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We consider a mathematical model which represents the extraction process of a target
component from the polydispersed porous material. The suggested model is demonstrated
by the example of a �at solid material with bidispersed pores of di�erent size in the form of
a system of channels of macropores with micropores facing their walls. The macropores and
the micropores in the material have homogeneous size. We model a case when micropores
of the solid material (dispersed medium) are initially �lled with an oil (dispersion phase),
which is our target component. The macropores are �lled in with a pure solvent. In the
process of extraction the oil di�uses from the micropore to the macropore, and then from
the micropores to the external solvent volume, wherein the ratio of concentrations in the
macropore and the micropore is taken in accordance with the linear law of adsorption. The
well-posedness of the formulated mathematical model has been justi�ed.
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Introduction

The processes of extraction from the solid polydisperse porous materials are widely
distributed in the food, chemical, pharmaceutical and medical industries. Herewith the
increased requirements are presented to the quality of the extract.

Occurring during the extraction the mass transfer processes, in general, are nonlinear
and must be described by the appropriate mechanical-mathematical apparatus. However,
considering the porosity of the structure of the particles of solid polydisperse porous
materials we can greatly simplify the mathematical model of the extraction process. Thus,
the surface area of contact of the phases between the particles of solid polydisperse porous
materials and extractant depending on the grinding of raw materials will be greater, the
smaller the size of the particles is. But the excessive grinding leads to the increasing of
their total surface as well as the increasing of the likelihood of their aggregation.

At the same time, now the hydrodynamic methods of intensi�cation (vortex extraction,
mode of the vacuum boiling of the extractant, mechanical vibration of suspension,
imposition of ultrasound on the suspension, pressure pulsation, spinning porous material),
the e�ects of which can not be explained only by the theses of the di�usion theory, are
widely spread.

The results of theoretical and experimental studies have shown that for many types
of solid polydisperse porous materials (such as hawthorn, licorice, �owers Helichrysum,
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grass hypericum, valerian, anise seeds, fennel and others) the application of the model of
di�usion-convection mechanism of the extraction leads to the fairly accurate results.

Thus, for the construction of new technologies of extraction from the solid polydisperse
porous materials it is necessary to solve the problem of recovering of the parameters
characterizing the properties of a material or process required to obtain the �nal state in
a �nite amount of time. Such mathematical problems are called the inverse problems of
the theory of boundary value problems for partial di�erential equations.

The problems that imply the determination of coe�cients or the right-hand side of
a di�erential equation (together with its solution) are commonly referred to as inverse
problems of mathematical physics. In this paper we consider one family of problems
implying the determination of the temperature and density of heat sources from given
values of the initial and �nal temperature. The mathematical statement of such problems
leads to the inverse problem for the heat equation, where it is required to �nd not only
a solution of the problem, but also its right-hand side that depends only on a spatial
variable.

The solvability of various inverse problems for parabolic equations was studied in
papers of Yu.E. Anikonov and Yu.Ya. Belov, B.A. Bubnov, A.I. Prilepko and A.B. Kostin,
V.N. Monakhov, A.I. Kozhanov, K.B. Sabitov and many others. We note [1�11] from
recent papers close to the theme of our article.

Unlike the preceding works, we study the inverse problem for a heat equation subject
to boundary conditions with respect to a spatial variable under which the system of
eigenfunctions of the corresponding spectral problem for an ordinary di�erential operator
does not form a basis.

The papers [12, 13] are most close to the subject of this one. However the distinctive
feature of the present paper is that an unknown right-hand side is simultaneously present
both in the equation and in conditions of the initial and �nal rede�nition in the researched
inverse problems.

In papers [14�16] S.G. Pyatkov considered some mathematical models arising in
�ltration theory, well-posedness questions of inverse problems for mathematical models
and convection-di�usion processes of heat and mass transfer.

1. Reduction to a Mathematical Problem

For simplicity we consider only a model equation of one-dimensional extraction process
of a target component from the solid polydisperse porous materials in one separately taken
macropore:

Ψt(x, t)−Ψxx(x, t) = f(x), (1)

where Ψ(x, t) is a dimensionless concentration of the target component in macropores at
x at time point t. Here f(x) is an in�uence of outer source. This in�uence is generated
by the dimensionless concentration of the target component in macropores. The in�uence
depends only on distance to boundary of the macropore, that is only on position of the
point x in a liquid phase, and does not depend on time t.

