cycles are possible).

In this case, either the linear structure (see the Banach principle of contractive
mappings, the Kakutani theorem [1], and their generalization [2]), or the order structure
(see theorems by Tarski [3], Kantorovich [4], Kleene [5, Theorem 1.2.17], and their
generalization [6]) on the set X is used.

At the same time, in view of the known connection between fixed points and
equilibrium points (see Lemmas 3 and 4), one would expect a fixed point result under
conditions similar to the conditions of the Fan theorem [7]. We recall that this theorem is
based only on topological properties of the domain of the quality function.

From this point of view, the idea of the conditions proposed in the paper consists in
restricting the sizes of cycles due to the representation of the initial mapping by the set
of its restrictions to a covering of its domain: a single-point cycle is present for any choice
of such a covering; all other cycles, in dependence on the properties of the mapping (we
require the closedness of the graph), are "cut off" under an appropriate choice of a family
of coverings.
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1. Definitions

1. For an arbitrary set X denote by 2% the set of all subsets of X. Consider a nonempty
set X and a multivalued mapping X > x — F(x) € 2X. Denote by Fix(F) the set of all
fixed points of the mapping F: Fix(F):={z € X | x € F(x)}. For the given mapping F,
define the mapping 2X 3 Y — F(Y) € 2% as follows:

F(Y):= <U F(y)) Yy =JFyny

yey yey

Observe that F(Y) is the set of "candidates" from a set Y for the inclusion in the set of
fixed points: by contradiction, it is easy to verify that the elements of Y not lying in F/(Y)
obviously do not belong to Fix(F). In particular, for any singleton set {z} € 2%, z € X,
the set F'({x}) is nonempty if and only if z € Fix(F).

Immediately from the definition, for any Y, Y’ € 2%, we obtain

~

F(Y)cCY, (1)
Y'cY = FY')cE(Y), (2)
Fix(F)NY = Fix(F) N F(Y), (3)

(Y C Fix(F)) = (Y € Fix(F)).

From the definition of F' and the above relations, for an arbitrary family (Z,)r C 2%,
we get

U Fz)cl 2z, (4)

Fix(F) (| Z- = Fix(F) (| F(Z.). (5)

Here, inclusion (4) follows from inclusion (1) and equality (5) follows from equality

(3).

2. For families in 2% define the relation to be inscribed which will be denoted by the
symbol C: for arbitrary (Z,)r, (Z.)r C 2%, we say that the family (Z.,)p is inscribed
into the family (Z;)r and denote this as (Z.) C (Z;)r if, for arbitrary 7/ € 1", there
exists 7 € T such that Z!, C Z,. In the sequel, this order relation will be useful in
view of the following property of the mapping E: it follows from implication (2) that if

(Z;./)T/7 (ZT)T C 2X and (Z;_/)T/ ; (Z»,—)T7 then

U F(Z;—’) - U F(ZT)- (6)

T'eTl’ TeT

3. Denote by O(X) the set of all coverings of X, i.e., the set of all families (O,); C 2%
such that U,c;O, = X. Let 7(X) be a topology in X (the family of all open sets). Denote
by O (X) (Or(X)) the set of all finite open (closed) coverings of X.
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2. Criterion for the Existence of Fixed Points
1. The set of fixed points of the mapping F' can formally be described as follows.

Theorem 1. For any nonempty set X and for any mapping F : X — 2%, we have

Fix(F)= (] JF(©. (7)

(0)1€0(X) el

Remark 1. Since among the coverings there exists a smallest element with respect to
the inscribing relation, the covering ({z})x consisting of all singleton sets of the set X, by
(6), for this covering and for any (0,)1 € O(X), we have U, F({z}) € U,; F(O,) and,
hence, Fix(F) = {J,cx F({x}). However, exactly relation (7) is important for us, since it
gives possibilities for the use of properties of the set X and the mapping F.

2. The corollaries of equality (7) given below are based on the intuitively obvious fact
that if a closed subset G of a compact set X x X has points arbitrarily close to the diagonal
{(z,z) | = € X}, then G contains an element (Z,Z) of the diagonal. At the same time, if
the set GG is the graph of a multivalued mapping F', then the element Z is a fixed point of
the mapping F'.

