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This article focuses on the application of wavelet theory to the problem of modelling
the processes of manufacturing the shells of fibrous composite materials (CM). The basic
methods for preparing such shells are two related ones: filament winding, when the strip
made of CM is laid out on the outstretched surface, and laying out, when the tape is placed
by dint of pressing rollers. In both cases, laying the tape is carried out in accordance with
the program of moving spreader. To create such a program the mathematical model of the
process of placing the tape is needed. The article describes semi orthogonal wavelet systems
on the segment that are based on B-spline of arbitrary order. The matrices which compose
the filter bank for such wavelet systems are represented. Some algorithms for geometric
modelling are reviewed and summarized from the point of view of the wavelet theory. The
results are applied to the mathematical modelling and software of manufacturing process of
shells made of fibrous composite materials. As an example, consider the process of making
the ventilator blade.
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Introduction

It’s well known that composite materials are not only the substances of our future, but
also of our present day. Due to a complex of unique features, including the ability to form
these features in the course of production, composites can be used in the various industries.
CM have its extensive application in the construction industry, road, housing and utilities
sectors, automotive and aviation manufacturing, production and transportation of oil
and gas, also for the manufacture of sports equipment and articles of domestic use. To
reduce production costs and time for design work and for control parameters of products,
enterprises widely apply CAD/CAM /CAE-system.

In the modern CAD/CAM/CAE-systems the geometric modelling of objects and
computer solution of geometrical and engineer graphics problems are central. When an
object is created, the geometry of the object and its component parts are to be formed in
the first place, then the other problems of designing, manufacturing and technology need
to be solved. At the same time in the CAD/CAM /CAE-systems special attention is paid to
the improvement of the three-dimensional geometric modelling technology. International
industry standard for the design of complex curved surfaces is modelling technique based
on NURBS. However, the main problem here is not so much the process of modelling itself,
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as ways to modify and optimize the created geometric patterns that are very critical for the
iterative design mode. Therefore, the improvement of the methods of geometric modelling
of three-dimensional objects using the CAD/CAE/CAM-systems’ standard mathematical
apparatus along with the adapting these methods for specific industrial applications are
the actual problems nowadays.

The Russian CAD/CAM /CAE-systems for manufacturing composite structures made
of fibrous materials operate with surfaces of revolution and don’t consider the structure
of the tape. In such systems, the tape is identified with a thread so its width and
thickness aren’t taken into account. The article [4] provides us the mathematical model
of the variable width tape winding without regard to its thickness. In this paper, due to
the application of semi-orthogonal wavelet systems on a segment some of the geometric
modelling algorithms are summarized and the mathematical simulation of laying out the
variable width tape with regard to its thickness is constructed. The surface defined by its
point frame of sections is considered as the surface of the mandrel.

1. Wavelet System on a Segment Based on the B-Spline
of the Arbitrary Order

For geometric applications let us consider the real spaces L?(R) and L?[a; b]. Consider
the real functions defined on the segment [a;b]. Suppose that the function ¢ € L*(R)
satisfies the scaling relation [7] ¢(z) = V2 Y urp(2x — k), ux € R and has a compact

kEZ
support. Let ¢jp(z) = ©(272 — k), x € [a;b],5,k € Z. It is clear, that for every j
there’s only a finite number of such different from zero functions on the segment [a;b].
For definiteness, let these functions be denoted by ©;0, )1, ..,@jn;—1. Consider [2] the
sequence of subspaces Vy C V; C ... of the space L?[a; b].

n;—1
Vi = lm{soj,o,%,l,...,goj,nj_l} = {Z aspjsas € R,s=0,1,...,n; — 1} , dimV; =n

s=0

n;—1

So far as V;_y C Vj, then ¢ 15 = Z ps &¥js- Introduce the notation 2] ®,(z) =

(@i0(x), 051(x), ., @jm;—1(x)), Py = (Pi,k)gia,lkz% "\ Then ®;_; = ®;P;. We denote

W,_1 as the orthogonal complement to V;_; in V}. Since V; =V, @ W,_; and W;_; C V},

then W;_; is a finite dimensional space. If W; = lin{t;0,Vj1,. .., Vjm;—1}, dim W; = my,
n;—1

then ;1 = Z qs £¥j,s- Functions ;. are called wavelets and spaces W; are named

wavelet spaces [6] Introduce the matrices [2] W;(z) = (Yjo(x), ¥j1(2), ..., Yjm,-1(x)),

