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This article focuses on the application of wavelet theory to the problem of modelling
the processes of manufacturing the shells of �brous composite materials (CM). The basic
methods for preparing such shells are two related ones: �lament winding, when the strip
made of CM is laid out on the outstretched surface, and laying out, when the tape is placed
by dint of pressing rollers. In both cases, laying the tape is carried out in accordance with
the program of moving spreader. To create such a program the mathematical model of the
process of placing the tape is needed. The article describes semi orthogonal wavelet systems
on the segment that are based on B-spline of arbitrary order. The matrices which compose
the �lter bank for such wavelet systems are represented. Some algorithms for geometric
modelling are reviewed and summarized from the point of view of the wavelet theory. The
results are applied to the mathematical modelling and software of manufacturing process of
shells made of �brous composite materials. As an example, consider the process of making
the ventilator blade.

Keywords: wavelet; computer-aided design; the Chaikin's algorithm; a �lter bank.

Introduction

It's well known that composite materials are not only the substances of our future, but
also of our present day. Due to a complex of unique features, including the ability to form
these features in the course of production, composites can be used in the various industries.
CM have its extensive application in the construction industry, road, housing and utilities
sectors, automotive and aviation manufacturing, production and transportation of oil
and gas, also for the manufacture of sports equipment and articles of domestic use. To
reduce production costs and time for design work and for control parameters of products,
enterprises widely apply CAD/CAM/CAE-system.

In the modern CAD/CAM/CAE-systems the geometric modelling of objects and
computer solution of geometrical and engineer graphics problems are central. When an
object is created, the geometry of the object and its component parts are to be formed in
the �rst place, then the other problems of designing, manufacturing and technology need
to be solved. At the same time in the CAD/CAM/CAE-systems special attention is paid to
the improvement of the three-dimensional geometric modelling technology. International
industry standard for the design of complex curved surfaces is modelling technique based
on NURBS. However, the main problem here is not so much the process of modelling itself,
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as ways to modify and optimize the created geometric patterns that are very critical for the
iterative design mode. Therefore, the improvement of the methods of geometric modelling
of three-dimensional objects using the CAD/CAE/CAM-systems' standard mathematical
apparatus along with the adapting these methods for speci�c industrial applications are
the actual problems nowadays.

The Russian CAD/CAM/CAE-systems for manufacturing composite structures made
of �brous materials operate with surfaces of revolution and don't consider the structure
of the tape. In such systems, the tape is identi�ed with a thread so its width and
thickness aren't taken into account. The article [4] provides us the mathematical model
of the variable width tape winding without regard to its thickness. In this paper, due to
the application of semi-orthogonal wavelet systems on a segment some of the geometric
modelling algorithms are summarized and the mathematical simulation of laying out the
variable width tape with regard to its thickness is constructed. The surface de�ned by its
point frame of sections is considered as the surface of the mandrel.

1. Wavelet System on a Segment Based on the B-Spline
of the Arbitrary Order

For geometric applications let us consider the real spaces L2(R) and L2[a; b]. Consider
the real functions de�ned on the segment [a; b]. Suppose that the function φ ∈ L2(R)
satis�es the scaling relation [7] φ(x) =

√
2
∑
k∈Z

ukφ(2x − k), uk ∈ R and has a compact

support. Let φjk(x) = φ(2jx − k), x ∈ [a; b], j, k ∈ Z. It is clear, that for every j
there's only a �nite number of such di�erent from zero functions on the segment [a; b].
For de�niteness, let these functions be denoted by φj,0, φj,1, . . . , φj,nj−1. Consider [2] the
sequence of subspaces V0 ⊂ V1 ⊂ . . . of the space L2[a; b].

Vj = lin{φj,0, φj,1, . . . , φj,nj−1} =

{
nj−1∑
s=0

asφj,s : as ∈ R, s = 0, 1, . . . , nj − 1

}
, dimVj = nj.

So far as Vj−1 ⊂ Vj, then φj−1,k =
nj−1∑
s=0

pjs,kφj,s. Introduce the notation [2] Φj(x) =

(φj,0(x), φj,1(x), . . . , φj,nj−1(x)), Pj = (pjs,k)
nj−1,nj−1−1
s=0,k=0 . Then Φj−1 = ΦjPj. We denote

Wj−1 as the orthogonal complement to Vj−1 in Vj. Since Vj = Vj−1⊕Wj−1 and Wj−1 ⊂ Vj,
then Wj−1 is a �nite dimensional space. If Wj = lin{ψj,0, ψj,1, . . . , ψj,mj−1}, dimWj = mj,

then ψj−1,k =
nj−1∑
s=0

qjs,kφj,s. Functions ψj,k are called wavelets and spaces Wj are named

wavelet spaces [6]. Introduce the matrices [2] Ψj(x) = (ψj,0(x), ψj,1(x), . . . , ψj,mj−1(x)),

Qj = (qjs,k)
nj−1,mj−1−1
s=0,k=0 . Then Ψj−1 = ΦjQj. It should be noted, that nj +mj = nj+1.

