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Boolean functions are a modelling tool useful in many applications; monotone Boolean
functions make up an important class of these functions. For instance, monotone Boolean
functions can be used for describing the structure of the feasible subsystems of an infeasible
system of constraints, because feasibility is a monotone feature. In this paper we consider
monotone Boolean functions (MBFs), associated with undirected graphs, whose upper zeros
are de�ned as binary tuples for which the corresponding subgraph of the original undirected
graphs is either the empty graph, or it has no edges.

For this class of MBFs, we present the settings of problems which are related to the
search for upper zeros and maximal upper zeros of these functions. The notion of k-vertices
and (k,m)-vertices in a graph is introduced. It is shown that for any k-vertices of the original
graph there exists a maximal upper zero of an MBF associated with the graph, in which
the component xi corresponding to this k-vertex takes the value 1.

Based on this statement, we construct an algorithm of searching for a maximal upper
zero, for the class of MBFs under consideration, which allows one to �nd, under certain
conditions, the solution to the problem of searching for a maximal upper zero, or to
substantially reduce the dimension of the original problem.

The proposed algorithm was extended for the case of (k,m)-vertices. This extended
algorithm allows one to �x a bound on the deviation of an upper zero of the MBF from the
maximal upper zeros, in the sense of the number of units in these tuples. The algorithm
has the complexity O(n2p), where n is a number of vertices and p is a number of edges of
the original graph.
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Introduction

In a wide class of problems, infeasible systems of constraints occur naturally and
become the research subject. A variety of such systems is treated in [1] by methods
of combinatorial geometry and graph theory. The study of infeasible systems, whose
constraints correspond to the vertices of undirected graphs, and the subsystems with two
constraints are feasible if and only if the corresponding vertex pairs are edges of the graphs,
is of special applied interest.

In this paper we associate with a graph a monotone Boolean function whose zeros
correspond to the feasible subsystems of the initial infeasible system of constraints, in
which any subsystem of infeasible system is feasible if and only if every pairs of constrains
is also feasible.

The settings of Problems 1 and 2 in terms of inference of monotone Boolean functions
and, more precisely, as the search for upper zeros and maximal upper zeros, make sense
because such a setting allows one to use, for example, an algorithm of searching for upper
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zeros of monotone Boolean functions described in [1, 2]; see also [3�12], where the above�
mentioned and similar algorithms from the family of Find Border Algorithms are discussed.
In this context, the border means the union of the sets of all upper zeros and lower units
of a monotone Boolean function. An extensive survey of the current state of the theory
and practice of MBF inference is presented in [11,13].

Problem 2 can also be solved by the algorithm proposed in [1]; among the upper zeros,
we must �nd the maximal ones. In addition, an approximate algorithm, guided by the
increasing collection of generated upper zeros, can be involved in research.

Let us turn to basic notions and problems.

1. Basic Notions and Problems

Let [n] := {1, . . . , n} denote the set of consecutive integers, and let Bn := {0, 1}n
denote the unit discrete n�dimensional cube. If x := (x1, . . . , xn) ∈ Bn, then
supp(x) := {i ∈ [n] : xi = 1}.

For binary tuples x and x′, of length n, the ordering x ≤ x′ in Bn by de�nition holds
if and only if xi ≤ x′

i, for all i ∈ [n].
If X ⊆ Bn is a set of tuples, then max

⊆
X denotes the subset of maximal elements of

X with respect to the partial order on Bn, and max
|·|

X denotes the subset of all tuples

from X that have the maximal number of unit components.
A Boolean function f : Bn → B is called monotone if the implication

x,x′ ∈ Bn , x ≤ x′ =⇒ f(x) ≤ f(x′)

holds. A tuple x ∈ Bn is called a zero (respectively, a unit) of f if f(x) = 0 (respectively,
f(x) = 1).

A tuple x ∈ Bn is called an upper zero of the monotone Boolean function f : Bn → B
if f(x) = 0, and f(x′) = 1 holds for all x′ ∈ Bn such that x < x′; dually, a tuple x ∈ Bn

is called a lower unit of the function f if f(x) = 1, and f(x′) = 0 holds for all x′ ∈ Bn

such that x′ < x. A tuple x ∈ Bn is called a maximal upper zero of the MBF f if
|supp(x)| = max{supp(x′) : x′ ∈ max

⊆
f−1(0)}.