Q; = (qgk)s 01km0, "' Then U,y = ®;Q;. It should be noted, that n; + m; = n;j4;.
Let f € L2[a; b] and II; : L?[a; b] — V} is a projector. Then the approximation II; f can
be expanded into a rough approximation II,_; f clarifying addend H ' of

nj—l nj_l—l mj_l—l

IL; f = Z crpin =0 f + 0V f = Z Cj-1kPj—1k T Z dj1,kVj-1,k-
k=0 k=0 k=0

Consider the two vectors of coefficients C; = (¢j,--.,Cjn,—1)", Dj = (djo, ..., djn,-1)".
First one describes the approximation of the function f and the second represents the
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wavelet coefficients that characterize the deviation II;,_;f from II;f. As shown in |2]
C; = P;C;_1+Q;D;_1. According to this equation the approximation II; f can be restored
with a rough approximation II,_;f and wavelet coefficients. Since the linear operators
(projectors) V; — V;_1, V; — W;_; are defined by some matrices A;, B;, then C;_; = A;C;,
D;_1 = B;C;. By wavelet transform of the function f we mean the finding of vectors
Co, Do, D1, ...,D,_1. It is known [2] the relationship between the matrices A;, B; and

Pj, jS A
j . -1
(57) - )

The matrix Q; in [2] is defined from the homogeneous system of linear equations
T;Q; = 0, where T; = PT[(®;, ®;)] and [(®;, ®;)] = ()., %8))2‘;;3 is a matrix of scalar
products. The matrices Q; and P; are known as synthesis filters. The matrices A; and B;
are known as analysis filters. The set {P;,Q;, A;,B;} is called a filter bank.

In the article [3] the above approach to constructing wavelet systems on the segment
is applied to the case when the function p(z) is selected as a B-spline of arbitrary order
n. Briefly mention the main results obtained in the paper. We define B-splines of order n
as the convolution [6]

1, ifzel0;1);

Ny = Ny—1 % No, No(z) = {o if # ¢ [0;1)

Here we note some known properties of B-splines [6]. Firstly, N, (z) > 0,Vz. Secondly,
supp/N, (z) = [0;n+1]. As it is shown in [9], the function N, (z) satisfies the scaling relation
(n+1)!
Kln+1-k)!

n+1
Nalw) = Y~ EENu(22 = k), pr = Chyy =
k=0

The constructions presented in [3|, can be summarized in two following lemmas.

Lemma 1. The function p(x) = N,(z) determines the sequence of subspaces
Va,—n C Va,—n—i-l C ey voz,j - lin{@j,—ru Pj—n+1s--- 7@j72ja(n+1)—1} of L2[0; a(n + 1)]7
a=1,2,..., where U5V, = L?[0; a(n + 1)].
k+1
Let Ak = [ Nu(2)No(z —m)dz, m = —n,...,n, k=0,1,...,n and w;), = wy; =
k
n n—k ] ] n
S Nemisy ik = Oy = Ni-ks, 1 < i < k < n. Designate ¢x = ¢-x = > A\is,
s=n—i+1 s=0 s=k
k=0,1,...,n and consider vector
p = <p07p17"‘7pk7pk7'"7p17p0707"'70)T7 lfn:2k7 pER2ja(n+l)+n
(p()vplv -y PkyPk+1, Pk - - - 7p17p0707 s 70)Ta if n =2k + 17
We define the shift operator R, : R™ — R™ by the following rule
0,...,0,a1,...,a4m_s)T, ifm>s>0;
——
Rga = . a=(ar,...,am)".
(a|s|+1,...,am,O,...,O)T, if —m<s< 0,
If |s| > m, then Rsa = 0.
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Lemma 2. The matrices P; and [(®;, ®;)] for the sequence of subspaces Voo C Vo1 C ...
are

1
P; = 2—n(R—nP7 R 12D, -, Rn—2+2ja(n+1)P)7

1
[(q)ja q)j>] - E(dla SR adn7 q, R1q7 ey R2ja(n+1)—n—1(1) Ug,... 7un)T)
where

ds = (w1,57w2,s7 <oy Wnsy Qn—s+1;5 - - - aqnao) s 7O)T7 Us = (Oa s 707(]717_' . ‘aqsu‘gl,sy cee 79n,S)T7
J
q= (Qn7Qn—17 -+54q1,40,41, - - - 7qn—17Qn707 s 70)T € R2 a(n+1)+n'

The transpose of a matriz T; = PT[(®;, ;)] = Q’j(ti75)?ii§:(’f+l)+n’ Paltiytn ;o

T;F = Z(Lly ooy Ly, w, Row, .. 7R2.7'a(n+1)72n72w> L2j_1oz(n+1)+1> cee ,sz—la(n+1)+n),

where

W= (PTRanQa pTR72n+1q7 s 7pTRn+1q7 07 s 7O)T € R2ja(n+1)+n’
Lz‘ == ((R_n_;_%_g p)le, ey (R—n+2i—2 p)Tdn, 0, Ce ,O)T + (Rn o R_3n+2i_2)W, 1= 1, oy,
Li_oi-tamen+1 = (0,...,0, (Ropioi p)Tur, ..o, (Ropyoi p)Twn)” + (R 0 Ropyoi)w
i=2"tan+1),...,n—1+2ta(n+1).

