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In papers by A.L. Shestakov and G.A. Sviridyuk a new model of the description
of dynamically distorted signals in some radio devices is suggested in terms of so-called
Leontie� type equations (a particular case of algebraic-di�erential equations). In that model
the in�uence of noise is taken into account in terms of the so-called symmetric mean
derivatives of the Wiener process instead of using white noise. This allows the authors
to avoid using the generalized function. It should be pointed out that by physical meaning,
the current velocity is a direct analog of physical velocity for the deterministic processes.
Note that the use of current velocity of the Wiener process means that in the construction
of mean derivatives the σ-algebra "present" for the Wiener process is under consideration
while there is also another possibility: to deal with the σ-algebra "present" of the solution as
it is usually done in the theory of stochastic di�erential equation with mean derivatives. This
approach was previously suggested by the authors under the assumption that the matrix
pencil, that determines the equation, satis�es the so-called "rank-degree" condition. In this
paper we consider stochastic Leontie� type equation given in terms of current velocities of
the solution without this assumption.

Keywords: mean derivatives; current velocities; stochastic Leontie� type equations.

Introduction

We understand the di�erential equations of Leontie� type as a special class of algebraic-
di�erential systems in Rn of the form

Lẋ(t) = Mx(t) + f(t),

where x(t) and f(t) are n-dimensional vectors, L and M are constant n×n matrices where
L is degenerate and M is not degenerate. With the use of such equations in papers by
A.L. Shestakov and G.A. Sviridyuk (see e.g. [1, 2]) the dynamical distortion of signals in
radio devises is described. In the papers by L.A. Vlasenko T. Sickenberger and R. Winkler
A.G Rutkas, M.S. Filipkovskaya and others such equations arise in mathematical models
of oscillations and electric nets.

For applications of the above mentioned models it is important to take into account
noise in the right-hand side of the Leontie� type equation, i.e., random perturbation
of white noise type. Recall that the white noise is well-posed in the space of generalized
functions. In papers [3�5] a new approach for investigation of Leontie� type equations with
noise is suggested that replaces the white noise by Nelson's symmetric mean derivative
(current velocity, see e.g. [7�9]) of the Wiener process that allows one to avoid using
the generalised functions. The current velocities are natural analogues of usual physical
velocities of deterministic processes. In this paper we investigate the processes that are
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described by Leontie� type equations in terms of the current velocities of the solutions.
In should be pointed out that in such setting the current velocities of Wiener process are
not involved from the very beginning.

The Leontie� type di�erential equations in terms of current velocity of solution are
introduced and investigated in [6] under the additional assumption that the pencil of
constant matrices satis�es the so-called "rank-degree" condition. Here we deal with the
systems that do not satisfy this condition.

For simplicity we consider equations, their solutions and other objects on a �nite time
interval t ∈ [0, T ].

Everywhere in the text we use Einstein's summation convention in repeated upper and
lower index.

1. Preliminaries on the Mean Derivatives

Consider a stochastic process ξ(t) in Rn, t ∈ [0, l], given on a certain probability space
(Ω,F ,P) and such that ξ(t) is L1-random variable for all t.

Every stochastic process ξ(t) in Rn, t ∈ [0, l], determines three families of σ-subalgebras
of σ-algebra F :
(i) the "past" Pξ

t generated by pre-images of Borel sets in Rn by all mappings ξ(s) : Ω → Rn

for 0 ≤ s ≤ t;
(ii) the "future" F ξ

t generated by pre-images of Borel sets in Rn by all mappings ξ(s) :
Ω → Rn for t ≤ s ≤ l;
(iii) the "present" ("now") N ξ

t generated by pre-images of Borel sets in Rn by the mapping
ξ(t).
All families are supposed to be complete, i.e., containing all sets of probability 0.

For convenience we denote the conditional expectation of ξ(t) with respect to N ξ
t by

Eξ
t (·).
Ordinary ("unconditional") expectation is denoted by E.
Strictly speaking, almost surely (a.s.) the sample paths of ξ(t) are not di�erentiable for

almost all t. Thus its "classical" derivatives exist only in the sense of generalized functions.
To avoid using the generalized functions, following Nelson (see, e.g., [7�9]) we give

De�nition 1. (i) Forward mean derivative Dξ(t) of ξ(t) at time t is an L1-random variable
of the form

Dξ(t) = lim
∆t→+0

Eξ
t (
ξ(t+∆t)− ξ(t)

∆t
) (1)

where the limit is supposed to exists in L1(Ω,F ,P) and ∆t → +0 means that ∆t tends to
0 and ∆t > 0.

