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ON A MODEL OF OSCILLATIONS OF A THIN FLAT PLATE
WITH A VARIETY OF MOUNTS ON OPPOSITE SIDES

U.A. Iskakowva, Institute of Mathematics and Mathematical Modelling, Almaty,
Kazakhstan, ulzada@list.ru

We consider a model case of stationary vibrations of a thin flat plate, one side of which
is embedded, the opposite side is free, and the sides are freely leaned. In mathematical
modeling there is a local boundary value problem for the biharmonic equation in a
rectangular domain. Boundary conditions are given on all boundary of the domain. We
show that the considered problem is self-adjoint. Herewith the problem is ill-posed. We
show that the stability of solution to the problem is disturbed. Necessary and sufficient
conditions of existence of the problem solution are found. Spaces of the ill-posedness of the
considered problem are constructed.

Keywords: oscillations; thin flat plate; biharmonic equation; boundary value problem;

ill-posed problem.

Introduction. The theory of vibrations of thin flat plates is well elaborated to the present
moment. Mathematical problems related to formulation and justification of well-posedness
of statement of problems for stationary and non-stationary models are investigated detailed
enough. Questions of optimal controlling of these vibrations have been studied. However,
the investigation of problems, in modelling of which ill-posed problems arise, is far from its
completeness [1]. And in this case one need to consider different variants of mathematical
models. One of the basic situations from the physical point of view are cases of plates with
constant bending stiffness or plates of optimal weight. It is well-known that the modelling
of stationary vibrations of such thin plates without application of additional loads leads
to problems for the homogeneous biharmonic equation [2].

Problems of modelling of thin plates vibrations with various conditions of fixation on
different sides (edges) of the plate are the most interesting cases. Frequently in practice
there arise problems of modelling of vibrations of plates, boundaries of which consist of
finite number of smooth arcs with part of them being clamped (embedded), and the rest
of the arcs being in free leaning. Such conditions are permissible and the problems arising
in their modelling are investigated rather detailed.

In the present paper we consider the mathematical model, which arises when one
of the sides of the flat plate is free. The mathematical modelling leads to the problem
for the homogeneous biharmonic equation with different boundary conditions on opposite
boundaries. This problem appears to be ill-posed.

The most known example of an ill-posed boundary value problem is the Cauchy
problem for the Laplace equation. In Q = {(z,¢) : 0 < z < 7,0 < t < T} consider
equation

Au = uy(z,t) + uge(x,t) =0, (x,t) € Q, (1)

with boundary conditions

Ulzm0 =0, Ulper =0, 0<t<T, (2)
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and initial conditions

ou

uli=o = ¢1(2), Eh:o:%(ﬂ?)’ 0<z<m. (3)
The classic Hadamard example showing [3] the instability of the solution
() = sin(kx) sinh(kt)

k?

to the Cauchy problem for the Laplace equation (1) with boundary conditions (2) and
initial conditions:

ul = Ou 1 sin(kzx),

=0 0 ot lt=0 k
with respect to small changes of initial data is well-known.

The prominent soviet mathematicians, academicians A.N. Tikhonov and
M.M. Lavrent’ev, their disciples and followers proved that the Cauchy problem for
the Laplace equation, and other ill-posed problems [4, 5| are conditionally well-posed.
Moreover they suggested the regularization of these ill-posed problems.

In [6, 7] they obtained a necessary and sufficient condition for well-posedness of
problem (1) — (3) in the space Ly(€2) using method of expansion with the help of the
eigenfunctions of the mixed Cauchy problem for the Laplace equation with deviating
argument. There was considered [8] a nonlocal boundary value problem for the biharmonic
equation in a disk.

One of ill-posed boundary value problems for elliptic equations is the case when the
part of the domain boundary is exempt from the boundary conditions. A part of the
boundary t = 7,0 < z < 7 is exempt from boundary conditions in the Cauchy problem
considered above.

In the present paper we consider a local problem for an elliptic equation of the fourth
order, ill-posedness of which is analogous to the ill-posedness of the Cauchy problem for
the Laplace equation. Herewith boundary conditions are given on all boundary of the
domain.