Let f ∈ L2[a; b] and Πj : L
2[a; b]→ Vj is a projector. Then the approximation Πjf can

be expanded into a rough approximation Πj−1f clarifying addend ΠW
j−1f

Πjf =

nj−1∑
k=0

cj,kφj,k = Πj−1f +ΠW
j−1f =

nj−1−1∑
k=0

cj−1,kφj−1,k +

mj−1−1∑
k=0

dj−1,kψj−1,k.

Consider the two vectors of coe�cients Cj = (cj,0, . . . , cj,nj−1)
T , Dj = (dj,0, . . . , dj,nj−1)

T .
First one describes the approximation of the function f and the second represents the
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wavelet coe�cients that characterize the deviation Πj−1f from Πjf . As shown in [2]
Cj = PjCj−1+QjDj−1. According to this equation the approximation Πjf can be restored
with a rough approximation Πj−1f and wavelet coe�cients. Since the linear operators
(projectors) Vj → Vj−1, Vj →Wj−1 are de�ned by some matrices Aj,Bj, then Cj−1 = AjCj,
Dj−1 = BjCj. By wavelet transform of the function f we mean the �nding of vectors
C0,D0,D1, . . . ,Dj−1. It is known [2] the relationship between the matrices Aj,Bj and
Pj,Qj: (

Aj

Bj

)
=
(
Pj Qj

)−1
.

The matrix Qj in [2] is de�ned from the homogeneous system of linear equations

TjQj = 0, where Tj = PT
j [(Φj,Φj)] and [(Φj,Φj)] = ((φj,i, φj,s))

nj−1
i,s=0 is a matrix of scalar

products. The matrices Qj and Pj are known as synthesis �lters. The matrices Aj and Bj

are known as analysis �lters. The set {Pj,Qj,Aj,Bj} is called a �lter bank.
In the article [3] the above approach to constructing wavelet systems on the segment

is applied to the case when the function φ(x) is selected as a B-spline of arbitrary order
n. Brie�y mention the main results obtained in the paper. We de�ne B-splines of order n
as the convolution [6]

Nn = Nn−1 ∗N0, N0(x) =

{
1, if x ∈ [0; 1);

0, if x ̸∈ [0; 1).

Here we note some known properties of B-splines [6]. Firstly, Nn(x) ≥ 0,∀x. Secondly,
suppNn(x) = [0;n+1]. As it is shown in [9], the function Nn(x) satis�es the scaling relation

Nn(x) =
n+1∑
k=0

pk
2n
Nn(2x− k), pk = Ck

n+1 =
(n+ 1)!

k!(n+ 1− k)!
.

The constructions presented in [3], can be summarized in two following lemmas.

Lemma 1. The function φ(x) = Nn(x) determines the sequence of subspaces

Vα,−n ⊂ Vα,−n+1 ⊂ . . . , Vα,j = lin{φj,−n, φj,−n+1, . . . , φj,2jα(n+1)−1} of L2[0;α(n + 1)],

α = 1, 2, . . . , where ∪+∞
j=0Vα,j = L2[0;α(n+ 1)].

Let λm,k =
k+1∫
k

Nn(z)Nn(z −m) dz, m = −n, . . . , n, k = 0, 1, . . . , n and ωi,k = ωk,i =

n∑
s=n−i+1

λk−i,s, θi,k = θk,i =
n−k∑
s=0

λi−k,s, 1 ≤ i ≤ k ≤ n. Designate qk = q−k =
n∑

s=k

λk,s,

k = 0, 1, . . . , n and consider vector

p =

{
(p0, p1, . . . , pk, pk, . . . , p1, p0, 0, . . . , 0)

T , if n = 2k;

(p0, p1, . . . , pk, pk+1, pk, . . . , p1, p0, 0, . . . , 0)
T , if n = 2k + 1,

p ∈ R2jα(n+1)+n.

We de�ne the shift operator Rs : R
m → Rm by the following rule

Rsa =


(0, . . . , 0︸ ︷︷ ︸

s

, a1, . . . , am−s)
T , if m > s ≥ 0;

(a|s|+1, . . . , am, 0, . . . , 0)
T , if −m < s < 0,

a = (a1, . . . , am)
T .