Let a simple undirected graph G := (V (G), E(G)) be given, with the vertex
set V (G) := {v1, . . . , vn} and the edge family E(G) := {e1, . . . , ep}. If U ⊂ V (G), then
G⟨U⟩ denotes the induced subgraph of the graph G, on the vertex set U . For a vertex
v ∈ V (G), N (v) ⊂ V (G) denotes the neighborhood of the vertex v in the graph G. For a
subset of vertices U ⊆ V (G), by

(
U
2

)
denote the family of all unordered 2-subsets of the

set U .
Denote by #(·) the number of sets in a family, and by | · | the cardinality of a set.
Consider the monotone Boolean function fG : Bn → B whose set of units f−1

G (1) is
de�ned as following:

fG(x) := 1 ⇐⇒ #
(
E(G) ∩

( {vi∈V (G): i∈supp(x)}
2

))
≥ 1 ; (1)

in other words, we suppose fG(x) := 1 if and only if the induced sub-
graph G⟨{vi ∈ V (G) : i ∈ supp(x)}⟩ has at least one edge.

18 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2016, vol. 9, no. 3, pp. 17�30



ÌÀÒÅÌÀÒÈ×ÅÑÊÎÅ ÌÎÄÅËÈÐÎÂÀÍÈÅ

Another monotone Boolean function gG : Bn → B, which is naturally associated with
the graph G, is de�ned by the set of its zeros g−1

G (0) as following:

gG(x) := 0 ⇐⇒ subgraph G⟨{vi ∈ V (G) : i ∈ supp(x)}⟩ is complete ; (2)

we relate to the complete graphs, the empty graph G⟨∅⟩ and the isolated vertices G⟨{vi}⟩,
vi ∈ V (G).

The graph-theoretic construction that establishes the connection between MBFs
from (1) and (2) is the complement of the graph. The complement G of the graph G
by de�nition has the vertex set V (G) and the edge family

(
V (G)

2

)
− E(G). De�nitions (1)

and (2) imply the following useful identities:

fG = gG , fG = gG .

Problem 1. For the function fG de�ned in (1), to �nd the set

max
⊆

f−1
G (0)

of its upper zeros.

Problem 2. For the function fG, to �nd the set

max
|·|

max
⊆

f−1
G (0)

of its maximal upper zeros.

2. An Algorithm for Finding a Maximal Upper Zero of a Monotone
Boolean Function Associated with an Undirected Graph

Consider Problem 2, for graphs from a certain class in more detail.

Proposition 1. Let vi ∈ V (G) be a vertex of a graph G := (V (G), E(G)), such that for
its neighborhood N (vi) the induced subgraph G⟨N (vi)⟩ of the graph G is complete. Then
there exists a maximal upper zero x′ ∈ max

|·|
max
⊆

f−1
G (0) of the function fG such that x′

i = 1.

Proof. Consider an arbitrary maximal upper zero x ∈ max
|·|

max
⊆

f−1
G (0) of the function fG,

and associate with this zero the index set I := {s ∈ [n] : vs ∈ N (vi)}. It is easy to see
that among the elements of the set I∪̇{i} there is at least one index j such that xj = 1,
because otherwise we could �nd a tuple x′ ∈ Bn such that x′

i = 1 and x′
s = xs for all

indices s ∈ [n]− {i}. Thus, because of fG(x) = 0, and by the assumption that xs = 0 for
all s ∈ I, the de�nition of the function fG implies that fG(x

′) = 0. This contradicts the
maximality of the upper zero x, because we obtain the strict inclusion supp(x′) % supp(x)
and fG(x

′) = fG(x) = 0. Now let us consider the two possible cases. If xi = 1, then we are
done. If xi = 0 and xs = 1 for some index s ∈ I, then for the tuple x one can �nd the tuple
x′ ∈ Bn (by the rule: x′

j := xj for all j ∈ [n]−{i, s}, x′
i := 1, and x′

s := 0), which is an upper
zero of the function fG, in view of the completeness of the induced subgraph G⟨N (vi)⟩,
and |supp(x′)| = |supp(x)|; we thus obtained a maximal upper zero x′ of the function fG
such that x′

i = 1, as it was to be proved. 2
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De�nition 1. For an integer k ∈ [n − 1], a vertex v ∈ V (G) of the graph G :=
(V (G), E(G)) is called a k-vertex, if |N (v)| = k and the induced subgraph G⟨N (v)⟩ of the
graph G is complete.

De�nition 2. For integers k,m ∈ [n − 1], a vertex v ∈ V (G) of the graph G :=
(V (G), E(G)) is called a (k,m)-vertex, if k = |N (v)| and m =

(
k
2

)
−#

(
E(G) ∩

(N (v)
2

))
.