Using lemma 2, we can find 2°7'a(n + 1) linearly independent solutions
hy = (his hos, - haiamit)ins) Of the system of linear equations T;h, = 0. These
solutions represent columns of the matrix Q; = (hy,... ho-14041)). We look for the
columns hy so that the functions v; s(x) = ®;(x)h, are the shifted versions of the same
function, i.e are of one form (except, of course, the boundary wavelets). According to the
matrix T; in lemma 2, this can be done as follows [3]|. First consider the case n = 2k.
Introduce the abbreviated notation for matrices composed of elements of the matrix T;:

Ty (i y = (L

J15--50m

ik:jm

For internal wavelets (the support is contained in the segment [0;a(n + 1)]) consider
hs = (0 07 h2sfn71 IR h25+2n71,87 17 07 s 70)T7 5 = n+ 17 s ,2]_106(71 + 1) -
where T; (28 i 8;2125) (has—n—1.8 -+ h2sran_1.5,1)T = 0. The remaining 2n of solutions
Correspondmg to the boundary wavelets choose as follows. For ¢ = 1,2,...,n
consider hn—i—i—l = (07 s 707 hn—i—i—l,n—i-l—l; .- h4n+2 2i,n—i+1, O S 70>T7 h2J la(nt+l)—n+i —
(Oa s 707 h2ja(n+1)—3n—1—2i,2j*1a(n+1)—n+i7 ‘. hQJa(n+1)+z 27— 1a(n+1)—n+za . 70 4 Where

1,....3n+1—1 T _ _ ;
T (nor i 25 ) (—irsn oy Pungo—0is)t =0, s =n —i+1,

Ty (960 b ion_) (h2son—tyss - haspan—is)” =0, s=2"a(n+1) —n+i.

Now consider the case n = 2k + 1. For s = n+ 1,....27%(n + 1) — n
define hy = (0,...,0,ho5n_1.5,--,h2sr2n-15,1,0,...,0)T, where

s—n,...,s+2n T _
T‘j (28—n—1,...,2n+25) (hQS—TL—l,Sv SR 7h25+2n—1787 1) =0.
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For the boundary wavelets consider h; = (0,...,0, A4, ..., hoitoni, 0, . .. 0T,

h2j*1a(n+1)—n+i =

— ) ) ) ) T
- (07 o0, h2ﬂa(n+1)+2i—3n—1,QJ—1a(n+1)—n+i7 R h27a(n+1)+i,23—1a(n+1)—n+i7 0,... 70) )
1=1,2,...,n
where
1,....i+2n T
T} (i,.,,,2i+2n) (higy s haitoni)” =0,
S—n,...,s+2n—1 T _ oj—1 .
,I‘j (Qanfl,...,23+2n7i) (hQS—TL—LS’ sy h2s+2n—i,s) = 07 s=27 a(n + 1) —n 4.

Now consider the application of wavelet systems on a segment to the construction of
two-dimensional wavelets on a rectangular area. Let the sequences Vp,;, C Vi; C ... V;; C
of finite-dimensional subspaces of the space L?[a;; b;], scaling functions ¢* and filter banks
Pji. Qji, Ay, Bji, @ = 1,2 be given. The standard approach [7] of the construction
of multi-dimensional wavelet systems is taking tensor products of functions of univariate
basis. Consider subspaces V}Q =Vi1@Vio=lin{fi® fo: fr € Vj1, fo € Vj2}, where the
function f; ® fo is defined by the rule fi ® fo(x,y) = fi(x)fe(y). In addition, define
the spaces W7 as follows V7 = V2, @ W2 ,. Then, if f € L*([a1;b1] X [a2;bo]) and
IT; : L*([a1; by] x [ag; bo]) — Vi is a pI‘OJQCtOl" then

ni1— 1TL]2 1 nji1— ln]2 1 Nnj—1,1— 177,] 1,2— 1
. 1 45,1 4.2
P> im0 = 2 DD DB DR
mj_1,1— 171] 1,2—1 nj_—1,1— 1mg 1,2—1

Z Z Tksquﬁkpls+ Z Z hislpmkqls (1)
k=0 s=0

mj_12—1
2
Z dk squnlkql s>¢§131 ® 80( :

k= 5=0
If we introduce the matrices C; = (077;171);“';11;01’nj’271, R, = (rivs)zgial’n“rl,
H; = (hi’s)zgigl’nj’rl, D, = (d#s)zzigl’mj’rl, then using (1) we obtain [3]
Cj = PjuCiaPly + QuuRjmaPl, + PjuH;1Qp + QD1 Q) (2)

In addition, it is obvious [3], that
Cjo1 = AjaCiATy Ryoy = BjaCiAjy; Hiy = AjuCiBjy; Dy = BjuCiBl,. (3)

Formula (3) gives the wavelet decomposition of the approximation 11, f of the function
of two arguments, and (2) gives the wavelet-recovery of this approximation.