If |s| ≥ m, then Rsa = 0.
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Lemma 2. The matrices Pj and [(Φj,Φj)] for the sequence of subspaces Vα,0 ⊂ Vα,1 ⊂ . . .
are

Pj =
1

2n
(R−np, R−n+2p, . . . , Rn−2+2jα(n+1)p),

[(Φj,Φj)] =
1

2j
(d1, . . . , dn, q, R1q, . . . , R2jα(n+1)−n−1q, u1, . . . , un)

T ,

where

ds = (ω1,s, ω2,s, . . . , ωn,s, qn−s+1, . . . , qn, 0, . . . , 0)
T , us = (0, . . . , 0, qn, . . . , qs, θ1,s, . . . , θn,s)

T ,

q = (qn, qn−1, . . . , q1, q0, q1, . . . , qn−1, qn, 0, . . . , 0)
T ∈ R2jα(n+1)+n.

The transpose of a matrix Tj = PT
j [(Φj,Φj)] = 2−j(ti,s)

2j−1α(n+1)+n, 2jα(n+1)+n
i=1,s=1 is

TT
j =

1

2j
(L1, . . . ,Ln,w, R2w, . . . , R2jα(n+1)−2n−2w,L2j−1α(n+1)+1, . . . ,L2j−1α(n+1)+n),

where

w = (pTR−2nq, p
TR−2n+1q, . . . , p

TRn+1q, 0, . . . , 0)
T ∈ R2jα(n+1)+n,

Li = ((R−n+2i−2 p)Td1, . . . , (R−n+2i−2 p)Tdn, 0, . . . , 0)
T + (Rn ◦R−3n+2i−2)w, i = 1, . . . , n,

Li−2j−1α(n+1)+1 = (0, . . . , 0, (R−n+2i p)
Tu1, . . . , (R−n+2i p)

Tun)
T + (R−n ◦R−n+2i)w,

i = 2j−1α(n+ 1), . . . , n− 1 + 2j−1α(n+ 1).

Using lemma 2, we can �nd 2j−1α(n + 1) linearly independent solutions
hs = (h1,s, h2,s, . . . , h2jα(n+1)+n,s)

T of the system of linear equations Tjhs = 0. These
solutions represent columns of the matrix Qj = (h1, . . . , h2j−1α(n+1)). We look for the
columns hs so that the functions ψj,s(x) = Φj(x)hs are the shifted versions of the same
function, i.e are of one form (except, of course, the boundary wavelets). According to the
matrix Tj in lemma 2, this can be done as follows [3]. First consider the case n = 2k.
Introduce the abbreviated notation for matrices composed of elements of the matrix Tj:

Tj
(

i1,...,ik
j1,...,jm

)
=

ti1,j1 . . . ti1,jm
. . . . . . . . . . . . . . . .
tik,j1 . . . tik,jm


For internal wavelets (the support is contained in the segment [0;α(n + 1)]) consider
hs = (0, . . . , 0, h2s−n−1,s, . . . , h2s+2n−1,s, 1, 0, . . . , 0)

T , s = n + 1, . . . , 2j−1α(n + 1) − n,
where Tj

(
s−n,...,s+2n

2s−n−1,...,2n+2s

)
(h2s−n−1,s, . . . , h2s+2n−1,s, 1)

T = 0. The remaining 2n of solutions
corresponding to the boundary wavelets choose as follows. For i = 1, 2, . . . , n
consider hn−i+1 = (0, . . . , 0, hn−i+1,n−i+1, . . . , h4n+2−2i,n−i+1, 0, . . . , 0)

T , h2j−1α(n+1)−n+i =
(0, . . . , 0, h2jα(n+1)−3n−1−2i,2j−1α(n+1)−n+i, . . . , h2jα(n+1)+i,2j−1α(n+1)−n+i, 0, . . . , 0)

T , where

Tj
(

1,...,3n+1−i
n+1−i,...,4n+2−2i

)
(hn−i+1,s, . . . , h4n+2−2i,s)

T = 0, s = n− i+ 1,

Tj
(

s−n,...,s+2n−i
2s−n−1,...,2s+2n−i

)
(h2s−n−1,s, . . . , h2s+2n−i,s)

T = 0, s = 2j−1α(n+ 1)− n+ i.

Now consider the case n = 2k + 1. For s = n + 1, . . . , 2j−1α(n + 1) − n
de�ne hs = (0, . . . , 0, h2s−n−1,s, . . . , h2s+2n−1,s, 1, 0, . . . , 0)

T , where

Tj
(

s−n,...,s+2n
2s−n−1,...,2n+2s

)
(h2s−n−1,s, . . . , h2s+2n−1,s, 1)

T = 0.