The length of the macropore is taken equal to one in dimensionless parameters.
Therefore the problem is considered in the domain Ω = {(x, t) : 0 < x < 1, 0 < t < T}.
Here t = 0 is an initial time point and t = T is a �nal one.
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It is natural to assume that the value of concentration on the farthest boundary of the
macropore equals to zero:

Ψ(1, t) = 0, 0 ≤ t ≤ T. (2)

For many forms of solid polydisperse porous materials, the volume of di�usion (of the
target component from micropore into macropore) at the near end at every time point t is
proportional to the change speed of the average value of quantity of the target component
in the macropores. Then

αΨ(0, t) =
d

dt

∫ 1

0

Ψ(ξ, t)dξ, 0 ≤ t ≤ T, (3)

where the proportional coe�cient α is a positive constant.
Our goal is to �nd functions of in�uence of the outer source f(x) by means of some

additional information. The knowledge of f(x) allows in future to calculate the necessary
concentration of the target component in the micropores.

As the additional information we take values of initial and �nal conditions of the
concentration of the target component in the macropores:

Ψ(x, 0) = φ(x), Ψ(x, T ) = ψ(x), 0 ≤ x ≤ 1. (4)

Thus the investigated process is reduced to the mathematical problem: Find the right-
hand side f(x) of the di�usion equation (1), and its solution Ψ(x, t) subject to the boundary
(2), (3) and the initial and �nal conditions (4).

The boundary condition (3) is signi�cantly nonlocal. The integral along inner lines of
the domain is present in this condition. Using the idea of A.A. Samarskii, we transform
this condition. Taking into account equation (1) from (3), we get

αΨ(0, t) =

∫ 1

0

(
Ψξξ(ξ, t) + f(ξ)

)
(ξ, t)dξ, 0 ≤ t ≤ T.

Hence

αΨ(0, t) =

∫ 1

0

f(ξ)dξ +
[
Ψx(1, t)−Ψx(0, t)

]
, 0 ≤ t ≤ T.

Introduce the notations

u(x, t) = Ψ(x, t) +
x− 1

α

∫ 1

0

f(ξ)dξ. (5)

Then in terms of a new function u(x, t), we get the following inverse problem:
In the domain Ω = {(x, t) : 0 < x < 1, 0 < t < T} �nd the right-hand side f(x) of

the di�usion equation
ut(x, t)− uxx(x, t) = f(x) (6)

and its solution u(x, t) that satis�es the boundary

u(1, t) = 0, ux(0, t)− ux(1, t) + αu(0, t) = 0, 0 ≤ t ≤ T, (7)

and the initial and �nal conditions (0 ≤ x ≤ 1):

u(x, 0) = φ(x) +
x− 1

α

∫ 1

0

f(ξ)dξ, u(x, T ) = ψ(x) +
x− 1

α

∫ 1

0

f(ξ)dξ. (8)
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Thus the main inverse problem (1) � (4) with the integral condition (4) is reduced to
the nonlocal boundary value problem (6) � (8). This problem (6) � (8) has two speci�cities:

� �rstly, the boundary conditions (7) are regular but not strengthened regular. It leads
to the fact that the system of eigenfunctions (and associated functions) of corresponding
spectral problem for an ordinary di�erential operator, arising in the method of variables
separation, can not form even a unconditional basis in L2(0, 1). This fact can make
impossible to use the Fourier method of variables separation.

� secondly, unknown function f(x) is included both in the right-hand side of equation
(6) and in the conditions of initial and �nal rede�nitions (8). This fact complicates the
problem relatively earlier investigated variants.

The present paper is devoted to the overcoming of the mentioned speci�cities.
Therefore, in the future, we consider the problem with general boundary conditions on
the space variable.

2. Inverse Problems with General Boundary Conditions
on the Spatial Variable

In contrast to the previous articles, we study inverse problems for the heat equation
with general boundary conditions on the spatial variable which are regular but not strongly
regular under which the system of eigenfunctions of the corresponding spectral problem
for an ordinary di�erential operator does not form a basis.

In the domain Ω = {(x, t), 0 < x < 1, 0 < t < T} we consider the following problem:
Find the right-hand side f(x) of the di�usion equation

ut(x, t)− uxx(x, t) = f(x), (9)

and its solution u(x, t) thar satis�es the initial and �nal

u(x, 0) = φ(x), u(x, T ) = ψ(x), 0 ≤ x ≤ 1 (10)

and the boundary conditions{
a1ux(0, t) + b1ux(1, t) + a0u(0, t) + b0u(1, t) = 0,
c1ux(0, t) + d1ux(1, t) + c0u(0, t) + d0u(1, t) = 0.