2. Some Algorithms for Geometric Modelling
in Terms of Wavelet Theory

Fix the Cartesian coordinate system O, i,j,k in R? space. Let ¢ = (z,y,2)" € R?

and ¢ = i+ yj + zk. Consider a B-spline curve with parametric representation
27 a(n+1)—1
i) = > pikt)cik, t€[0;aln+1)], e, if r;(t) = (z;(t), y;(t), 2;(t)), then
k=—n
Bectuuk FOYpI'Y. Cepusa «MaTteMaTudecKoe MoJejinpoBaHUe 9
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z;(t),y;(t), z;(t) € V,,;. The polygon line with vertices ¢;p, k = —n,...,2%a(n +1) — 1

is known as the characteristic polygon line of the
mentioned curve. Let Cy = (Cjrmms Cjrmnt1s - - - » Cj2ia(nt1)—1)s
D? = (dj,—nadj,—n+17--'7dj,2~7‘a(n+1)71)- SO7 if Cj = PjCj_l + Qij—l7 then
r; = ®,C; = &,P;C;_; + ®,Q;D;-y = ®;1C;_; + ¥;_;D;_;. This yields a consistent
modification scheme (wavelet recovery) of a curve r;(t) = r;_1(t) + ej_1, where
€j—1 = \Ifj_le_l. Note, that Cj—l = AjCj, Dj_l = BjCj.

Consider the particular case of such modification. Let C; = P;C;_;. Then

r; = ¢,C;, = ®,P,C,_1 = ®;_,C,;_1 = rj_;. Therefore, in this case the shape of the
curve does not change, but the characteristic polygon line of the curve does (the number of
vertices increases). It should be noted that all the elements of the matrix P; are nonnegative
and the sum of the elements of any row of this matrix is equal to one. For that reson any
vertex c;y1x of the polygon line 7,41 belongs to the convex hull of several consecutive
vertices Cj o, Cja+1,---,Cjp of the polygon line ;.

AY

\ 4

Fig. 1. a) Chaikin’s algorithm; b) The characteristic polygon lines of same curve (n = 5)

Used in computer graphics for the construction of curves and surfaces, the famous
Chaikin’s algorithm is a special case of such transformation (the previous transformation
hereinafter will be called the generalized Chaikin’s algorithm). According to Chaikin’s
algorithm [1], which is also called the "cutting corners" algorithm, the transition from

a polygon line ~; to a polygon line ;11 with vertices ¢ji11, Cjr12,--+,Cjr1N; 415
Njy1 = 2N; — 2 is realized as follows (Fig. 1 a)):
3 1 1 3 .
Cjt1,2i-1 = ch,i + ch,i-i-l; Cjt+1,2i = ch,i + ch—i-l,i-&-la 1=1,2,..., Nj - L (4)

Equations (4) can be represented in a matrix form. Consider the matrix
C;; = (¢j1,---,¢n;)- Then (4) will turn to Cj41 = P;11C;, where Py is the matrix

from lemma 2 for n = 2. )

Since supp pjp = [2; 22 then for ¢ € [ 5] we get ri(t) = > @jk(t)cin.

277 279 21 N

=s—n
Therefore, if ¢;_, = -+ = ¢, | > 0, then r;j(t) = c;_,, t € [0;E]
Similarly, if ¢ Cj2iant+1)—l = "~ = Cjia(ntl)-1, [ > n+1, then rj<t> = Cjoia(n+1)-1,

t € [a(n+1) — &L a(n + 1)]. Figure 1 b) shows the characteristic polygon lines of same
curve.
Now consider a surfaces with the parametric representation
2l a(n+1)—1 2k B(m+1)—

r(uo) = ) > ;,’fsoj,i(U)sok,s(v),u € [0;a(n+1)], ve0;5(m+1)], (5)

1=—n S=—m
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ik i ke ks ik .. ) ) ik
where ¢} = x} i+ y/(j + 2/ k. As it is known, a polyhedron with vertices ¢ is called
g,k
);