8 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2016, vol. 9, no. 3, pp. 5�16



ÌÀÒÅÌÀÒÈ×ÅÑÊÎÅ ÌÎÄÅËÈÐÎÂÀÍÈÅ

For the boundary wavelets consider hi = (0, . . . , 0, hi,i, . . . , h2i+2n,i, 0, . . . , 0)
T ,

h2j−1α(n+1)−n+i =
= (0, . . . , 0, h2jα(n+1)+2i−3n−1,2j−1α(n+1)−n+i, . . . , h2jα(n+1)+i,2j−1α(n+1)−n+i, 0, . . . , 0)

T ,
i = 1, 2, . . . , n,

where
Tj
(

1,...,i+2n
i,...,2i+2n

)
(hi,i, . . . , h2i+2n,i)

T = 0,

Tj
(

s−n,...,s+2n−i
2s−n−1,...,2s+2n−i

)
(h2s−n−1,s, . . . , h2s+2n−i,s)

T = 0, s = 2j−1α(n+ 1)− n+ i.

Now consider the application of wavelet systems on a segment to the construction of
two-dimensional wavelets on a rectangular area. Let the sequences V0,i ⊂ V1,i ⊂ . . . Vj,i ⊂
of �nite-dimensional subspaces of the space L2[ai; bi], scaling functions φ

i and �lter banks
Pj,i, Qj,i, Aj,i, Bj,i, i = 1, 2 be given. The standard approach [7] of the construction
of multi-dimensional wavelet systems is taking tensor products of functions of univariate
basis. Consider subspaces V 2

j = Vj,1 ⊗ Vj,2 = lin{f1 ⊗ f2 : f1 ∈ Vj,1, f2 ∈ Vj,2}, where the
function f1 ⊗ f2 is de�ned by the rule f1 ⊗ f2(x, y) = f1(x)f2(y). In addition, de�ne
the spaces W 2

j as follows V 2
j = V 2

j−1 ⊕ W 2
j−1. Then, if f ∈ L2([a1; b1] × [a2; b2]) and

Πj : L
2([a1; b1]× [a2; b2])→ V 2

j is a projector, then

Πjf =

nj,1−1∑
m=0

nj,2−1∑
l=0

cjm,lφ
(1)
j,m ⊗ φ

(2)
j,l =

nj,1−1∑
m=0

nj,2−1∑
l=0

(
nj−1,1−1∑

k=0

nj−1,2−1∑
s=0

cj−1
k,s p

j,1
m,kp

j,2
l,s+

+

mj−1,1−1∑
k=0

nj−1,2−1∑
s=0

rj−1
k,s q

j,1
m,kp

j,2
l,s +

nj−1,1−1∑
k=0

mj−1,2−1∑
s=0

hj−1
k,s p

j,1
m,kq

j,2
l,s+

+

mj−1,1−1∑
k=0

mj−1,2−1∑
s=0

dj−1
k,s q

j,1
m,kq

j,2
l,s

)
φ
(1)
j,m ⊗ φ

(2)
j,l .

(1)

If we introduce the matrices Cj = (cjm,l)
nj,1−1,nj,2−1
m,l=0 , Rj = (rjk,s)

mj,1−1,nj,2−1
k,s=0 ,

Hj = (hjk,s)
mj,1−1,nj,2−1
k,s=0 , Dj = (djk,s)

mj,1−1,mj,2−1
k,s=0 , then using (1) we obtain [3]

Cj = Pj,1Cj−1P
T
j,2 +Qj,1Rj−1P

T
j,2 + Pj,1Hj−1Q

T
j,2 +Qj,1Dj−1Q

T
j,2 (2)

In addition, it is obvious [3], that

Cj−1 = Aj,1CjA
T
j,2; Rj−1 = Bj,1CjA

T
j,2; Hj−1 = Aj,1CjB

T
j,2; Dj−1 = Bj,1CjB

T
j,2. (3)

Formula (3) gives the wavelet decomposition of the approximation Πjf of the function
of two arguments, and (2) gives the wavelet-recovery of this approximation.

2. Some Algorithms for Geometric Modelling
in Terms of Wavelet Theory

Fix the Cartesian coordinate system O, i, j,k in R3 space. Let c = (x, y, z)T ∈ R3

and c = xi + yj + zk. Consider a B-spline curve with parametric representation

γj : rj(t) =
2jα(n+1)−1∑

k=−n

φj,k(t)cj,k, t ∈ [0;α(n+ 1)], i.e., if rj(t) = (xj(t), yj(t), zj(t))
T , then
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xj(t), yj(t), zj(t) ∈ Vα,j. The polygon line with vertices cj,k, k = −n, . . . , 2jα(n + 1) − 1
is known as the characteristic polygon line of the
mentioned curve. Let CT

j = (cj,−n, cj,−n+1, . . . , cj,2jα(n+1)−1),
DT

j = (dj,−n, dj,−n+1, . . . , dj,2jα(n+1)−1). So, if Cj = PjCj−1 + QjDj−1, then
rj = ΦjCj = ΦjPjCj−1 + ΦjQjDj−1 = Φj−1Cj−1 + Ψj−1Dj−1. This yields a consistent
modi�cation scheme (wavelet recovery) of a curve rj(t) = rj−1(t) + ej−1, where
ej−1 = Ψj−1Dj−1. Note, that Cj−1 = AjCj, Dj−1 = BjCj.