Theorem 2. Let X be a compact Hausdorff space, and let a mapping F' have the closed

graph. Then A A
Fix(F)= () Jroy)= [ UFo. (8)

(0.)1€010(X) €1 (0.)1€0¢(X) €1

In particular, the set Fix(F') is nonempty if and only if the following condition holds:
(V(0,); € Ou(X))(Frel)  F(O,) # 2. (9)

Corollary 1. Let X be a compact Hausdorff space, and let a function f : X — X

be continuous. Then Fix(f) = ﬂ(o €00 (X Ubeff( ) = ﬂ(o )1€0m (X) U,es f( ). T
particular, the function f has a fized point zf and only if (V(0,); € Ow(X))(3Tr € I)

f(0) # 2.

3. Let the space X be endowed with a metric p : X? +— [0,00). Denote by
d(z, A) the distance from a point x € X to a set A C X defined by the metric
p 1 d(z, A):=inf,eqap(a,z). For any Y € 2%, define the diameter of the set Y:
diam(Y’) :=sup, ,.cy p(¥,y’). Assume that the topology 7(X) generated by the metric p is
defined in X. For any d > 0, denote by O%.(X) (O2 (X)) the subset of Og(X) (Ot (X)) of
closed (open) finite coverings (O,); of diameter not greater than ¢: max,c;y diam(O,) < .
Recall that if X is a compact metric space, then for any § > 0, the sets OZ(X) and Og,(X)
are nonempty.

Theorem 3. Let X be a compact metric space, and let a mapping F' have the closed graph.
Then, for an arbitrary family of coverings

(Or)r, € O(X)UOK(X), 6, >0, keN, lim 6, =0, (10)
—00
the equality Fix(F) = (en U,er, F(Oy,) holds. In particular, the set Fix(F) is nonempty

if and only if
(Vo > 0)(Jzs € X) d(xs, F(x5)) < 6. (11)
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Corollary 2. Let X be a compact metric space, and let a function f be continuous.
Then, for an arbitrary family of coverings of the form (10), the equality Fix(f) =

A

Meen Uier, f(Or) holds. In particular, the function f has a fired point if and only if
(Vo >0)(Fzs € X)  plas, f(zs)) < 0. (12)

Remark 2. Theorems 2 and 3 as well as Corollaries 1 and 2 remain true if we replace
the condition of compactness of the space X by the condition of precompactness of the
image of the space X under the mapping F' (f):

U F@) c K <Uf(x)CK>,

zeX zeX

where K € 2% is a compact set in the space (X, 7(X)).

2.1. Example

We give as much as possible simple example of the use of Theorem 3. Consider the
closed interval [0, 1] as a compact metric space X with the natural metric p(z,y) := |z —y|.
Choose and fix an infinite disjoint sequence ([a;, b;])n of closed intervals in X of nonzero
length: a; < by, [a;, b)) N [a;,b;] = @, 4,5 € N, i # j. Define the mapping G : X — 2%,
setting

argmax, e, [y — |, @ € [a,b],
9, X ¢ {CL, b]

Define the mapping F : X + 2% as follows: the graph of the mapping F is the closure in
R? of the graph of the mapping G. Note that the values of mapping F are nonconvex or
empty for some elements x € X.

It is easy to see that mapping F' satisfies conditions of Theorem 3: because of the
disjointness of intervals [a;, b;], their lengths tend to zero as ¢ — oo and, hence, for any
d > 0, the inequality d(a;, F'(a;)) < ¢ holds for a sufficiently large i. Consequently, by
Theorem 3, the mapping F' has a fixed point. One can verify that all partial limits of the
sequence (a;)y are fixed points. Certainly, such limits exist in view of the compactness
of X.

In connection with the considered example, we also note that

— the mapping F' is not k-contractive (it suffices to consider the passage of the
argument through the center of any interval [a;, b;]), and, therefore, the Nadler theorem [8]
is not applicable;

— the mapping F' is not a-covering, since is not surjective, and, hence, the theorem
on coincidence points [9] is not applicable;

— the values of mapping I’ are nonconvex and may take the value &; therefore, the
Kakutani theorem [1] is not applicable.