(11)

The parameters ak, bk, ck, dk, k = 0, 1 are arbitrary numbers, while φ(x) and ψ(x) are
given functions.

The use of the Fourier method for solving of problem (9) � (11) leads to the spectral
problem for the operator l given by the di�erential expression

l(y) = −y′′(x), 0 < x < 1

and general boundary conditions{
a1y

′(0) + b1y
′(1) + a0y(0) + b0y(1) = 0,

c1y
′(0) + d1y

′(1) + c0y(0) + d0y(1) = 0.
(12)

It is known that general boundary conditions can be divided into three classes:

• strengthened regular conditions;
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• regular but not strengthened regular conditions;

• irregular conditions.

The general boundary conditions (12) are called regular if one of the following three
conditions:

i. a1d1 − b1c1 ̸= 0;
ii. a1d1 − b1c1 = 0, |a1|+ |b1| > 0, a1d0 + b1c0 ̸= 0;
iii. a1 = b1 = c1 = d1 = 0, a0d0 − b0c0 ̸= 0

is satis�ed.
Regular boundary conditions are strengthened regular in the �rst and the third cases,

while in the second case the additional condition

a1c0 + b1d0 ̸= ±
[
a1d0 + b1c0

]
is required.

If boundary conditions are strengthened regular then the system of root functions
forms a Riesz basis in L2(a, b) [17�19].

3. A Case of Sturm-Type Boundary Conditions

A particular case of strongly regular boundary conditions is Sturm-type conditions:
b0 = b1 = c0 = c1 = 0: {

a1ux(0, t) + a0u(0, t) = 0,
d1ux(1, t) + d0u(1, t) = 0.

It is known that the eigenvalues of these problems are real and simple, and the system
of their eigenfunctions constitutes an orthonormal basis for the L2(0, 1) space.

Denote by λk the eigenvalues of the operator l enumerated in the increasing order
of their absolute values, and denote by yk(x), k = 1, 2, ... the associated normalized
eigenfunctions.

Thus, we can represent the solution u(x, t), f(x) of (9) � (11) as the series:

u(x, t) =
∞∑
k=1

uk(t)yk(x), f(x) =
∞∑
k=1

fkyk(x). (13)

Inserting (13) into (9) and (10), we obtain the problems

u′k(t) + λkuk(t) = fk, uk(0) = φk, uk(T ) = ψk, (14)

for �nding of the unknown functions uk(t) and coe�cients fk; where φk, ψk are the Fourier
coe�cients of φ(x) and ψ(x) with respect to the system

{
yk(x)

}
: φk =

(
φ(x), yk(x)

)
, ψk =(

ψ(x), yk(x)
)
.

A solution of problem (14) exists, is unique and can be written explicitly as

uk(t) = e−λktφk +
1− e−λkt

1− e−λkT
(
ψk − e−λkTφk

)
, (15)

fk =
λk

1− e−λkT
(
ψk − e−λkTφk

)
. (16)
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We should note that (15) and (16) remain valid in the case λ0 = 0. Then, passing to
the limit as λ0 → 0, from (15) and (16), we obtain u0(t) = φ0 +

ψ0−φ0

T
t and f0 = ψ0−φ0

T
.

Thus, we will not treat this particular case separately.
Substituting (15) and (16) into (13), we arrive at a formal solution of the problem.

In order to complete our study, it is necessary, as in the Fourier method, to justify the
smoothness of the resulting formal solutions and the convergence of all appearing series.

Let us state the main result of this section.

Theorem 1. Suppose that b0 = b1 = c0 = c1 = 0, i.e., that the boundary conditions (12)
are Sturm-type conditions. If φ(x), ψ(x) ∈ W 2

2 (0, 1) and the functions φ(x), ψ(x) satisfy the
boundary conditions (12), then there exists a unique generalized solution u(x, t) ∈ W 2,1

2 (Ω),
f(x) ∈ L2(0, 1) of problem (9) � (11).

Proof. Considering that limk→∞ λk = +∞, using (15) and (16) it is not di�cult to obtain
the estimates∣∣uk(t)∣∣ ≤ C

(∣∣φk∣∣+ ∣∣ψk∣∣) , ∣∣u′k(t)∣∣ ≤ C
(∣∣φk∣∣+ ∣∣ψk∣∣) ∣∣λk∣∣, ∣∣fk∣∣ ≤ C

(∣∣φk∣∣+ ∣∣ψk∣∣) ∣∣λk∣∣,
which are uniform in k.