Consider the particular case of such modi�cation. Let Cj = PjCj−1. Then
rj = ΦjCj = ΦjPjCj−1 = Φj−1Cj−1 = rj−1. Therefore, in this case the shape of the
curve does not change, but the characteristic polygon line of the curve does (the number of
vertices increases). It should be noted that all the elements of the matrix Pj are nonnegative
and the sum of the elements of any row of this matrix is equal to one. For that reson any
vertex cj+1,k of the polygon line γj+1 belongs to the convex hull of several consecutive
vertices cj,α, cj,α+1, . . . , cj,β of the polygon line γj.

j
g

j+1
g

j+3
g

x

y

O 0 1 2 3 4 5

−8

−4

0

4

8

a) b)

Fig. 1. a) Chaikin's algorithm; b) The characteristic polygon lines of same curve (n = 5)

Used in computer graphics for the construction of curves and surfaces, the famous
Chaikin's algorithm is a special case of such transformation (the previous transformation
hereinafter will be called the generalized Chaikin's algorithm). According to Chaikin's
algorithm [1], which is also called the "cutting corners" algorithm, the transition from
a polygon line γj to a polygon line γj+1 with vertices cj+1,1, cj+1,2, . . . , cj+1,Nj+1

,
Nj+1 = 2Nj − 2 is realized as follows (Fig. 1 a)):

cj+1,2i−1 =
3

4
cj,i +

1

4
cj,i+1; cj+1,2i =

1

4
cj,i +

3

4
cj+1,i+1, i = 1, 2, . . . , Nj − 1. (4)

Equations (4) can be represented in a matrix form. Consider the matrix
CT

j = (cj,1, . . . , cj,Nj
). Then (4) will turn to Cj+1 = Pj+1Cj, where Pj+1 is the matrix

from lemma 2 for n = 2.

Since suppφj,k = [ k
2j
; k+n+1

2j
], then for t ∈ [ s

2j
; s+1

2j
] we get rj(t) =

s∑
k=s−n

φj,k(t)cj,k.

Therefore, if cj,−n = · · · = cj,l, l ≥ 0, then rj(t) ≡ cj,−n, t ∈ [0; l+1
2j

].
Similarly, if cj,2jα(n+1)−l = · · · = cj,2jα(n+1)−1, l ≥ n + 1, then rj(t) ≡ cj,2jα(n+1)−1,
t ∈ [α(n + 1) − l+1

2j
;α(n + 1)]. Figure 1 b) shows the characteristic polygon lines of same

curve.
Now consider a surfaces with the parametric representation

rj,k(u, v) =

2jα(n+1)−1∑
i=−n

2kβ(m+1)−1∑
s=−m

cj,ki,sφj,i(u)φk,s(v), u ∈ [0;α(n+ 1)], v ∈ [0; β(m+ 1)], (5)
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where cj,ki,s = xj,ki,s i + yj,ki,s j + zj,ki,s k. As it is known, a polyhedron with vertices cj,ki,s is called

the characteristic polyhedron of the surface. If we introduce the matrices Xj,k = (xj,ki,s ),

Yj,k = (yj,ki,s ), Zj,k = (zj,ki,s ), then the vector function rj,k can be represented as

rj,k(u, v) = Φj(u)Xj,kΦk(v)
T i+ Φj(u)Yj,kΦk(v)

T j+ Φj(u)Zj,kΦk(v)
Tk,

i.e. the coordinates of this vector function belong to Vj ⊗ Vk.
Consider the following transformation of the characteristic polyhedron.

Apply the generalized Chaikin's algorithm to the polygon lines with vertices
cji,s, s = −m,−m + 1, . . . , 2kβ(m + 1) − 1. The result is a set of vertices

ĉji,s, s = −m,−m + 1, . . . , 2k+1β(m + 1) − 1. Next we apply the generalized Chaikin's

algorithm to the polygon lines with vertices ĉji,s, i = −n,−n + 1, . . . , 2j+1α(n + 1) − 1.
These transformations can be reduced to the transformation of the matrix rows and
columns. Xj,k,Yj,k,Zj,k:

Xj+1,k+1 = Pj+1Xj,kP
T
k+1, Yj+1,k+1 = Pj+1Yj,kP

T
k+1, Zj+1,k+1 = Pj+1Zj,kP

T
k+1 (6)

It's clear that this transformation is a special case of transformation (2). As above, the
characteristic polyhedron of the surface changes (condences) under these transformations,
but the surface itself doesn't.