%,8

the characteristic polyhedron of the surface. If we introduce the matrices X, = (x
Y,k = (yff), Zjk = (zzjf), then the vector function r;j can be represented as

rj,k(u, ?J) = (I)j(u)Xqu)k(U)Ti + (I)j(u)ijq)k(U)Tj + @j(U)ZLk@k(U)Tk,

i.e. the coordinates of this vector function belong to V; ® V.
Consider the following transformation of the characteristic polyhedron.
Apply the generalized Chaikin’s algorithm to the polygon lines with vertices

cl,8 = —m,—m + 1,...,2%8(m + 1) — 1. The result is a set of vertices
Eg"s,s = —m,—m+1,...,25"18(m + 1) — 1. Next we apply the generalized Chaikin’s

algorithm to the polygon lines with vertices ’6{78, i=-n,—n+1,...,2"an+1) -1
These transformations can be reduced to the transformation of the matrix rows and

columns. Xj,k; Yj,k7 Zj’kl
_ T _ T _ T
Xitrer1 = Pip1XePrir, Yisierr = PiaYePists Zjsipr = PjiZpPry  (6)

It’s clear that this transformation is a special case of transformation (2). As above, the
characteristic polyhedron of the surface changes (condences) under these transformations,
but the surface itself doesn’t.

3. Mathematical Modelling of the Manufacture
of Complex-Shaped Shells Out of Fiber Composite Materials

In practice, the complex surface of the mandrel for the future fiber composite product,
is originally defined by its point frame, which is a result of the pattern-lofting method,
based on the desired characteristics. The frame points may be used as the vertices of
the mandrel’s characteristic polyhedron, therefore the mandrel can be defined by the
parametric representation (5). The basic methods for producing the constructions out
of the fiber composite materials (CM) are two related ones: filament winding, when the
strip made of CM is laid out on the outstretched surface, and laying out. The automatic
lay out is carried out in accordance with the program for moving the head of laying out
machine (Fig. 2 a). To eliminate the gaping layers of tape to be laid on the mandrel
the laying is normally accompanied with non-rigid roller pressing (Fig. 2 b) (the pictures
are taken from [10]). Laying the tape on the mandrel can be modeled with a smooth

Fig. 2. Simulation of the variable width tape on the surface
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mapping of the rectangular area in three-dimensional Euclidean space (Fig. 2 c¢). If
v :r(s) =rjr(ua(s),va(s)), s € [0;L] is a parametric representation of the curve (s is a
variable arc length of the curve), which is where the tape is laying out (the reinforcement
curve), then it determines the semigeodesic coordinate system [8] (s,0), s € [0;L1],
6 € [~%49] (d is the maximum width of the tape) on the surface. The result is a
coordinate mapping Fr : (s,0) — (u(s,d),v(s,0)). It’s possible now to simulate the
tape of variable width on the mandrel using the mapping w(s,d) = r;; o Fr o H(s,0),
(s,0) € K = [0;L] x [—-%; 4], where H is the local homeomorphism defining the width
variation of the tape. In [4] it’s defined as follows: H(s,d) = (s,—o1(s) + (o1(s) +
oa(s)) 28D, —4 < oy(s) < 4 01(s) + 0a(s) = 0, Vs € [0;L]. Unfortunately, the
coordinate mapping Fr can not be written explicitly, but it can be approximated
with any accuracy with explicitly defined mappings of the desired smoothness [4]. In
this paper, for an approximation of the coordinate mapping we’ll use the mapping

F:(s,0)— (U(s,9),V(s,9)), defined by equation

U(s,0)\ _ (unw + 0 — 0y Upp+1 — Unp + S~ Sy Un+1,p — Uny
V(s,0) Unw dut1 — Oy \Unp+1 — Unw Sp+1 — Sy \ Un+1v — Unw

0—0y,  S—=Sy (Upp1pp1 = Uiy — Upps1 + Uy,
)
Unptlu+1 — Untly = Upptl + Uny

5v+1 - 51/ Sp+1 — Sy
s € [Sn; 377—%—1]7 NS [51/; 51/—%—1]’

where —g :5_] < (5_[_;,_1 < e < 51_1 < 5[ = d

5, 0=150 <81 <---<s;= L are nets on
the segments [—%; 2] and [0; L] respectively. The values of u,, and v,, can be found out of
the solution of systems of differential equations that define the geodesic coordinate on the
surface passing through the points (u4(s,),va(s,)) of the reinforcing curve perpendicular
to it [4]. Tt is easy to see that if the functions u(s,d) u v(s,d) are continuous and

A= max(V(sy =)+ G 0, then lu = Ulogg < w(u,A),

v — Vlew) < w(v,A), where w(f,A) is the modulus of continuity of f. The
example of modelling of the variable width tape on the surface is shown in Fig. 2.