Hence, the uniform and absolute convergence of series

φ′′(x) = −
∞∑
k=1

λkφkyk(x), ψ
′′(x) = −

∞∑
k=1

λkψkyk(x),

implies that (15) converges and the solution of (9) � (11) is of the following class: u(x, t) ∈
W 2,1

2 (Ω), f(x) ∈ L2(0, 1).
Since the system {yk(x)} constitutes an orthonormal basis for L2(0, 1), we can express

every solution of (9) � (11) in this class as a series (15). The uniqueness of the construction
of solutions (15) and (16) of (14) implies the uniqueness of solutions of (9) � (11). The
proof of the theorem is complete.

2

4. Regular but not Strengthened Regular Boundary Conditions

In [11] we described a class of regular but not strongly regular boundary conditions in
a convenient form.

Theorem 2. [11] If the boundary conditions (12) are regular but not strongly regular then
the boundary conditions (11) are reduced to{

a1ux(0, t) + b1ux(1, t) + a0u(0, t) + b0u(1, t) = 0,
c0u(0, t) + d0u(1, t) = 0,

∣∣a1∣∣+ ∣∣b1∣∣ > 0 (17)

of one of the following four types:

I. a1 + b1 = 0, c0 − d0 ̸= 0;
II. a1 − b1 = 0, c0 + d0 ̸= 0;
III. c0 − d0 = 0, a1 + b1 ̸= 0;
IV. c0 + d0 = 0, a1 − b1 ̸= 0.

(18)
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Theorem 3. [11] We can always equivalently reduce the solution of problem (9) � (11)
in the case of regular but not strongly regular conditions to a sequential of solving two
problems with strongly regular Sturm boundary conditions.

We understand a generalized solution of problem (9) � (11) as a pair of functions
u(x, t) ∈ W 2,1

2 (Ω) and f(x) ∈ L2(0, 1) that turn the problem into the identity almost
everywhere.

The following theorem is the main result of this paper.

Theorem 4. Consider regular but not strongly regular boundary conditions (17);
therefore, their coe�cients satisfy one of the conditions in (18). If φ(x), ψ(x) ∈ W 2

2 (0, 1)
and satisfy the boundary conditions (12) then there exists a unique generalized solution
u(x, t) ∈ W 2,1

2 (Ω), f(x) ∈ L2(0, 1) of problem (9) � (11).

Proof. Using Theorem's 1, 3, we can obtain the existence of a solution of (9) � (11), as well
as its uniqueness and smoothness, for the corresponding problems with strongly regular
Sturm-type boundary conditions. The presence of inhomogeneous boundary conditions on
the left boundary of the domain is not a substantial obstacle and can be bypassed in a
standard way.

2

Note that we solve problem (9) � (11) using this method independently whether the
corresponding spectral problem for the operator of multiple di�erentiation with boundary
conditions (12) enjoys the basis property for generalized eigenfunctions or not.

5. Solution of a Mathematical Inverse Problem (6) � (8)

To solve the inverse problem (6) � (8), we use the method developed by the authors in
[10, 11]. According to this method, the solution of problem (6) � (8) is equivalently reduced
to a sequential solution of two inverse problems for a di�usion equation with the other
boundary conditions. These conditions are already self-adjoint boundary conditions of the
Sturm-type. Therefore it is possible to use the Fourier method of variables separation for
each of these two problems.

It is necessary to note that in [12] the other method of solution is used. However, due
to the fact that the unknown function f(x) is included not only in equation (6) but in the
initial and �nal conditions (8), the usage of the method [12] proves impossible.

Denote the norm of the space L2(Ω) by ∥u(x, t)∥0. Let the symbol W 2,1
2 (Ω) stand

for the space of functions u(x, t) for which generalized derivatives uxx(x, t) exist almost
everywhere, ut(x, t) ∈ L2(Ω) and∥∥u(x, t)∥∥2

2,1
=

∥∥u(x, t)∥∥2

0
+
∥∥uxx(x, t)∥∥2

0
+
∥∥ut(x, t)∥∥2

0
.

We understand a generalized solution to problem (6) � (8) as a pair of functions
u(x, t) ∈ W 2,1

2 (Ω) and f(x) ∈ L2(0, 1) that turn the problem into the identity almost
everywhere. The main results of this paper are the following theorems:

Theorem 5. If functions φ(x) and ψ(x) belong to W 2
2 (0, 1) and satisfy the conditions

φ(1) = ψ(1) = 0, φ′(0)− φ′(1) + αφ(0) = ψ′(0)− ψ′(1) + αψ(0), (19)
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then problem (6) � (8) has a unique generalized solution

u(x, t) ∈ W 2,1
2 (Ω), f(x) ∈ L2(0, 1).