(ii) Backward mean derivative D∗ξ(t) of ξ(t) at t is an L1-random variable

D∗ξ(t) = lim
∆t→+0

Eξ
t (
ξ(t)− ξ(t−∆t)

∆t
) (2)

where the conditions and the notation are the same as in (i).

Note that mainly Dξ(t) ̸= D∗ξ(t), but if, say, ξ(t) a.s. has smooth sample paths, these
derivatives evidently coinside.
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From the properties of conditional expectation (see [10]) it follows that Dξ(t) and
D∗ξ(t) can be represented as compositions of ξ(t) and Borel measurable vector �elds
(regressions)

Y 0(t, x) = lim
∆t→+0

E(
ξ(t+∆t)− ξ(t)

∆t
|ξ(t) = x),

Y 0
∗ (t, x) = lim

∆t→+0
E(

ξ(t)− ξ(t−∆t)

∆t
|ξ(t) = x) (3)

on Rn. This means that Dξ(t) = Y 0(t, ξ(t)) and D∗ξ(t) = Y 0
∗ (t, ξ(t)).

De�nition 2. The derivative DS = 1
2
(D +D∗) is called symmetric mean derivative. The

derivative DA = 1
2
(D −D∗) is called anti-symmetric mean derivative.

Consider the vector �elds

vξ(t, x) =
1

2
(Y 0(t, x) + Y 0

∗ (t, x))

and

uξ(t, x) =
1

2
(Y 0(t, x)− Y 0

∗ (t, x)).

De�nition 3. vξ(t) = vξ(t, ξ(t)) = DSξ(t) is called current velocity of ξ(t);
uξ(t) = uξ(t, ξ(t)) = DAξ(t) is called osmotic velocity of ξ(t).

For stochastic processes the current velocity is a direct analogue of ordinary physical
velocity of deterministic processes (see, e.g., [7�9,11]). The osmotic velocity measures how
fast the "randomness" grows up.

Recall that Ito process is a process ξ(t) of the form

ξ(t) = ξ0 +

t∫
0

a(s)ds+

t∫
0

A(s)dw(s), (4)

where a(t) is a process in Rn whose sample paths a.s. have bounded variation; A(t) is
a process in L(Rn,Rn) such that for any element Aj

i (t) of matrix A(t) the condition

P(ω|
∫ T

0
(Aj

i )
2dt < ∞) = 1 holds; w(t) is a Wiener process in Rn; the �rst integral is

Lebesgue integral, the second one is It�o integral and all integrals are well-posed.

De�nition 4. An It�o process ξ(t) is called a process of di�usion type if a(t) and A(t)
are not anticipating with respect to Pξ

t and the Wiener process w(t) is adapted to Pξ
t .

If a(t) = a(t, ξ(t)) and A(t) = A(t, ξ(t)), where a(t, x) and A(t, x) are Borel measurable
mappings from [0, T ]×Rn to Rn and to L(Rn,Rn), respectively, the It�o process is called a
di�usion process.

Below we are dealing with smooth �elds of non-degenerate linear operators A(x) :
Rn → Rn, x ∈ Rn (i.e., (1, 1)-tensor �eld on Rn). Let ξ(t) be a di�usion process in
which the integrand under It�o integral is of the form A(ξ(t)). Then its di�usion coe�cient
A(x)A∗(x) is a smooth �eld of symmetric positive de�nite matrices α(x) = (αij(x)) ((2, 0)-
tensor �eld on Rn). Since all these matrices are non-degenerate and smooth, there exist
the smooth �eld of converse symmetric and positive de�nite matrices (αij). Hence this
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�eld can be used as a new Riemannian α(·, ·) = αijdx
i ⊗ dxj on Rn. The volume form of

this metric has the form Λα =
√

det(αij)dx
1 ∧ dx2 ∧ · · · ∧ dxn.

Remark 1. Below we deal with constant matrices A and α. Please note that in this case
the �eld α(·, ·) becomes a new Euclidean metric (inner product) on Rn.