A (k,m)-vertex v ∈ V (G) of the graphG := (V (G), E(G)) is its k-vertex whenm = 0.
On the basis of Proposition 1 one can propose an e�cient recursive algorithm for

solving Problem 2, which �nishes its work either by the construction of a maximal upper
zero of the function fG, or by the reduction of Problem 2 for the function fG to the new
Problem 2 for a function fG′ , where G′ ⊂ G, that is, by the decrease of the dimension of
the problem to be solved.

Given a vertex v ∈ V0 ⊆ V (G), denote by N (v, V0) ⊂ V0 the neighborhood of the
vertex v in the induced subgraph G⟨V0⟩.

Algorithm 1. Algorithm A(G, V0) for �nding a maximal upper zero x := (x1, . . . , xn) ∈
Bn of the function fG
Input data: G, V0

Output data: V0,x
1: xi = 0, i ∈ [n], vi ∈ V0

2: for each vi ∈ V0 do

3: if vi is a |N (vi, V0)|-vertex in the subgraph G⟨V0⟩ then
4: xi ← 1

V0 ← V0 − ({vi} ∪̇ N (vi, V0))
A(G, V0)

end of condition

end of loop

If at the end of the work of Algorithm 1 we get V0 = ∅, then, according to Proposition 1,
the resulting tuple x ∈ Bn is a maximal upper zero of the function fG.

However, if at the end of the work of Algorithm 1 we have V0 ̸= ∅, then for all vertices
of the graph G⟨V − V0⟩ we determined the values of some components xi such that there
exists a maximal upper zero x′ of the function fG with precisely the same values for these
components, that is, x′

i = xi; and yet we achieve the decrease of the dimension of the
problem from |V | to |V0|.

Lemma 1. Let two graphs G1 := (V, E(G1)) and G2 := (V, E(G2)) be given, with the
same vertex set V , and

E(G1) ⊆ E(G2) .

Then

max
|·|

max
⊆

f−1
G2

(0) ⊆ max
⊆

f−1
G2

(0) ⊆ f−1
G2

(0) ⊆ f−1
G1

(0) .

Proof. It is clear that max
|·|

max
⊆

f−1
G2

(0) ⊆ max
⊆

f−1
G2

(0) ⊆ f−1
G2

(0).
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Consider an arbitrary tuple x ∈ Bn such that x ∈ f−1
G2

(0). By the de�nition of the set

of zeros f−1
G2

(0) of the MBF fG2 , we have:

#
(
E(G2) ∩

( {vi: i∈supp(x)}
2

))
= 0 .

By the hypothesis of the lemma, we have E(G1) ⊆ E(G2) and V (G1) = V (G2); as a
consequence,

#
(
E(G1) ∩

( {vi: i∈supp(x)}
2

))
= 0 , ∀x ∈ f−1

G2
(0) ,

and
x ∈ f−1

G1
(0) . (3)

Then for any tuples x ∈ Bn such that x ∈ f−1
G2

(0), inclusion (3) holds, that is,

f−1
G2

(0) ⊆ f−1
G1

(0) ,

as it was to be proved.

2

It should be mentioned that

max
⊆

f−1
G2

(0) ̸⊆ max
⊆

f−1
G1

(0) . (4)

Indeed, consider the graphs

G1 := (V (G1), E(G1)) = (V, ∅) ,
G2 := (V (G2), E(G2)) =

(
V,

(
V
2

))
,

for which we have V (G1) = V (G2) and E(G1) ⊆ E(G2). The graph G1 has no edges,
therefore, the set of upper zeros of the function fG1 consists of the unique tuple

x := (1, 1, . . . , 1) .

The graph G2 is complete; thus, the set of upper zeros of the function fG2 has the form:

x1 : = (1, 0, . . . , 0) ,

x2 : = (0, 1, . . . , 0) ,

...

xn : = (0, 0, . . . , 1) .

Any tuple x ∈ max
⊆

f−1
G2

(0) is a zero of the function fG1 , that is,

max
⊆

f−1
G2

(0) ⊆ f−1
G1

(0) , max
⊆

f−1
G2

(0) ̸⊆ max
⊆

f−1
G1

(0) ,

as Lemma 1 asserts; this justi�es (4).
Let us de�ne the quantity max0 fG := |supp(x)|, where x ∈ max

|·|
max
⊆

f−1
G (0), that is

the number of unit components in a maximal upper zero of the function fG.
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Corollary 1. Let G1 := (V, E1) and G2 := (V, E2) be graphs such that E1 ⊆ E2. Then

max0fG1 ≥ max0fG2 .