G(x) = U G[ai,bi]<x)? Ghi’] (‘T) = {

i€EN

3. Applications to Equilibrium Theorems

Using the known method connecting the equilibrium positions with fixed points of
multivalued mappings (see Lemmas 3 and 4), we can obtain new versions of equilibrium
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theorems from the above theorems on fixed points. The very conditions describing the set
of equilibriums are rather formal. However, their particular case, a property of Cournot
approximations, may be of interest for applications.

1. From Theorem 2, we can obtain one more theorem on a criterion of the equality
of the minimax and maximin values in conditions similar to the conditions of the Fan
theorem [7].

Let U and V be (topological) spaces of strategies of two players, and let the standard
topology of the product and an outcome function ¢ : U x V — R with scalar values be
given on the product X :=U x V. The player choosing strategies u € U tends to minimize
the outcome of the game, and the player choosing strategies v € V tends to increase the
outcome. Define S(p) € 2Y x 2V as the set of saddle points of function ¢, i.e., as the set
of pairs (u.,v,) € U x V satisfying the conditions ¢(u.,v) < ¢(u,v,) Y(u,v) € U x V.,
Consider the multivalued mapping X 3 (u,v) — F,(u,v) € 2% of the form

F,(u,v) :==argmin p(u',v) x argmax ¢(u,v’), (u,v) € X. (13)

u'eU v eV

Theorem 4. Let U and V be compact Hausdorff spaces. Let, for any v € V, the function
o(-,v) : U R be lower semicontinuous on U, and let, for any v € U, the function
o(u, ) : V= R be upper semicontinuous on V. Then, for the set S(p) of saddle points of
the function @, the following equalities hold:

S(p) = Fix(F,) = m U FW(OL) = m U Fso(OL>-

(0.)1€05(X) L1 (0.)1€04(X) €1

In particular, the equality
i = mi 14
vy ) = g el ) (14)

holds if and only if for an arbitrary covering (O,)r € Og(X), there exists a set O, © € 1,
containing two successive Cournot approzimations x,x' € O;, ¥’ € F,(x).

2. Passing to a more general case of the game, we obtain one more version of the
theorem on the existence of Nash equilibrium. Let (X,J) be a game with n players
in the normal form: X:=X; x ... x X,, and J:=(Jy,...J,). Here, J; is the payoff
function of the ith player: J; : X — R, ¢ € 1l.n, and in the case where X, are
topological spaces, we assume that the standard topology of the product acts on X. Define
(Y, x—i) =(T1, . i1, Yy Tit1y -5 Tp), Y € Xy, @ = (21,...,2,) € X. Denote by N(J)
the set of elements z* € X for which the Nash equilibrium is attained, i.e., for which the
following conditions are satisfied:

By analogy with (13), introduce the multivalued mapping X 3 z — F(x y(z) € 2%:

Fix,p(z) :=argmax Ji(y1, £-1) X ... x argmax Jy, (Yn, T_p), r e X.
y1€X1 Yyn€Xn

Theorem 5. Let X;, ¢ € 1..n, be compact Hausdorff spaces, and let, for all x € X and
i € 1.n, the function J;(-,x_;) : X; — R be upper semicontinuous on X;. Then, for the
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set N(J) of Nash equilibriums, we have

N(J) =Fix(Fx) = [ UFxnO)= [V JFxn(0).

(0,)1€05(X) 1€l (0)1€05(X) €1

In particular, Nash equilibrium (15) is attained if and only if for an arbitrary covering
(0,); € Ow(X), there exists a set Oy € (0O,)r containing two successive Cournot
approxrimations:

(V(OJ] S OfC(X>>(HZ S ])(31‘,1’, S O;) x e F(X’J)(.r). (16)

Remark 3. In the case where the topology of the space X is metrizable, condition
(16) is naturally transformed into condition (11), taking the form (V6 > 0)(3zs € X)
d(zs, Fix.(s5)) < 0.

Remark 4. Note that Theorem 5, as well as Theorem 4 and the Fan theorem [7], has
the character of a criterion.

4. Proofs
4.1. Proof of Theorem 1

The inclusion Fix(F) C (o,),cox) Uer F(0,) follows from (5). Indeed, by (5), for
any (O,); € O(X), we have the equalities Fix(F) = Fix(¥) N U,.; 0. = Fix(F) N
U,er F(0,) and, consequently, Fix(F) C U,er F(0,).