It should be noted that the automated laying out of the fibers or winding of the
unidirectional fiber tape assumes that the width of the tape should not exceed the value
at which for all (s,6) € K |tg©(s,0)| < u, where O(s, 0) is the geodesic deviation angle [8]
of the curve w(s,d), s € [0; L], which the thread is laying out along, u is the coefficient of
sliding friction of the surface and filament materials. In this case, the the threads of the
tape will be in equilibrium.

When laying tape on the mandrel the shape of the surface changes, because the tape
has a non-zero thickness. This fact can be taken into account by tuning the characteristic
polyhedron of the surface (as a consequence there is a local change in the shape of the
surface). For more accurate accounting there must be a large number of vertices of the
polyhedron. We'll get the reconstruction of the polyhedron with the help of the generalized
Chaikin’s algorithm. Fig. 3 a) shows the vertices of the characteristic polyhedron defining
the fan blade. Fig. 3 b) shows the result of the generalized Chaikin’s algorithm to a given
characteristic polyhedron of the blade, which does not change the blade. Fig. 3 ¢) shows
the blade itself.

The blade operates under the high-tense state. The main loads are centrifugal ones as
a result of high rotation speed (around 4000 rev / min). In addition, the blade is under
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Fig. 3. The characteristic polyhedra of the fan blade a), b) and the blade itself ¢)

the aerodynamic loads of the air flow which cause its bending moments and torsion. To
counter the stretching due to centrifugal loads and bending the blade must be reinforced
with carbon fibers directed along the axis Z (the axis passing through the engine axis of
rotation and perpendicular to it. In Fig. 3 it’s a the vertical axis). The main requirement
for torsional resistance is the torsional stiffness of the blade, which requires reinforcement
in the directions +45° to the axis Z. The calculations also show that there are high
shear interlayer loads, which in some parts of the piece are above the limit for existing
domestic aircraft carbon composites. Basically, this problem is solved by material science
and technological developments. However, to avoid additional shear interlayer loads, the
reinforcing fibers must be placed along the geodesic lines. Used geodesic lines require the
surface of class C?. Therefore, in formula (5) n=m =3,a == 1.

Converting the surface after the tape laying is carried out as follows. Let
the surface of the mandrel be defined by parametric representation (5) and
Yik= {cff}fi(f: 11;1;,2’6("”1)_1 are the vertices of its characteristic polyhedron. Choosing

natural N we apply the generalized Chaikin’s algorithm to this polyhedron and obtain
j+N,k+N}2j+N(n+1)—1, 2k+N (m41)—1

2,8 i=—n, S=—m

polyhedron ¥ niin = {c (wavelet recovery):

7 e e e

Pjt1, Praa Pjt2, Prio Piyn, Pryn
Xik i1 k1 > > YN kN -

Let (u7 U) S [QJ'ZN; 2121_11\7] X [QkZN; 27@1}\7] Then

v n
vy NN (U, v) = Z Z Cg;rN’HNSOHN,i(U)SOHN,s(U)-

i=v—n S=n—m

~j+N,k+Nv,n

The vertices {c; i—v—n, s=n—m Of the conversion polyhedron of the surface are defined

as follows
. JENAEN if F(K);
EgiN7k+N: CIJJSrNkJrN’ 1 (“>U)€ ( )7 i:V_na"'aV;S:n_ma"'7777
’ c;, T4 f(0)he if (u,v) € F(K),
(5,0) = F ' (u,v),
where e is a unit vector normal to the surface at the point (u,v), f(5), § € [-4;4]is a

smoothing function and A is a tape thickness. In this example the smoothing function was

Bectuuk FOYpI'Y. Cepusa «MaTteMaTudecKoe MoJejinpoBaHUe 13
u nporpammupoBanues (Bectunk FOYpI'Y MMII). 2016. T. 9, Ne 3. C. 5-16



Y.I. Bityukov, V.N. Akmaeva

chosen as follows:

1, if § € [—A; AJ;
_ ) a2, d d
f(O)=qe = if 0 € [A; 5] O<A<§,a>0.