Denote by ρξ(t, x) the probability density of random element ξ(t) with respect to the
volume form dt ∧ Λα =

√
det(αij)dt ∧ dx1 ∧ dx2 ∧ · · · ∧ dxn on [0, T ]× Rn, i.e., for every

continuous bounded function f : [0, T ]× Rn → R the relation

T∫
0

E(f(t, ξ(t)))dt =

T∫
0

∫
Ω

f(t, ξ(t))dP

 dt =

∫
[0,T ]

∫
Rn

f(t, x)ρξ(t, x)Λα

 dt

holds.

Lemma 1. [5, 12] Let ξ(t) satisfy the Ito equation

ξ(t) = ξ0 +

∫ t

0

a(s, ξ(s))ds+

∫ t

0

A(s, ξ(s))dw(s).

Then

uξ(t, x) =
1

2

∂
∂xj (α

ijρξ(t, x))

ρξ(t, x)

∂

∂xi
(5)

where (αij) is the matrix of operator AA∗.

Corollary 1. If A (and so also the matrix (αij)) is constant and non-degenerate,

u =
1

2
αij ∂

∂xj
log ρξ(t.x)

∂

∂xi
=

1

2
Grad log ρξ(t.x) (6)

where Grad is the gradient with respect to the inner product α(·, ·).

Note that (5) is valid in the case where A and so (αij) may be degenerate. If A and
so (αij) are not degenerate, the following proposition takes place.

Lemma 2. [9, 11]] Let the matrices (αij) be non-degenerate. For vξ(t, x) and ρξ(t, x) the
following interrelation

∂ρξ(t, x)

∂t
= −Div(vξ(t, x)ρξ(t, x)) (7)

(known as the equation of continuity) takes place where Div denotes the divergence with
respect to Riemannian metric α(·, ·).

Following [11, 13] we introduce the di�erential operator D2 that di�erentiates an L1

random process ξ(t), t ∈ [0, T ] according to the rule

D2ξ(t) = lim
△t→+0

Eξ
t (
(ξ(t+△t)− ξ(t))(ξ(t+△t)− ξ(t))∗

△t
), (8)

where (ξ(t+△t)−ξ(t)) is considered as a column vector (vector in Rn), (ξ(t+△t)−ξ(t))∗

is a row vector (transposed, or conjugate vector) and the limit is supposed to exists in
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L1(Ω,F ,P). We emphasize that the matrix product of a column on the left and a row on
the right is a matrix so that D2ξ(t) is a symmetric positive semi-de�nite matrix function
on [0, T ]× Rn. We call D2 the quadratic mean derivative.

Theorem 1. [11, 13] For an It�o di�usion type process ξ(t) as (4) the forward mean
derivative Dξ(t) exists and equals Eξ

t (a(t)). In particular, if ξ(t) a di�usion process,
Dξ(t) = a(t, ξ(t)).

Theorem 2. [11, 13] Let ξ(t) be a di�usion type process as (4). Then D2ξ(t) = Eξ
t [α(t)]

where α(t) = AA∗ is the di�usion coe�cient. In particular, if ξ(t) is a di�usion process,
D2ξ(t) = α(t, ξ(t)) where α = AA∗ is the di�usion coe�cient.

Theorem 3. [11,13] Let α(t, x) be a jointly continuous (measurable, smooth) mapping
from [0, T ] × Rn to S+(n) (i.e., those matrices are non-degenerate). Then there exists a
jointly continuous (measurable, smooth, respectively) mapping A(t, x) from [0, T ]× Rn to
L(Rn,Rn) such that for all t ∈ R, x ∈ Rn the equality A(t, x)A∗(t, x) = α(t, x) holds.

2. The Main Result

We start this section with a glossary of some facts from matrix theory. Detailed
explanation of this material can be found, e.g., in [14,15].

De�nition 5. Let two n×n constant matrices A and B be given. The expression λA+B
where λ is a real or complex valued parameter, is called the matrix pencil. The polynomial
det(λA + B) (with respect to λ) is called the characteristic polynomial of the pencil. If
det(λA+B) is not identical zero, the pencil is called regular.

Theorem 4. Let the matrix pencil λA + B be regular. Then there exist non-degenerate
matrices P and Q such that

P (λA+B)Q = λ

(
Id 0
0 N

)
+

(
J 0
0 In−d

)
, (9)

where Id and In−d are unit matrices of the corresponding dimensions, N is an upper triangle
matrix consisting of Jordan boxes with zeros on diagonal and J is a certain d× d block.