Let us show the converse inclusion. Since {Fix(F),{z} | x € X,z € Fix(F)} € O(X),
the belonging of Z to the right—hand side of equality (7) yields, in particular, the inclusion
T € F(Fix(F)) UU,ex\pix(r) £'({2}) which, in view of (1) and the equalities F'({z}) = @
for z € X \ Fix(F), implies the inclusions Z € F(Fix(F)) C Fix(F).

4.2. Proof of Theorem 2 and Corollary 1

By virtue of Theorem 1 and the inclusions Oy, (X), O (X) C O(X), for the proof of
the assertion, it suffices to establish that

Fix(F)> [ JF(), (17)

(0.)1€0¢6(X) el
Fix(F)> (] (JF(). (18)
(0.)1€0x(X) €1

1. Justify inclusion (17). Let = belong to the right-hand side of (17). For an arbitrary
local base of the topology (O4(Z))s of the compact set X at the point T, we construct a
family of coverings (Oy,)r., s € S, from Og(X) such that, for any s € S, we have

Ty € I, - O,(7) = O, )&(Ve € I\{1s} T & Os,). (19)

Fix an arbitrary s € S and, using the Hausdorff property, for every element y € X \ O(Z),
choose disjoint open neighborhoods Oy, and O,z of the elements y and z. The family

{08(57)>Osy |y € X\ Os(7)} (20)
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is an open covering of X. For the chosen s, we take a finite subcovering of covering (20)
as the covering (Oy,);,. By construction, this covering has all the above properties.

Relations (4) and (19) along with the assumption that Z belongs to the right-hand
side of (8) imply that the inclusions

NS ULGIS F(OSL) \ Utgz O, C ULGIS ( Sb) \ U‘ng ( ) - F(Os(j» -
= (UyEOs(i) F(y)) NOs(7)

hold for all s € S.

Let us show that € Fix(F'). Assume the contrary: = ¢ F(Z). The closedness of the
graph of F yields the closedness of the set F'(z) C X. This, in view of the fact that X is a
compact Hausdorff space, implies the existence of open neighborhoods O'(z) and O'(F(z))
of the point & and of the closed set F'(Z) such that

0'(z)(0'(F(z)) = 2. (22)

Since the graph of mapping F'is closed and X is a compact Hausdorff space, the mapping F’
is upper semicontinuous (see [10, Sect. 43, [, Theorem 4] and [11, Theorem 1.2.32]), i.e., for
the neighborhood O'(F(z)), there exists a neighborhood O”(z) such that, for all y € O”( )

we have

(21)

Fy) c O'(F(x)). (23)
It follows from the definition of the family (Os(Z))ses that the inclusion
Os(z) Cc O'(x) N O"(z) (24)

holds for some 5 € S. Relations (22), (23), and (24) yield the inclusions

(UF)ﬂO (UF)ﬂO )CO(F(z)(0(x) =2

y€O05(Z) yeOo"(

which lead to the contradiction with (21) for s = s.
2. To justify inclusion (18), we prove two auxiliary assertions.

Lemma 1. Let X be a compact Hausdorff space. Then, for any element x € X and for any
neighborhood O € 7(X), © € O, there exist a closed set B and a neighborhood O’ € 7(X)
such that v € O' C B C O.

Proof. Let x € O € 7(X). Since the set X \ O is closed and does not contain x, by virtue of
the fact that X is a compact Hausdorff space, there exist O, O” € 7(X) such that x € O’,
X\OCO" andONO"=2

Then, for the closed set B:=X \ O” and the neighborhood O’, we have the required
relations: x € O’ C B C O.

([
Lemma 2. Let X be a compact Hausdorff space. Let x € X, O € 7(X), and a closed set
B € X be such that x € O C B. Then there exists a covering (O,); € Og(X) such that,
for some v € I, we have

B=0, zeX\ [J o. (25)
eI\{7}
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Proof. Let z € X and O, B € 2 satisfy the conditions of the lemma. Using the Hausdorff
property of X, for any point y € X \ {z}, construct neighborhoods O,,, O,, € 7(X) such
that z € O,y C O, y € Oy, and O,y N Oy, = D.