_(+a)?

e o if 6 € [-4;—A],

After laying of the first layer is performed the smoothing of the surface is obtained by
formulas (3) (wavelet decomposition):

Ajrr, Appr Ajya, Apyo AN, AgyN
Zj,k Zj-‘rl,k—I—l < Lo X

it Nk+N-

The result of the algorithm is shown in Fig. 4. Further we simulate the second layer, etc.
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Fig. 4. a) Simulation of the first layer laying; b) Smoothing the surface

As noted above, the laying out is performed using a special roller in accordance with
the moving program of the laying out head. In conclusion, we’ll present the trajectory
of the pressure roller. Its position in space can be described by two coordinates of its

points A and B on the roller’s axis (Fig. 5 a). Then the position of the roller at any
d

moment can be described by the vector functions ra(s) = w(s, —%) + pe o F(s,—%) and

rp(s) = w(s, 2) + pe o F(s, %), where p is the roller’s radius and e(u,v) = %

Analysis of the equilibrium of some fibers of the tape is shown on Fig. 5 b).
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a) b)

Fig. 5. a) The trajectory of the laying out machine head’s pressing roller; b) Analysis of
the equilibrium of some fibers of the tape
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Conclusion

In this paper, the semi-orthogonal wavelet systems are used in the mathematical

and computer modelling of the manufacture of complex-shaped shells made of fibrous
composite materials. As an example the producing of the fan blade by the laying
out method is simulated. However, these results can be used in the development of
CAD/CAM/CAE-system for the manufacturing of the shells made of fibrous composite
materials by any of related process: laying out and winding.

References

1.

10.

Chaikin G.M. An Algorithm for High Speed Curve Generation. Computer Graphics and Image
Processing, 1974, no. 3 (4), pp. 346-349.

. Finkelstein A., Salesin D.H. Multiresolution Curves. Proceedings ACM SIGGRAPH, 1994,

pPp- 261-268.

Bityukov Yu.l., Kalinin V.A. [The Use of Wavelets in Computer-Aided Design|. Trudy MAI,
2015, no. 84, pp. 1-28. (in Russian)

Bityukov Yu.l., Kalinin V.A. [The Numerical Analysis of the Sheme on Packing of the Tape
of Variable Width on the Technological Surface in the Course of Winding of Designs from
Composite Materials|. Mekhanika kompozitsionnykh materialov i konstruktsiy [Mechanics of
composite materials and structures|, 2010, vol. 16, no. 2, pp. 276-290. (in Russian)

Stollnitz E.J., DeRose T.D., Salesin D.H. Wawvelets for Computer Graphics: Theory and
Applications. San Francisco, Morgan Kaufmann Publishers, 1996.

Smolentsev N.K. Veyvlet-analiz v MatLab [Wavelet Analysis in MATLAB]| Moscow, DMK
Press, 2010, 448 p. (in Russian)

Novikov I.Ya., Protasov V.Yu., Skopina M.A. Teoriya vspleskov [Wavelet Theory]. Moscow,
FIZMATLIT, 2005, 613 p. (in Russian)

Rashevskiy P.K. Kurs differentsial’noy geometrii [Course of Differential Geometry|. Moscow,
URSS, 2003, 432 p. (in Russian)

Chui C.K. An Introduction to Wavelets. San Diego, N.Y., Boston, Academic Press, 1991.

Samak S., Maneski G. [The New Solution for Automated Tape Laying (ATL) Will Lead to a
Revolution in the Production of Composite]. Composite World, 2015, no. 1 (58), pp. 38-39.
(in Russian)

Received April 1, 2016

YAK 514.181.24-519.651 DOI: 10.14529/mmp160301

IIPUMEHEHIE BEBJIETOB B MATEMATITYECKOM
N KOMIIBIOTEPHOM MOJEJINPOBAHUU
N3IroTOBJIEHUA OBOJIOYEK CJIO2KHBIX ®OPM
N3 KOMIIO3UIINMOHHBIX MATEPWMAJIOB

IO.1U. Bumwxos, B.H. Axmaesa

CraThs MOCBAIIEHA TPUMEHEHIIO TEOPUH BEHBIIETOB B 33/1a€e MOJETNPOBAHUSA IPOIIECCOB
U3rOTOBJICHUST 000I0UEK U3 BOJOKHUCTHIX KOMIIO3UIMOHHLIX Marepuanos (KM). OcHoBabIME
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METOAMH TOJYyIEHNsT TAKUX 0D0IOUEK SBIAIOTCS IBA POACTBEHHBIX METOIA: HAMOTKHM, KO-
raa jgerra n3 KM ykiaapiBaeTcss Ha MOBEPXHOCTD € HATSKEHUEM U BBIKJIAIKA, KOI/A JIEHTA,
VKJIATBIBAETCS € MTOMOIITLIO TPUKUMHBIX BAJIMKOB. U B TOM U IPYTOM CIydae, YKIAIKA JIeH-
ThI OCYIIECTBJISETCA B COOTBETCTBUU C TIPOTPAMMOfl MepeMernenns pacKaaaanka. as co-
3IaHUS TAKON MPOrPAMMbI HEOOXOIMMa MATEMATHIECKAS MOIED MIPOIECCa, YKIAIKN JTEHThI
Ha MOBEPXHOCTh. B cTaThe pacCMOTPEHBI TOIyOPTOTOHAIBHBIE BEHBIET-CUCTEMBI HA OTPE3KE,
IOCTPOEHHDBIE HA OCHOBE B-ciaiina mpon3BOIbHOTO MOPAAKA. IIpecTaBieHbl MATPHIIBI, CO-
crapysionye 6aHK GUIBTPOB /st TAKUX BeliBiaer-cucreM. C TOYKH 3pEHUsT TEOPUU BeiBJIe-
TOB PACCMOTPEHBI U O0OOIIEHBI HEKOTOPBIE AJATOPUTMbBI TE€OMETPHIECKOTO MOIETHPOBAHMUS.
PesynbraThbl TpUMEHEHBI K MATEMATHIECKOMY W KOMITBIOTEPHOMY MOJETUPOBAHUIO ITPOIIEC-
€a M3TOTOBJEHUs ODOJOYEK M3 BOJOKHHUCTHIX KOMIIO3WITMOHHBIX MaTepuaaoB. B kawuecrse
IprMepa PacCMOTPEH MIPOIECC U3TOTOBJEHNS BEHTUIATOPHON JIOMATKH.