1. Statement of the Problem
Problem C. Find in D = {(z,y) : 0 < z < 7,0 < y < [} a solution to the biharmonic
equation

AT Uxmxx(xa y) + 2uzxyy<$7 y) + uyyyy(ma y) =0, (‘%.7 Z/) €D, (4)
satisfying boundary conditions in the first spatial variable z:
Uz=0 =0, Atz =0; ulper =0, Aulper =0; 0<y <1 (5)
and boundary conditions in the second spatial variable y:
ou
uly=0 = ¢1(x), a—y‘yzozw(ﬂﬁ)a O<z<m (6)
0Au
Auly—r = 1 (z), a—y‘y:l =(z), 0<z < (7)

Definition 1. The function u € C*(D)(C3(D) satisfying equation (4) and boundary
conditions (5) — (7) is called a classic solution to problem C.
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2. Instability of Solution. Similarly to the Hadamard example one can construct an
instability example of classic solution to problem C'. Indeed, by direct calculation it is easy
to obtain that the function

un(z, y) = sin(kz) {COSh(klth(ky) B tcosh (kkgl - y))}

is a solution to problem C' for biharmonic equation (4) with boundary conditions (5) and
with conditions

ou
u|y:0:07 8_y‘y:():07 OS-TSTF7
oA 2 .
Auly—; =0, 3—y‘y:l =z sinkr, 0<ux<m.

It is easy to see that the boundary data tend to zero for k — oo, but the solution
uk(x,y) does not tend to zero in any norm. Consequently, the solution to the problem is
instable. Therefore the considered problem C' is ill-posed.

3. Symmetry and positivity of an operator of the problem. Consider the problem
with homogeneous boundary conditions (6) — (7):

9,
uly=o = 0, a—Z|y:0 =0,0<zx<m; (6")
ON
&%ﬁza7imﬁzaogx§m (7')

Let L be an operator in Ly(D) being a closure of the operator given by the differential
expression

Lu = uzzzx(‘r7 y) + 2uzzyy(xa y) + uyyyy(x7 y), (1:7 y) €D
on a linear manifold of functions u € C*(D) () C3(D) satisfying boundary conditions (5),

(6, (7).

Show that the operator L is symmetric. Let u,v € D(L) be two arbitrary elements
from the domain of the operator L. For these elements there exist corresponding sequences
of smooth functions u,,,v, € C*(D) () C3(D) satisfying boundary conditions (5), (6'), (7')
such that

lim u, = u, lim Lu, = Lu; lim v, = v, lim Lv, = Lv,
n—o0 n—oo n—o0 n—oo

in LQ(D)
Then by direct calculation we obtain for all u,v € D(L)

(Lu,v) — (u, Lv) = lim { (L, vy) — (U, Lvy,) } = 0.
n—oo
Consequently the operator L is symmetric. In this sense the boundary value problem (4)
— (7) is self-adjoint.
Similarly, for all u € D(L) we obtain (Lu,u) = ||Aul|* > 0. Consequently the operator
L is positive.
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4. Construction of a Formal Solution of Problem (4) — (7). By wig(z) =
V2/msin(kx), k = 1,2, ... denote an orthonormal basis in Ly (0, 7). The solution to problem
(4) — (7) we represent in the form of an expansion into the orthogonal series

u(e.y) = 3 wil@)only). (®)

By considering that series (8) converges and allows a term by term differentiation (the
required number of times), we construct a formal solution to the problem. Substituting (8)
to equation (4) and to the boundary conditions (6), (7), for vx(y) we obtain the problems

o (y) — 2k () + Kon(y) =0, 0<y <L, (9)
ve(0) = o1k,  V,(0) = @, (10)
U;e/(l) - kzvk(l) = Y1k, Ugl(l) - kQUllg(l) = Yop. (11)

Here @, and v, are the Fourier coefficients of the expansion according to the orthonormal
basis {wg ()}, of the functions ¢;(x) and v;(x) respectively:

pi(z) = Z%kwk(@, Ui(r) = Zwikwk(z), vi=1,2.
k=1 k=1
Equation (9) has a general solution
v(y) = (Cit + Cy)e + (Cst + Cy)e™.

We satisfy this solution to the boundary conditions (10), (11). Then we get the system of
linear equations

Coy +Cy = o,

O, +kCy +C3 —kCy = o, (12)
2k€k101 —le_leg = wlka
Qk‘Qele'l +2]€2€_le3 = 1/12k.

A determinant of this system equals to
A = 16k".

Since A > 16, then system (12) has a unique solution. By the direct calculation we get

1 _,
C, = 72® kl{k% +1/)2},

1

1
@{ekl _ e—kl}¢1 _ %{ekl i e—kl}d)%

1
Co = ﬁ{]ﬁol + 902} +

1
Cs = —mekl{kwl - ¢2}7

1 1 _ 1 _
04 = ﬁ{k’@l - 4,02} - @{le —e kl}@bl + @{le +e kl}wg.
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Consequently the solution to problem (9) — (11) has the form

Y cosh (k(L—y)) v+

vi(y) = Y ginh (k(l — y))wl + 512

2k
! ! h(kl h(kl inh(k 13
P12+ o sinh( Wl——COS (kL) p sinh(ky). (13)
Substituting the found result into (8), we get the formal solution to problem (4) — (7).