Using the compactness of X, we select a finite subcovering {Oyy,, Oy, | i € I,j € J}
from the open covering {Oyy, Oy, | y € X \ {z}} and consider the finite family of closed
sets {B, B; | j € J}, where B; denotes the closure of the set O, ,. Since O,,, C O C B,

i € I, this family is a covering of X. By construction, (Uje] Oy],x> N (Nic; Ouy) = 2.

Hence, taking into account that € (;c; Oy, we obtain z € X\, ; B;. We have verified
the last of the required properties of the covering {B, B; | j € J}.

O

3. Let us prove inclusion (18) by contradiction: let « belong to the right-hand side of
(18) and = ¢ F(x). Since the graph of F' is closed, the set F(z) is closed. Therefore, in
view of the fact that X is a compact Hausdorff space, there are disjoint neighborhoods
O'(x),0'(F(z)) € 7(X) of the point 2 and of the set F(z): O'(x) N O'(F(x)) = @. The
closedness of the graph of F' and the conditions on X imply that the mapping F' is upper
semicontinuous with respect to inclusion (see |10, Sect. 43, I, Theorem 4| and [11, Theorem
1.2.32]), i.e., there exists a neighborhood O"(z) € 7(X) such that U,conm F(y) C
O'(F(x)).

Let, by Lemma 1, an open neighborhood O and a closed set B such that z € O C B C
O'(z) N O"(z) be found. Let, by Lemma 2, a covering (O,); € O (X) satisfy conditions
(25). Then these conditions, the assumption =z € m(O,,)IeOfC(X) U,er F(OL), and property
(4) imply that

xG(UF(OQ)\ U o C(UF(OJ)\ U F(0) | cF(O)=F(B).

el LeI\{T} el LeI\{T}

On the other hand, it follows from the construction of B that

F(B):=B() (U F@)) coO@| U Fly) | coO@ (O F@)=e.

yeB yeO' (x)

We obtain the contradiction: x € &. The first part of the theorem is proved.
4. For the proof of the second part of the theorem, first we will establish that the sets

UE©). (01 € Or(X), (26)

el

are closed and centered if condition (9) is satisfied. This property along with the
compactness of the set X will imply the nonemptiness of the right-hand side of (18).

The closedness of these sets follows from the definitions of the family O.(X) and the
mapping F and from the closedness of the mapping F (see [11, Theorem 1.2.33|): for any
closed set Y C X, the set Uyey F'(y) is closed.

Let us verify that sets (26) are centered. Let (O, );, € Ow(X), k € 1.n, n € N. We
define (O;)7:={01, N...N Oy, | tr € I,k € 1.n}. In other words, (O;)5 is the greatest
lower bound of the finite set of covering (Oy,), with respect to the inscribing relation. By
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construction, (O;); € Og(X) and is inscribed into all the families (Oy,)r,: (O:); E (Og,)1,.,
k € 1..n. Therefore (see (6)), for any k € 1..n, the inclusion (J,; F(O;) U.er, F(Og)
holds. Hence, in view of the condition (J,.; F(0,) # @, we obtain & # User F(O;) C
Meer.n Uier, F(O,). Thus, subsets (26) of the compact space X are closed and centered.

Consequently, Fix(F) = (0,),c0,.x) Uies F(O.) # 2.

Conversely, let Z € Fix(F'). Then, for any covering (O,); € O(X), there exists a set
O; € (0,)r such that = € O;. Hence, by definition, Z € F(Oz). Therefore, 15(0;) + .

For the justification of Corollary 1, we note that the condition of closedness of the
mapping graph is equivalent to the condition of function continuity.

4.3. Proof of Theorem 3 and Corollary 2

In this subsection, for arbitrary 6 > 0, x € X, and Y € 2%, we define
Os(x):={y € X | p(z,y) <3}, Os(Y):={y € X |d(y,Y) < d}.