Kmovesnie carosa: setiaem; cucmemvs, a8mMoMaEMUUPOBAHHO20 NPOEKMUPOCAHUA; A4~

zopumm Hatixuna; banx dusbmpos.

JImreparypa

1.

10.

Chaikin, G.M. An Algoritm for High Speed Curve Generation / George M. Chaikin //
Computer Graphics and Image Processing. — 1974. — Ne 3 (4). — P. 346-349.

Finkelstein, A. Multiresolution Curves / A. Finkelstein, D.H. Salesin // Proceedings ACM
SIGGRAPH. - 1994. - P. 261-268.

Buriokos, FO.1. IIpumenenne BeiiBieToB B CCTEMaX aBTOMATU3UPOBAHHOTO IPOEKTUPOBAHUS
/ FO.N. Buriokos, B.A. Kanunun // Tpyner MAUL. — 2015. — Ne 84. — C. 1-28.

Buriokor, FO.M. YucienHblit aHaIn3 cXeMbl yKJIAJIKUA JIEHTHI IEPEMEHHON MTUPUHBI Ha T€XHO-
JIOTMYECKYI0 OIPABKY B IMPOIECCE HAMOTKHU KOHCTPYKIINN M3 KOMIIO3UIIMOHHBIX MATEPHUAJIOB
/ FO.1. Buriokos, B.A. Kanuuun // Mexanuka KOMIO3UIMOHHBIX MATEPUATIOB U KOHCTPYK-

muit. — 2010. — T. 16, Ne 2. — C. 276-290.

Crouaut, 3. BeiiBnersr B Kommbiorepuoii rpaduke / D. Croauur, T. JdePoys, /1. Canesun. —
Nxenck: Perynapraa m xaotudeckasa auanavmuka, 2002.

Cwmonentnes, H.K. Beiiner-ananmusz 8 MatLab / HK Cwmonennes. — M.: JIMK IIpecc, 2010.

Hosukos, U.4. Teopusa semneckos / 1.91. Hosukos, B.FO. IIporacos, M.A. Ckonuma. — M.:
OU3MATJINT, 2005.

Pamesckuii, IL.K. Kypc auddepennunanshoii reomerpun / T1.K. Pamesckuii. — M.: Tocrex-
n3mat, 1956.

Uyu, K. Beenenne B Beiisnerst / K. Hyn. — M.: Mup, 2001.

Camak, C. HoBoe pemenue s aBroMaru3upoBanuoil Beikaagxu jtent (ATL) mpuseger k
pesostonun B kKomnosuraoM npoussojcrse / C. Camak, I'. Manecku // Komnosursstit mup. —

2015. — Ne 1 (58). - C. 38-39.

FOpuit IBanosud BuTiokoB, TOKTOP TeXHUYECKUX HAyK, JOIEHT, Kadeapa < Teopus Be-

posiTHOCTEH >, MocKoBCKMii aBuannoHHblil nHCTUTYT (T. MockBa, Poccniickas @eneparust),
yib72@mail.ru.

Banentuna HukomaeBHa AKMaeBa, CTyIeHKa-MAarucTp OYHON (popmbl OOyUeHHsI, Ka-

dbeapa <Teopusi BepogrHOCTEil>, MocKoBCKUi aBuanunoHubiil uHCTHTYT (1. Mocksa, Poc-
cuiickass Qeepanust), akmaevavalentina@ya.ru.

Hocmynuana 6 pedaxyuro 1 anpeas 2016 .

16

Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2016, vol. 9, no. 3, pp. 5-16