From this theorem taking into account (5), we obtain the main result for the inverse
problem (1) � (4):

Theorem 6. If functions φ(x) and ψ(x) belong to W 2
2 (0, 1) and satisfy (19), then problem

(1) � (4) has a unique generalized solution

Ψ(x, t) ∈ W 2,1
2 (Ω), f(x) ∈ L2(0, 1).

Conclusion

In this work, we have considered a family of problems simulating the determination of
target components and density of sources from given values of the initial and �nal states.
This model describes the process of extracting of the target component of polydisperse
porous materials. The mathematical statement of these problems leads to the inverse
problem for the di�usion equation, where it is required to �nd not only a solution of the
problem, but also its right-hand side that depends only on a spatial variable.

The present inverse problem has two speci�cities. Firstly, the system of eigenfunctions
of the multiple di�erentiation operator subject to boundary conditions of the initial
problem does not have the basis property. Secondly, the unknown right-hand side is
included both in the equation and in the conditions of initial and �nal rede�nitions.

We have proved the unique existence of the generalized solution to the mentioned
problem.
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ÎÁ ÎÄÍÎÉ ÌÀÒÅÌÀÒÈ×ÅÑÊÎÉ ÌÎÄÅËÈ ÏÐÎÖÅÑÑÀ
ÝÊÑÒÐÀÊÖÈÈ ÈÇ ÏÎÐÈÑÒÎÃÎ ÏÎËÈÄÈÑÏÅÐÑÍÎÃÎ
ÌÀÒÅÐÈÀËÀ

Í.Å. Åðæàíîâ, È. Îðàçîâ

Ðàññìàòðèâàåòñÿ ìàòåìàòè÷åñêàÿ ìîäåëü, ìîäåëèðóþùàÿ ïðîöåññ ýêñòðàêöèè öå-
ëåâîãî êîìïîíåíòà èç ïîðèñòîãî ïîëèäèñïåðñíîãî ìàòåðèàëà. Ïðåäëàãàåìàÿ ìîäåëü
äåìîíñòðèðóåòñÿ íà ïðèìåðå ïëîñêîãî òâåðäîãî ìàòåðèàëà ñ áèäèñïåðñíûìè ïîðàìè
ðàçíîãî ðàçìåðà, â âèäå ñèñòåìû êàíàëîâ ìàêðîïîð, íà ñòåíêè êîòîðûõ âûõîäÿò ìèêðî-
ïîðû. Ìàêðîïîðû è ìèêðîïîðû â ìàòåðèàëå èìåþò îäíîðîäíûé ðàçìåð. Ìîäåëèðóåòñÿ
ñëó÷àé, êîãäà ìèêðîïîðû òâåðäîãî ìàòåðèàëà (äèñïåðñèîííîé ñðåäû) ïåðâîíà÷àëü-
íî çàïîëíåíû ìàñëîì (äèñïåðñíàÿ ôàçà), ÿâëÿþùèìñÿ íàøåé öåëåâîé êîìïîíåíòîé.
À ìàêðîïîðû çàïîëíåíû ÷èñòûì ðàñòâîðèòåëåì. Â ïðîöåññå ýêñòðàêöèè ìàñëî äèô-
ôóíäèðóåò èç ìèêðîïîðû â ìàêðîïîðó, à çàòåì èç ìàêðîïîðû � âî âíåøíèé îáúåì
ðàñòâîðèòåëÿ, ïðè ýòîì ñîîòíîøåíèå êîíöåíòðàöèé â ìàêðîïîðå è ìèêðîïîðå ïðèíè-
ìàåòñÿ ïîä÷èíåííûì ëèíåéíîìó çàêîíó àäñîðáöèè. Îáîñíîâàíà êîððåêòíîñòü ñôîðìó-
ëèðîâàííîé ìàòåìàòè÷åñêîé ìîäåëè.

Êëþ÷åâûå ñëîâà: ïðîöåññ ýêñòðàêöèè; ïîëèäèñïåðñíûå ïîðèñòûå ìàòåðèàëû; öå-

ëåâàÿ êîìïîíåíòà; ïëîòíîñòü èñòî÷íèêà; îáðàòíàÿ çàäà÷à; óðàâíåíèå äèôôóçèè.
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