1. By virtue of Theorem 1 and the inclusions (Oy,);, C O(X), k € N, for the proof of
the first part, it suffices to establish that Fix(F) D ey U,er, F(Ok.)-

Assume that & € Ny U,es F/(Or.). Then there is a sequence

Lel},

Ok = Ok%; S F(Ok) C Ok, dlam(Ok) < 5k7 k € N. (27)

Let us show that z € Fix(F). Suppose the contrary: & ¢ F(z). Define £:=d(z, F(z))/3.
Since the graph of F is closed, the set F(Z) is closed. Therefore, £ > 0. Choose § € (0, ]
such that the relations F(z) C Oz(F(z)) hold for all x € O5(Z). We can make this, since
the closedness of the graph of F' yields the upper semicontinuity of the mapping F' with
respect to inclusion (see [10, Sect. 43,1, Theorem 4| and |11, Theorem 1.2.32]). At the same

time, due to the choice of the values § and &, we have O35(Z) () O:(F(Z)) = @. From these
constructions, we obtain

PO =0 | U Fe) | co@mNoFr@y =a. )

xEOg(:f)

In view of (10), choose k¥ € N such that the inclusion Oy C Og(Z) holds. From these
inclusions and relations (28) and (2), we obtain F(O3) C F(O3(z)) = @, which contradicts
(27) for k = k. The first part of the theorem is proved.

2. Let us consider the second part of the assertion. The necessity of condition (12)
follows immediately. Now, we verify the sufficiency of this condition. Using the compactness
of X, construct a sequence (Oy,)r,, k € N, of inscribed open coverings of the form:

(Oks1)1y € (Or)1s (On)r € OF(X), ke

Then the sequence of closed finite coverings (Okb)[k, k € N, where O, is the closure of the
set Oy, in X, satisfies conditions (10):

(Ors1)1ens © Or), (Ow)r, € 0% (X),  keN.
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In this case, by (6), the sequence of the closed sets ¢, F(OM) is monotonically
decreasing by inclusion. Using condition (12), we verify the nonemptiness of the terms
of this sequence and, hence, the nonemptiness of their intersection (by a part of the first
theorem, this is the set of fixed points of F).

For any k € N, take J; equal to the half of the Lebesgue number of the covering (O, )1, -
Then condition (12) implies the existence of a pair z, yx € X such that p(z, yr) < 0, and
yr € F(zr). Moreover, due to the choice of J, there exists an element Oy; of the covering
(Or)1, such that xy,yr € Oy C Oy From the last two relations, we obtain F(Ok;) + .
Consequently, ;. F(Okb) #+ .

For the justification of Corollary 2, note that the condition of closedness of the mapping
graph is equivalent to the condition of function continuity.

4.4. Proof of Theorem 4
Let us prove the following auxiliary assertion.

Lemma 3. The set of fized points of mapping F,, i.e., the set of pairs (u.,v.) € U XV
satisfying the condition

(Ui, U4) € Fip(ts, vs), (29)

coincides with the set of saddle points of the function ¢(-), i.e., with the set of pairs
(us,vs) € U X V satisfying the inequalities

O, v) < o(u, vy) V(u,v) € Ux V. (30)

Proof. Assume that inclusion (29) holds. It means that the following inequalities are valid:

O(uy,ve) < inf (v, v,) < (u,v.)  Yue U, (31)
u' €U

(s, v) < sup p(uy, V') < ©(ts, v) Yv e V. (32)
v'EV

Since the left-hand side of the inequality in (31) equals to the right-hand side of the
inequality in (32), we have relations (30) which mean that the pair (u.,v.) is a saddle
point. To complete the proof, note that the above arguments are invertible.

O

The properties of the function ¢(-) and of the spaces U and V required in the condition
of Theorem 4 imply that the graph of the mapping F,, : U x V — 2Y*V is closed and
U x V is a compact Hausdorff space with the topology of the product of the topological
spaces U and V. Thus, conditions of Theorem 2 are satisfied for the mapping F,.

Let the mapping F,, satisfy condition (9). Then it follows from Theorem 2 and Lemma 3
that the set of saddle points for the function ¢ (30) is nonempty. Hence, equality (14) holds.