Proof. Let x ∈ max
|·|

max
⊆

f−1
G2

(0). According to Lemma 1, we have x ∈ f−1
G1

(0).

By the de�nition of the maximal upper zeros of the function, for any tuple x ∈ f−1
G1

(0)

there exists a tuple x′ ∈ max
|·|

max
⊆

f−1
G1

(0) such that x′ ≥ x. Then

max0fG1 = |supp(x′)| ≥ |supp(x)| = max0fG2 ,

as it was to be proved. 2

Proposition 2. Let G := (V (G), E(G)) be a graph for which vertices vi and vj are not
adjacent. Then

max0fG ≥ max0fG∪{(vi,vj)} ≥ max0fG − 1 . (5)

Proof. The inequality max0 fG ≥ max0 fG∪{(vi,vj)} follows from Corollary 1.
Let us prove the inequality max0 fG∪{(vi,vj)} ≥ max0 fG − 1. Let x := (x1, . . . , xn) be a

maximal upper zero of the function fG.
Case 1. Suppose that xi = 0 and xj = 0. Then x is clearly a zero of the

function fG∪{(vi,vj)}, and it is a maximal upper zero, because otherwise we would obtain,
by de�nition, that there exists a maximal upper zero x′ of the function fG∪{(vi,vj)} such
that x′ > x and |supp(x′)| > |supp(x)|. According to Lemma 1, we obtain that x′ is a
zero of the function fG, but this contradicts the maximality of x.

Thus, in this case, we have:

max0fG = max0fG∪{(vi,vj)} ≥ max0fG − 1 .

Case 2. Suppose that xi = 1 and xj = 0. If the edge (vi, vj) is added, then the tuple x
is again a zero of the function fG∪{(vi,vj)} and, as it was shown above, it is also a maximal
upper zero of the function fG∪{(vi,vj)}.

Case 3. Suppose that xi = 1 and xj = 1. If the edge (vi, vj) is added, then we
obtain that x is not a zero of the function fG∪{(vi,vj)}. In this case, we can �nd a tuple x′

for which x′
s = xs for all s ∈ [n]− {i}, and x′

i = 0. The tuple x′ will be a zero of the
function fG∪{(vi,vj)}. Moreover, by construction,

|supp(x′)| = |supp(x)| − 1 .

By the de�nition of the maximal upper zeros of the function, we have:

max0fG∪{(vi,vj)} ≥ |supp(x′)| = |supp(x)| − 1 = max0fG − 1 ,

as it was to be proved. 2

Corollary 2. For a graph G := (V (G), E(G)), let {e1, . . . , et} ⊂
(
V (G)

2

)
− E(G) be a

subfamily of t vertex pairs that are not edges of the graph G.
Then

max0fG∪{e1,...,et} ≥ max0fG − t .

Proof. It su�ces to apply Proposition 2, t times, to the graph G. 2
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On the basis of Proposition 2, one can modify Algorithm 1 in such a way that the
work of the algorithm will continue until the set of remaining vertices V0 becomes empty
and, besides, a zero x of the function fG will be found, for which, at the same time, we
will calculate the estimate (max0 fG − |supp(x)|) of the deviation of the number of unit
components in the resulting tuple x from the number of unit components in a maximal
upper zero of the function fG.

Algorithm 2. Algorithm Am(G, V0)

Input data: G, V0, m ∈ [n]
Output data: V0, Ind, x
1: Ind = 0
2: for each vi ∈ V0 do

3: if vi is a (|N (vi, V0)|,m)-vertex in the subgraph G⟨V0⟩ then
4: xi ← 1

V0 ← V0 − ({vi} ∪̇ N (vi, V0))
Ind← 1

5: break

end of condition

end of loop

Algorithm 2 sequentially checks, for the given value of m and for each vertex of the
initial set V0, whether it is a (|N (vi, V0)|,m)-vertex. If there are no such vertices, then no
operations are performed, and the resulting set V0 at the end of the work of the algorithm
coincides with the input set V0, the �ag Ind = 0, a binary tuple x is not determined. In
the case when such a vertex vi is found, the output set V0 will be obtained from the input
set V0 by means of the "removal" of the vertex vi and its neighborhood, Ind = 1, and the
corresponding component xi of the tuple x takes the value of 1.