3. Mathematical Modelling of the Manufacture
of Complex-Shaped Shells Out of Fiber Composite Materials

In practice, the complex surface of the mandrel for the future �ber composite product,
is originally de�ned by its point frame, which is a result of the pattern-lofting method,
based on the desired characteristics. The frame points may be used as the vertices of
the mandrel's characteristic polyhedron, therefore the mandrel can be de�ned by the
parametric representation (5). The basic methods for producing the constructions out
of the �ber composite materials (CM) are two related ones: �lament winding, when the
strip made of CM is laid out on the outstretched surface, and laying out. The automatic
lay out is carried out in accordance with the program for moving the head of laying out
machine (Fig. 2 a). To eliminate the gaping layers of tape to be laid on the mandrel
the laying is normally accompanied with non-rigid roller pressing (Fig. 2 b) (the pictures
are taken from [10]). Laying the tape on the mandrel can be modeled with a smooth

a) b) c)

Fig. 2. Simulation of the variable width tape on the surface
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è ïðîãðàììèðîâàíèå≫ (Âåñòíèê ÞÓðÃÓ ÌÌÏ). 2016. Ò. 9, � 3. Ñ. 5�16

11



Y.I. Bityukov, V.N. Akmaeva

mapping of the rectangular area in three-dimensional Euclidean space (Fig. 2 c). If
γ : r(s) = rj,k(uA(s), vA(s)), s ∈ [0;L] is a parametric representation of the curve (s is a
variable arc length of the curve), which is where the tape is laying out (the reinforcement
curve), then it determines the semigeodesic coordinate system [8] (s, δ), s ∈ [0;L],
δ ∈ [−d

2
; d
2
] (d is the maximum width of the tape) on the surface. The result is a

coordinate mapping FΓ : (s, δ) 7→ (u(s, δ), v(s, δ)). It's possible now to simulate the
tape of variable width on the mandrel using the mapping w(s, δ) = rj,k ◦ FΓ ◦ H(s, δ),
(s, δ) ∈ K = [0;L] × [−d

2
; d
2
], where H is the local homeomorphism de�ning the width

variation of the tape. In [4] it's de�ned as follows: H(s, δ) = (s,−σ1(s) + (σ1(s) +
σ2(s))

2δ+d
2d

), −d
2
≤ σi(s) ≤ d

2
, σ1(s) + σ2(s) ≥ 0, ∀s ∈ [0;L]. Unfortunately, the

coordinate mapping FΓ can not be written explicitly, but it can be approximated
with any accuracy with explicitly de�ned mappings of the desired smoothness [4]. In
this paper, for an approximation of the coordinate mapping we'll use the mapping
F : (s, δ) 7→ (U(s, δ), V (s, δ)), de�ned by equation(

U(s, δ)
V (s, δ)

)
=

(
uη,ν
vη,ν

)
+

δ − δν
δν+1 − δν

(
uη,ν+1 − uη,ν
vη,ν+1 − vη,ν

)
+

s− sη
sη+1 − sη

(
uη+1,ν − uη,ν
vη+1,ν − vη,ν

)
+

δ − δν
δν+1 − δν

s− sη
sη+1 − sη

(
uη+1,ν+1 − uη+1,ν − uη,ν+1 + uη,ν
vη+1,ν+1 − vη+1,ν − vη,ν+1 + vη,ν

)
,

s ∈ [sη; sη+1], δ ∈ [δν ; δν+1],

where −d
2
= δ−I < δ−I+1 < · · · < δI−1 < δI =

d
2
, 0 = s0 < s1 < · · · < sJ = L are nets on

the segments [−d
2
; d
2
] and [0;L] respectively. The values of uη,ν and vη,ν can be found out of

the solution of systems of di�erential equations that de�ne the geodesic coordinate on the
surface passing through the points (uA(sη), vA(sη)) of the reinforcing curve perpendicular
to it [4]. It is easy to see that if the functions u(s, δ) è v(s, δ) are continuous and
∆ = max

η,ν
(
√

(sη − sη+1)2 + (δν − δν+1)2), then ∥u − U∥C(K) ≤ ω(u,∆),

∥v − V ∥C(K) ≤ ω(v,∆), where ω(f,∆) is the modulus of continuity of f . The
example of modelling of the variable width tape on the surface is shown in Fig. 2.

It should be noted that the automated laying out of the �bers or winding of the
unidirectional �ber tape assumes that the width of the tape should not exceed the value
at which for all (s, δ) ∈ K | tg Θ(s, δ)| ≤ µ, where Θ(s, δ) is the geodesic deviation angle [8]
of the curve w(s, δ), s ∈ [0;L], which the thread is laying out along, µ is the coe�cient of
sliding friction of the surface and �lament materials. In this case, the the threads of the
tape will be in equilibrium.