Conversely, let equality (14) hold. Then, by virtue of the conditions on the function ¢(+)
and on the spaces U and V, the set argmin, .y max,ev ¢(u, v) X argmax, .y min,cy @(u, v)
is nonempty and coincides with the set of saddle points of the mapping F,,. In this case,
Lemma 3 and Theorem 2 imply that condition (9) holds.
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4.5. Scheme of the Proof of Theorem 5

The lemma given below follows from the definition of mapping F'.

Lemma 4. N(J) = Fix(F(x ).

The properties of functions J; and spaces X;, ¢ € 1..n, required in the condition of

Theorem 5 imply that the graph of mapping Fix . : X — 2% ig closed and X is a
compact Hausdorff space. Thus, conditions of Theorem 2 are satisfied for the space X and
the mapping Fx 7).

After this remark, it is easy to see that the first part of Theorem 5 follows from

Lemma 4 and Theorem 2. The equivalence of conditions (16) and (9) follows from the
definition of function F{x, ;) by mapping F(x ).
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YAK 517.952+517.977 DOI: 10.14529/mmp160102

K TEOPUU HEIIOJIBUXKHBIX TOYEK U EE
MPUJIOXKEHUN K MOJIEJISIM PABHOBECUN

. A. Cepxos

Jljis 3ajaHHbIX MHOXKECTBA U (BOODIIE TOBOPS, MHOIO3HAYHOIO) OTOOPAYKEHUS TOrO
MHOXKECTBA B Ce0si PACCMATPUBAETCSH BOIPOC O CYIECTBOBAHUN HEIOIBUZKHBIX TOUYEK TAKO-
ro 0TOOpaXKEHWA, TO €CTh TOYEK, cojepkarmuxcd B cBoeM obpaze. OTHOCHTETHHO 3a/aH-
HBIX MHOXKECTBA, M OTOODPAYKEHWS MPEMTOJIATAETCsa, YTO MHOYKECTBO HE TyCTO, & OTOOparke-
HUE OIPEJIE/IEHO Ha BCEM MHOMKECTBE. B 9THX YCIOBUAX JA€TCs OmucaHue (Mepeorpemese-
HUE) MHOYKECTBA HEMOJABUKHBIX TOUEK B TEOPETUKO—MHOKECTBEHHBIX TEPMUHAX. DTO 0bIIee
IpeJicTaBlieHne KOHKPETU3UPYETCA /171 C/IydaeB, KOrJa MHOXKeCTBO Ha/JIeJIeHO TOH U MHOH
TOMOJIOTUIECKOH CTPYKTYPOIi, & OTOOparkKeHwe UMeeT JTOMOJTHUTEIbHBIE CBOWCTBA, C HEil CBs-
3anHble. B yacTHOCTH, PE/IJIO2KEHBI HEODXOIUMBIE U JJOCTATOYHBIE YCJIOBUS CYIIECTBOBAHUS
HEMONBUKHBIX TOYEK s CIydas OTOOpaXKeHWil ¢ 3aMKHYTBHIM TDAQUKOM KaK B XayCIOp-
OBBIX TOMOJOTHIECKUX MPOCTPAHCTBAX, TAK U B METPUIECKUX IMpocTpancrBax. [Ipueenen
npuMep, UTIOCTPUAPYIONTUN BO3MOXKHOCTH U IIPEAMYIIECTBA, MPEIIaraeMoro moaxoaa. Tak-
2Ke JJaHbl HeIIOCPEJICTBeHHbIE IIPUJIOYKEHNS ITUX Pe3yIbTaTOB K IIOMCKY PABHOBECHBIX COCTO-
AHUN B UI'DOBBIX 33/1a4aX: OLUCAHBI MHOKECTBA Ce/JIOBBIX TO4eK (anasuor reopembl Pana) B
3ajave 0 MUHUMAaKCe W TOYeK paBHOBecus 1o Hamry B urpe o MHOTUMU YYACTHUKAMU JJIsT
CAYYaeB, KOr/Ia MHOXKECTBA CTPATEIW HIPOKOB SIBJISIOTCS XayCAOP(MOBBIMU WU METPU3Ye-
MBIMHU TOIIOJIOTMYECKUMHA IIPOCTPAHCTBAMU.

Karouesnie cao6a: mnoz03nanoe omobpasjicerue; HenodGuicHas MmouKa; Ce0a08a mos-

xa; pashosecue no Hawy.
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