Algorithm 3. Algorithm B(G, V0)

Input data: G, V0

Output data: x ∈ f−1
G (0)

1: while V0 ̸= ∅
2: m = 0

Ind = 1
3: while (Ind = 1) & V0 ̸= ∅ do
4: Am(G, V0)

Ind← Ind(Am(G, V0))
end of loop

5:

6: while (Ind = 0) & V0 ̸= ∅ do
7: m← m+ 1

Am(G, V0)
Ind← Ind(Am(G, V0))

end of loop

end of loop
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During operation Algorithm 3, as the result of repeated calls of Algorithm 2, the
tuple x is formed, which is a zero of the function fG.

Proposition 3. Let vi be a (k,m)-vertex in a graph G := (V (G), E(G)). Then there exists
a tuple x′ ∈ max

⊆
f−1
G (0) such that x′

i = 1 and

|supp(x′)| ≥ max0fG −m .

Proof. Suppose, according to the de�nition of the (k,m)�vertices, that for vi ∈ V (G) we
have

{e1, . . . , em} :=
(N (vi)

2

)
−

(
E(G) ∩

(N (vi)
2

))
.

Then the vertex vi is a k-vertex in the graph G1, which is obtained from the graph G by
the addition ofm edges {e1, . . . , em} into the neighborhood of the vertex vi of the graphG
to turn the induced subgraph G1⟨N (vi)⟩ into a complete graph.

According to Proposition 1, there exists a tuple x such that xi = 1
and x ∈ max

|·|
max
⊆

f−1
G1

(0).

According to Corollary 2, for the graph G1 we have:

|supp(x)| = max0fG1 ≥ max0fG −m .

It follows from Lemma 1 that x ∈ f−1
G (0). By the de�nition of the upper zeros, there exists

a tuple x′ ∈ max
⊆

f−1
G (0) such that x′ ≥ x and, as a consequence,

|supp(x′)| ≥ |supp(x)| ≥ max0fG −m ,

as it was to be proved.

2

In every next loop of Algorithm 1, the search is terminated when some k-vertex is
found. Such an approach minimizes the number of operations in the working loop of the
algorithm, but it does not necessarily lead to the best solution in the case when V0 ̸= ∅.

Let us present an Algorithm 4, in each next working loop of which the parameters k
and m are calculated for every vertex from the current set V0.

Algorithm 4.
Input data: G, V0, m = 0
Output data: x ∈ max

⊆
f−1
G (0), and m which is the estimate of deviation from max0 fG

while V0 ̸= ∅
for all vertices vi ∈ V0 ̸= ∅, to calculate the parameters ki and mi such that vi is
a (ki,mi)-vertex in the graph G⟨V0⟩; in the set V0, to extract the subset V ′

0 ⊆ V0 of
vertices with the minimal values of the parameter mi. Among the extracted vertices
in the set V ′

0 , to �nd a vertex vi0 ∈ V ′
0 with the maximal value of the parameter ki0

xi0 ← 1
m← m+mi0

V0 ← V0 − ({vi0} ∪̇ N (vi0 , V0))
end of loop
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Algorithm 4 �nds a tuple x ∈ max
⊆

f−1
G (0), for which the precision estimate

max0 fG − |supp(x)| ≤ m of the solution is true.
Let us estimate the complexity of Algorithm 4.
For each vertex vi from the current set V0, it is necessary to �nd the number of vertices

in the neighborhood N (vi, V0) and the number of new edges that should be added into the
neighborhood N (vi, V0) for turning the induced subgraph G⟨N (vi, V0)⟩ into a complete
graph. We remove the vertices vi∪̇N (vi, V0) and the edges ei ∈ G⟨{vi}∪̇N (vi, V0)⟩ until the
current set of vertices V0 becomes empty. Given the input data V (G) = {v1, . . . , vn} and
E(G) = {e1, . . . , ep}, we obtain the following estimate. The common number of iterations
undertaken during the work of Algorithm 4 is less than or equal to n; every iteration
demands no more than O(np) actions for the computation of the parameters k and m;
and no more than O(p) actions are needed for the removal of a vertex and its neighborhood
from the current graph. Thus, Algorithm 4 has the complexity of O(n ·np+np) = O(n2p).

3. Solving the Problem of Searching for a Maximal Upper Zero

For some applied problems that are reduced to Problem 2, either exact results were
obtained, or the signi�cant decrease of the dimension of Problem 2 was achieved.