When laying tape on the mandrel the shape of the surface changes, because the tape
has a non-zero thickness. This fact can be taken into account by tuning the characteristic
polyhedron of the surface (as a consequence there is a local change in the shape of the
surface). For more accurate accounting there must be a large number of vertices of the
polyhedron. We'll get the reconstruction of the polyhedron with the help of the generalized
Chaikin's algorithm. Fig. 3 à) shows the vertices of the characteristic polyhedron de�ning
the fan blade. Fig. 3 b) shows the result of the generalized Chaikin's algorithm to a given
characteristic polyhedron of the blade, which does not change the blade. Fig. 3 c) shows
the blade itself.

The blade operates under the high-tense state. The main loads are centrifugal ones as
a result of high rotation speed (around 4000 rev / min). In addition, the blade is under
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Fig. 3. The characteristic polyhedra of the fan blade à), b) and the blade itself ñ)

the aerodynamic loads of the air �ow which cause its bending moments and torsion. To
counter the stretching due to centrifugal loads and bending the blade must be reinforced
with carbon �bers directed along the axis Z (the axis passing through the engine axis of
rotation and perpendicular to it. In Fig. 3 it's a the vertical axis). The main requirement
for torsional resistance is the torsional sti�ness of the blade, which requires reinforcement
in the directions ±45◦ to the axis Z. The calculations also show that there are high
shear interlayer loads, which in some parts of the piece are above the limit for existing
domestic aircraft carbon composites. Basically, this problem is solved by material science
and technological developments. However, to avoid additional shear interlayer loads, the
reinforcing �bers must be placed along the geodesic lines. Used geodesic lines require the
surface of class C2. Therefore, in formula (5) n = m = 3, α = β = 1.

Converting the surface after the tape laying is carried out as follows. Let
the surface of the mandrel be de�ned by parametric representation (5) and

Σj,k = {cj,ki,s}
2j(n+1)−1, 2k(m+1)−1
i=−n, s=−m are the vertices of its characteristic polyhedron. Choosing

natural N we apply the generalized Chaikin's algorithm to this polyhedron and obtain

polyhedron Σj+N,k+N = {cj+N,k+N
i,s }2

j+N (n+1)−1, 2k+N (m+1)−1
i=−n, s=−m (wavelet recovery):

Σj,k
Pj+1, Pk+1−−−−−−→ Σj+1,k+1

Pj+2, Pk+2−−−−−−→ . . .
Pj+N , Pk+N−−−−−−−→ Σj+N,k+N .

Let (u, v) ∈ [ ν
2j+N ;

ν+1
2j+N ]× [ η

2k+N ;
η+1
2k+N ]. Then

rj+N,k+N(u, v) =
ν∑

i=ν−n

η∑
s=η−m

cj+N,k+N
i,s φj+N,i(u)φk+N,s(v).

The vertices {ĉj+N,k+N
i,s }ν,ηi=ν−n, s=η−m of the conversion polyhedron of the surface are de�ned

as follows

ĉj+N,k+N
i,s =

{
cj+N,k+N
i,s , if (u, v) ̸∈ F (K);

cj+N,k+N
i,s + f(δ)he if (u, v) ∈ F (K),

i = ν − n, . . . , ν; s = η −m, . . . , η,

(s, δ) = F−1(u, v),

where e is a unit vector normal to the surface at the point (u, v), f(δ), δ ∈ [−d
2
; d
2
] is a

smoothing function and h is a tape thickness. In this example the smoothing function was

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
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chosen as follows:

f(δ) =


1, if δ ∈ [−∆;∆];

e−
(δ−∆)2

σ if δ ∈ [∆; d
2
];

e−
(δ+∆)2

σ if δ ∈ [−d
2
;−∆],

0 < ∆ <
d

2
, σ > 0.

After laying of the �rst layer is performed the smoothing of the surface is obtained by
formulas (3) (wavelet decomposition):

Σj,k
Aj+1, Ak+1←−−−−−−− Σj+1,k+1

Aj+2, Ak+2←−−−−−−− . . .
Aj+N , Ak+N←−−−−−−− Σj+N,k+N .

The result of the algorithm is shown in Fig. 4. Further we simulate the second layer, etc.

a) b)

Fig. 4. a) Simulation of the �rst layer laying; b) Smoothing the surface

As noted above, the laying out is performed using a special roller in accordance with
the moving program of the laying out head. In conclusion, we'll present the trajectory
of the pressure roller. Its position in space can be described by two coordinates of its
points A and B on the roller's axis (Fig. 5 a). Then the position of the roller at any
moment can be described by the vector functions rA(s) = w(s,−d

2
) + ρe ◦ F (s,−d

2
) and

rB(s) = w(s, d
2
) + ρe ◦ F (s, d

2
), where ρ is the roller's radius and e(u, v) = r′u(u,v)×r′v(u,v)

|r′u(u,v)×r′v(u,v)|
.