5. A Generalized Solution of Problem (4) — (7). Consider problem (4) — (7) in sense of
a generalized solution. The most suitable notion for demonstrating conditions of stability
is the notion of a strong solution.

Definition 2. The function u € Ly(D) is called a strong solution to problem (4) - (7),
if there exists the sequence of the smooth functions u, € C*(D), such that u, — u takes
place in Lo(D) for n — oo and

Un(,0) = @1, (un)y(2,0) = @2, (Aun)(x,1) = P1 and ((Aun)y)(2,1) =2 (14)
in Lo(0, ).

As the required sequence u,,, we choose a sequence of partial sums of the Fourier series:

5y) = 3 wn(@)oey). (15)

If p; € Lo(0,7), ¢y € La(0,7), 4 = 1,2, then fulfillment of (14) is obvious. Consequently
the existence of the strong solution to problem (4) — (7) is equivalent to the convergence
of the sequence u, in Ly(D).

By virtue of the Parseval equality, the convergence of the sequence u, in Lo(D) is
equivalent to the convergence of the numerical series

Z vk (y ||L2 0,) : (16)

6. A Criterion of Existence of a Solution to Problem (4) — (7). The main result of
the paper is:

Theorem 1. Let @; € Lo(0,7), ¢; € Ly(0,7), i = 1,2. A strong solution to problem (4)
— (7) ewxists if the numerical series

1
E : 2kl
k=1
= 1
} : 4kl 2
/C_ ‘kwlk — ka‘ < 0 (18)
k=1
converge.
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Proof. Solution (13) is represented in the form

1 1
vuly) = e (5 + (ky + De™ ) (ki — ) + - (ko +2) +

8k3
1 —kl ky —ky 1 —ky
"‘@6 ((Qky —1)e™ +e >(7<¢1 + 1g) + By (ko1 — ). (19)
Taking into account that
1
[ + (2ky + 1)e™||” = %{e%l + AP 4+ KL+ 1) — (4K70 + 8kl + 5)6*2’“},

HekyHQ _ %{ezm . 1},

from (19) we obtain that conditions (17) and (18) are necessary and sufficient for fulfillment
of (16). -
Conclusion. In the paper we consider one model of stationary vibrations of a thin
flat plate, one side of which is embedded, the opposite side is free, and the sides are
freely leaned. The mathematical modelling leads to a local boundary value problem for
a biharmonic equation in a rectangular domain. Although boundary conditions in the
problem are given on the whole boundary of the domain and it is self-adjoint, it is shown
that the problem appears to be ill-posed. It is shown that the stability of the problem
solution is violated. Necessary and sufficient conditions for existence of a solution to
the investigated problem have been obtained. The spaces of the well-posedness of the
considered problem have been constructed.
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OB O/ITHOM MOJIEJIU KOJIEBAHUM TOHKOMN I1JIOCKON
IIJIACTUHBI C PA3JINYHBIMU 3AKPEIIJIEHUAMU
IIPOTUBOIIOJIOYXKHBIX CTOPOH

V. A. Hexkaxosa

PaccmarpuBaercss Momenb CTAIMOHAPHBIX KOJMEOaHWI TOHKOH IJIOCKO# ILIACTHHBI, y
KOTODOil OfHa CTOpPOHA 3ajesiaHa, MPOTHBOIOJOXKHAS CTOPOHA CBODOAHA, & 10 GOKOBBIM
cTopoHaM — cBOOOmHOe ommpanwue. [lpu MareMaTHuecKoM MOAETUPOBAHUM BO3HUKAET JIO-
KaTbHAsT KPaeBas 33/a4a i OUTaPMOHUYECKOTO YPABHEHUS B MPAMOYTOJBHONW O0JACTH.
Kpaepbie ycnoBus 3amaorca Ha Beeil rpanuie obsactr. ITokazamo, 9T0 paccMaTpruBaeMast
3a/1a43 OKA3bIBAETCH CAMOCOIPS2KEHHOM, 1 npu 3TOM HekoppekTHO#. Ilokazano, uro Hapy-
IAETCs yCTOWYNBOCTD perieHust 3a0a4un. HaliieHs! HeoOXOIUMbIE U TOCTATOYHBIE YCIOBUS
CYIIECTBOBAHUS peIeHus uccaeayemMoil 3amaqn. [locTpoeHbl MpocTpaHCTBa KOPPEKTHOCTH
paccMaTpuBaeMoOil 3a/1a49u.

Karouesnie caosa: K04e60HUA; MOHKGA NAOCKAH NAGCMUHKD; DULAPMOHUYECKOE YPaBHe-

HUE; Kpaeaas 3a0a4a; HEKOPPEKMHAR 3a00Mq.
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