Example 1. The graph G := (V := {v1, . . . , v22}, E) is speci�ed by the incidence lists
N (vi) of its vertices, i ∈ [22], V0 = V :

N (v1) := {v2, v3, v4, v6, v8, v9} , N (v12) := {v2, v3, v4, v6, v11, v17} ,
N (v2) := {v1, v3, v4, v6, v12} , N (v13) := {v11, v14, v15} ,
N (v3) := {v1, v2, v4, v7, v12} , N (v14) := {v11, v13, v15} ,
N (v4) := {v1, v2, v3, v5, v6, v8, v9, v10, v12} , N (v15) := {v11, v13, v14, v16} ,
N (v5) := {v4, v6, v7, v9, v10} , N (v16) := {v15, v17} ,
N (v6) := {v1, v2, v4, v5, v7, v8, v9, v12} , N (v17) := {v12, v16, v18, v19, v21, v22} ,
N (v7) := {v3, v5, v6} , N (v18) := {v10, v17, v19, v21, v22} ,
N (v8) := {v1, v4, v6, v9} , N (v19) := {v17, v18, v21, v22} ,
N (v9) := {v1, v4, v5, v6, v8, v10} , N (v20) := {v10, v21, v22} ,
N (v10) := {v4, v5, v9, v11, v18, v20} , N (v21) := {v17, v18, v19, v20} ,
N (v11) := {v10, v12, v13, v14, v15} , N (v22) := {v17, v18, v19, v20} .
Acting in accordance with Algorithm 1, for each vertex vi ∈ V0 we check whether it is

a k-vertex in the graph G.
A(G, V0):

v1 (2,3,4,5,6,7) is not a 6 (5, 5, 9, 5, 8, 3)-vertex.
v8 is a 4-vertex ⇒ x8 ← 1; V0 ← V0 − {v1, v4, v6, v8, v9}.
v2 is a 2-vertex ⇒ x2 ← 1; V0 ← V0 − {v2, v3, v12}.
v5 is not a 2-vertex.
v7 is a 1-vertex ⇒ x7 ← 1; V0 ← V0 − {v5, v7}.
v10 (11) is not a 3 (4)-vertex.
v13 is a 3-vertex ⇒ x13 ← 1; V0 ← V0 − {v11, v13, v14, v15}.
v10 is not a 2-vertex.
v16 is a 1-vertex ⇒ x16 ← 1; V0 ← V0 − {v16, v17}.
v10 (18,19,20,21,22) is not a 2 (4, 3, 3, 3, 3)-vertex.
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x = (0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0) is a zero of the function fG,
x ∈ f−1

G (0); besides, a maximal upper zero x′ ∈ max
|·|

max
⊆

f−1
G (0) of the function fG has the

form:

x′ = (0, 1, 0, 0, 0, 0, 1, 1, 0, x10, 0, 0, 1, 0, 0, 1, 0, x18, x19, x20, x21, x22) .

Thus, the dimension of the problem was decreased from |V0| = 22 to
|V0| = |{v10, v18, v19, v20, v21, v22}| = 6.

For exhausting the vertex set V0, we follow Algorithm 3, that is, among the vertices
from the set V0 we search for (k,m)-vertices (the case of m = 0 corresponds to the search
for k-vertices, which was undertaken by Algorithm 1).

Table 1

The result of the work of Algorithm 3

m 0 0 0 0 0 0 1 0 0 x
Ind 1 1 1 1 1 1 0 1 1
v1 1 0 0 0 0 0 0 0 0 0
v2 1 1 0 0 0 0 0 0 0 1
v3 1 1 0 0 0 0 0 0 0 0
v4 1 0 0 0 0 0 0 0 0 0
v5 1 1 1 0 0 0 0 0 0 0
v6 1 0 0 0 0 0 0 0 0 0
v7 1 1 1 0 0 0 0 0 0 1
v8 1 0 0 0 0 0 0 0 0 1
v9 1 0 0 0 0 0 0 0 0 0
v10 1 1 1 1 1 1 0 0 0 1
v11 1 1 1 1 0 0 0 0 0 0
v12 1 1 0 0 0 0 0 0 0 0
v13 1 1 1 1 0 0 0 0 0 1
v14 1 1 1 1 0 0 0 0 0 0
v15 1 1 1 1 0 0 0 0 0 0
v16 1 1 1 1 1 0 0 0 0 1
v17 1 1 1 1 1 0 0 0 0 0
v18 1 1 1 1 1 1 0 0 0 0
v19 1 1 1 1 1 1 1 0 0 0
v20 1 1 1 1 1 1 0 0 0 0
v21 1 1 1 1 1 1 1 0 0 1
v22 1 1 1 1 1 1 1 1 0 1

Example 2. Acting in accordance with Algorithm 3, for each vertex vi ∈ V0 we check
whether it is a (k,m)-vertex in the graph G.