Analysis of the equilibrium of some �bers of the tape is shown on Fig. 5 b).
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Fig. 5. a) The trajectory of the laying out machine head's pressing roller; b) Analysis of
the equilibrium of some �bers of the tape
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Conclusion

In this paper, the semi-orthogonal wavelet systems are used in the mathematical
and computer modelling of the manufacture of complex-shaped shells made of �brous
composite materials. As an example the producing of the fan blade by the laying
out method is simulated. However, these results can be used in the development of
CAD/CAM/CAE-system for the manufacturing of the shells made of �brous composite
materials by any of related process: laying out and winding.
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ÏÐÈÌÅÍÅÍÈÅ ÂÅÉÂËÅÒÎÂ Â ÌÀÒÅÌÀÒÈ×ÅÑÊÎÌ
È ÊÎÌÏÜÞÒÅÐÍÎÌ ÌÎÄÅËÈÐÎÂÀÍÈÈ
ÈÇÃÎÒÎÂËÅÍÈß ÎÁÎËÎ×ÅÊ ÑËÎÆÍÛÕ ÔÎÐÌ
ÈÇ ÊÎÌÏÎÇÈÖÈÎÍÍÛÕ ÌÀÒÅÐÈÀËÎÂ

Þ.È. Áèòþêîâ, Â.Í. Àêìàåâà

Ñòàòüÿ ïîñâÿùåíà ïðèìåíåíèþ òåîðèè âåéâëåòîâ â çàäà÷å ìîäåëèðîâàíèÿ ïðîöåññîâ

èçãîòîâëåíèÿ îáîëî÷åê èç âîëîêíèñòûõ êîìïîçèöèîííûõ ìàòåðèàëîâ (ÊÌ). Îñíîâíûìè
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ìåòîäàìè ïîëó÷åíèÿ òàêèõ îáîëî÷åê ÿâëÿþòñÿ äâà ðîäñòâåííûõ ìåòîäà: íàìîòêè, êî-
ãäà ëåíòà èç ÊÌ óêëàäûâàåòñÿ íà ïîâåðõíîñòü ñ íàòÿæåíèåì è âûêëàäêà, êîãäà ëåíòà
óêëàäûâàåòñÿ ñ ïîìîùüþ ïðèæèìíûõ âàëèêîâ. È â òîì è äðóãîì ñëó÷àå, óêëàäêà ëåí-
òû îñóùåñòâëÿåòñÿ â ñîîòâåòñòâèè ñ ïðîãðàììîé ïåðåìåùåíèÿ ðàñêëàä÷èêà. Äëÿ ñî-
çäàíèÿ òàêîé ïðîãðàììû íåîáõîäèìà ìàòåìàòè÷åñêàÿ ìîäåëü ïðîöåññà óêëàäêè ëåíòû
íà ïîâåðõíîñòü. Â ñòàòüå ðàññìîòðåíû ïîëóîðòîãîíàëüíûå âåéâëåò-ñèñòåìû íà îòðåçêå,
ïîñòðîåííûå íà îñíîâå Â-ñïëàéíà ïðîèçâîëüíîãî ïîðÿäêà. Ïðåäñòàâëåíû ìàòðèöû, ñî-
ñòàâëÿþùèå áàíê ôèëüòðîâ äëÿ òàêèõ âåéâëåò-ñèñòåì. Ñ òî÷êè çðåíèÿ òåîðèè âåéâëå-
òîâ ðàññìîòðåíû è îáîáùåíû íåêîòîðûå àëãîðèòìû ãåîìåòðè÷åñêîãî ìîäåëèðîâàíèÿ.
Ðåçóëüòàòû ïðèìåíåíû ê ìàòåìàòè÷åñêîìó è êîìïüþòåðíîìó ìîäåëèðîâàíèþ ïðîöåñ-
ñà èçãîòîâëåíèÿ îáîëî÷åê èç âîëîêíèñòûõ êîìïîçèöèîííûõ ìàòåðèàëîâ. Â êà÷åñòâå
ïðèìåðà ðàññìîòðåí ïðîöåññ èçãîòîâëåíèÿ âåíòèëÿòîðíîé ëîïàòêè.

Êëþ÷åâûå ñëîâà: âåéâëåò; ñèñòåìû àâòîìàòèçèðîâàííîãî ïðîåêòèðîâàíèÿ; àë-

ãîðèòì ×àéêèíà; áàíê ôèëüòðîâ.
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