V0 ̸= ∅, m = 0:
Ind = 0⇒ m← m+ 1 = 1, A1(G, V0):
v10 is a (2, 1)-vertex: x10 ← 1, V0 ← V0 − {v10, v18, v20}.
Ind = 1⇒ m = 0, A0(G, V0):
v19 is not a 2-vertex;
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v21 is a 1-vertex: x21 ← 1, V0 ← V0 − {v19, v21}.
Ind = 1⇒ m = 0, A0(G, V0):
v22 is a 0-vertex: x22 ← 1, V0 ← V0 − {v22}.
V0 = ∅.

x′ = (0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1) is a zero of the function fG, and it
is a maximal upper zero of the function fG∪{(v18,v20)}; then, according to Proposition 2, the
number of unit components in a maximal upper zero of the function fG is restricted by
the inequality:

max0fG ≤ max0fG∪{(v18,v20)} + 1 = |supp(x′)|+ 1 = 9 .

Table 2

The work of Algorithm 4

k/m k/m k/m k/m k/m k/m k/m k/m k/m x

v1 6/5 0
v2 5/2 2/0 2/0 1
v3 5/5 3/2 3/2 0
v4 9/19 0
v5 5/4 2/1 2/1 2/1 0
v6 8/15 0
v7 3/2 2/1 2/1 1/0 1
v8 4/0 1
v9 6/5 0
v10 6/12 4/6 3/3 3/3 2/1 2/1 1/0 1
v11 5/7 5/7 0
v12 6/10 4/5 3/2 0
v13 3/0 3/0 1
v14 3/0 3/0 0
v15 4/3 4/3 0
v16 2/1 2/1 1/0 1/0 1/0 1
v17 6/10 6/10 6/10 5/5 5/5 0
v18 5/5 5/5 5/5 5/5 5/5 4/4 0
v19 4/1 4/1 4/1 4/1 4/1 3/1 1
v20 3/3 3/3 3/3 3/3 3/3 3/3 1/0 0
v21 4/3 4/3 4/3 4/3 4/3 3/2 0
v22 4/3 4/3 4/3 4/3 4/3 3/2 0

It is convenient to describe the result of the work of Algorithm 3 in the form of Table 1.
The columns of the table correspond to the current state of the set V0. We sequentially
remove k-vertices and their neighborhoods from the set V0, associating to the corresponding
components xi of the value 1 in the case when vi is a k-vertex, and of the value 0 otherwise.

Table 2 describes the work of Algorithm 4. Every column of the table represents an
iteration of Algorithm 4; the nonzero elements of a column correspond to the set V0, and
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in an i-th row's values of k and m are related to the vertex vi in the current subgraph
G⟨V0⟩.

For the resulting tuple x = (0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0) it holds
that x ∈ max

⊆
f−1
G (0) and according to Corollary 2 from Proposition 2 we see that

|supp(x)| = 7 ≥ max0 fG − 1, or equally max0 fG ≤ 8.
Earlier, for the tuple x′ obtained with the help of Algorithm 3, we also obtained that

max0 fG ≤ 9. Since x′ ∈ max
⊆

f−1
G (0), |supp(x′)| = 8 and max0fG ≤ 8, we see that x′ ∈

max
|·|

max
⊆

f−1
G (0) and max0 fG = 8.
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ÀËÃÎÐÈÒÌ ÐÀÑØÈÔÐÎÂÊÈ ÌÎÍÎÒÎÍÍÛÕ
ÁÓËÅÂÛÕ ÔÓÍÊÖÈÉ, ÏÎÐÎÆÄÀÅÌÛÕ
ÍÅÎÐÈÅÍÒÈÐÎÂÀÍÍÛÌÈ ÃÐÀÔÀÌÈ

Ä.Í. Ãàéíàíîâ, Â.À. Ðàññêàçîâà

Ñóùåñòâóåò äîñòàòî÷íî ïðèêëàäíûõ çàäà÷, â êîòîðûõ îäíèì èç èíñòðóìåíòîâ
ìîäåëèðîâàíèÿ ñëóæàò áóëåâû ôóíêöèè, ñðåäè êîòîðûõ âàæíóþ ðîëü èãðàþò ìîíî-
òîííûå áóëåâû ôóíêöèè. Íàïðèìåð, ìîíîòîííûå áóëåâû ôóíêöèè ÿâëÿþòñÿ óäîáíûì
ñðåäñòâîì äëÿ îïèñàíèÿ ñòðóêòóðû ñîâìåñòíûõ ïîäñèñòåì íåñîâìåñòíûõ ñèñòåì óñëî-
âèé, ïîñêîëüêó ñîâìåñòíîñòü ÿâëÿåòñÿ ìîíîòîííûì ñâîéñòâîì.

Â ðàáîòå ðàññìàòðèâàþòñÿ ìîíîòîííûå áóëåâû ôóíêöèè, ïîðîæäàåìûå íåîðèåí-
òèðîâàííûìè ãðàôàìè, â êîòîðûõ íóëè ôóíêöèè îïðåäåëÿþòñÿ êàê òàêèå äâîè÷íûå
íàáîðû, äëÿ êîòîðûõ ñîîòâåòñòâóþùèé ïîäãðàô èñõîäíîãî íåîðèåíòèðîâàííîãî ãðàôà
ïóñò, èëè íå ñîäåðæèò ðåáåð. Äëÿ òàêîãî êëàññà ìîíîòîííûõ áóëåâûõ ôóíêöèé äàþòñÿ
ïîñòàíîâêè çàäà÷, ñâÿçàííûõ ñ âûäåëåíèåì âåðõíèõ íóëåé è ìàêñèìàëüíûõ âåðõíèõ
íóëåé ôóíêöèè. Ââîäÿòñÿ ïîíÿòèÿ k-âåðøèíû è (k,m)-âåðøèíû â íåîðèåíòèðîâàííîì
ãðàôå. Ïîêàçàíî, ÷òî äëÿ ëþáîé k-âåðøèíû èñõîäíîãî ãðàôà ñóùåñòâóåò ìàêñèìàëü-
íûé âåðõíèé íóëü ïîðîæäåííîé ìîíîòîííîé áóëåâîé ôóíêöèè, â êîòîðîì êîìïîíåíòà
xi, ñîîòâåòñòâóþùàÿ ýòîé k-âåðøèíå, ïðèíèìàåò çíà÷åíèå 1.

Íà îñíîâå ýòîãî óòâåðæäåíèÿ ïîñòðîåí àëãîðèòì âûäåëåíèÿ ìàêñèìàëüíîãî âåðõ-
íåãî íóëÿ äëÿ ðàññìàòðèâàåìîãî êëàññà ìîíîòîííûõ áóëåâûõ ôóíêöèé, êîòîðûé ãà-
ðàíòèðóåò, ïðè îïðåäåëåííûõ óñëîâèÿõ, íàõîæäåíèå òî÷íîãî ðåøåíèÿ çàäà÷è ïîèñêà
ìàêñèìàëüíîãî âåðõíåãî íóëÿ, ëèáî ïðèâîäèò ê ñíèæåíèþ ðàçìåðíîñòè èñõîäíîé çà-
äà÷è. Ïðåäëîæåííûé àëãîðèòì îáîáùàåòñÿ äëÿ ñëó÷àÿ èñïîëüçîâàíèÿ (k,m)-âåðøèí.
Ïîñòðîåííûé àëãîðèòì âûäåëÿåò âåðõíèé íóëü ìîíîòîííîé áóëåâîé ôóíêöèè è äàåò
îöåíêó åãî îòêëîíåíèÿ îò ìàêñèìàëüíîãî âåðõíåãî íóëÿ ïî ÷èñëó åäèíèö â ýòèõ íà-
áîðàõ. Àëãîðèòì èìååò ñëîæíîñòü O(n2p), ãäå n � ÷èñëî âåðøèí è p � ÷èñëî ðåáåð
èñõîäíîãî ãðàôà.

Êëþ÷åâûå ñëîâà: ìîíîòîííàÿ áóëåâà ôóíêöèÿ; âåðõíèé íóëü ìîíîòîííîé áóëåâîé

ôóíêöèè; íåîðèåíòèðîâàííûé ãðàô; àëãîðèòì ïîèñêà ìàêñèìàëüíûõ âåðõíèõ íóëåé

ìîíîòîííîé áóëåâîé ôóíêöèè.

Ðàáîòà ïðîâîäèëàñü ïðè ôèíàíñîâîé ïîääåðæêå ÊÖÏ (Êîëëåêòèâíûé öåíòð
ïðåâîñõîäñòâà) ≪Êâàíòóì è âèäåîèíôîðìàöèîííûå òåõíîëîãèè≫ ïðîãðàììà ðàç-
âèòèÿ Óðàëüñêîãî ôåäåðàëüíîãî óíèâåðñèòåòà èì. ïåðâîãî ïðåçèäåíòà Ðîññèè
Á.Í. Åëüöèíà.
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