Let L̃ be a degenerate n×n matrix and M̃ be a non-degenerate n×n matrix such that
the pencil λL̃ + M̃ is regular. Introduce a certain symmetric positive semi-de�nite n × n
matrix Θ and consider the matrix Θ = QΘQ∗. Evidently Θ is symmetric and positive
semi-de�nite.

For C∞-smooth vector-function f(t) we consider the system{
L̃DSξ(t) = M̃ξ(t) + f̃(t)
D2ξ(t) = Θ

(10)

that we call the stochastic Leontie� type equation with current velocities.
Take matrices P and Q from Theorem 4 and construct matrices L = PL̃Q and M =

PM̃Q. From formula (9) it follows that

L =

(
Id 0
0 N

)
and M =

(
J 0
0 In−d

)
. (11)
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Note that since M̃ is non-degenerate, J is also non-degenerate.
Consider η(t) = Q−1ξ(t) and f(t) = P f̃(t). Then according to the transformation

of equation (10), explained in Theorem 4, we obtain the �rst line in (10) in the form
LDSη(t) = Mη(t) + f(t). Since η(t) = Q−1ξ(t), from the de�nition of Θ and de�nition of
D2 by formula (8) we get that the second line of (10) for η(t) takes the form D2η(t) = Θ.
Thus, equation (10) is transformed into the equation for η(t) in the form{

LDSη(t) = Mη(t) + f(t)
D2η(t) = Θ.

(12)

Thus, taking into account formula (11), one can easily see that the �rst equation
in (12) splits into two independent equations: DSη1(t) = Jη1(t) + f1(t) and NDSη2(t) =
η2(t)+f2(t) where η1(t) and f1(t) are constructed from the �rst d coordinates of vectors η(t)
and f(t), respectively, and η2(t) and f2(t) are constructed from the last n− d coordinates
of η(t) and f(t), respectively. This means that (12) might be solvable only if the matrix Θ

takes the form

(
α1 0
0 α2

)
where α1 = (αij

1 ) is a symmetric positive semi-de�nite d × d

matrix and α2 = (αij
2 ) is a symmetric positive semi-de�nite (n− d)× (n− d) matrix.

Hence (12) splits into two independent systems:{
DSη1(t) = Jη1(t) + f1(t)
D2η1(t) = α1

(13)

and {
NDSη2(t) = η2(t) + f2(t)
D2η1(t) = α2.

(14)

Let us �rst consider (13). Suppose that the matrix α1 is non-degenerate (i.e., positive
de�nite). For convenience we denote C∞-smooth vector �eld Jx+f(1)(t) in Rd by v(t, x) and
denote its �ow by gt. Consider a probability density ρ0 in Rd such that it nowhere equals
zero. In this case it follows from [16, Theorem 3] that the density ρ(t) of the solution
to (13) with initial density ρ0 takes the form ρ(t) = ep(t) where p(t, x) = p0(g−t(x)) −∫ t

0
(Div v)(s, gs(g−t(x))ds, p0 = ln ρ0. Here Div denotes the divergence with respect to

inner product α1(·, ·) (see Remark 1). Note that ρ(t, x) is well-posed for all t ∈ [0, T ]. By
the construction v is the current velocity of η1(t). Since the quadratic mean derivative is
given as α1 and we have found the density ρ, we can also �nd the osmotic velocity u by
formula (6) and so the forward mean derivative a = v + u. Since α1 is non-degenerate, by
Theorem 3 there exists a matrix A such that α1 = AA∗. Then η1 must satisfy the following
stochastyic di�erential equation in Ito form:

η1(t) = η1(0) +

∫ t

0

a(s, η1(s))ds+

∫ t

0

A(s, η1(s))dw(s) (15)

in Rd where η1(0) is the random variable with density ρ0. Equation (15) evidently has a
strong and strongly unique solution well-posed on the entire interval [0, T ]. .

Now let us turn to (14). Consider this equation on the example of (p + 1) × (p + 1)
Jordan box in the upper left corner of N . In coordinates, equation (14) in this blok has
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the form: 
0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . .

...
0 0 0 . . . 1
0 0 0 . . . 0

DS


ηd+1
2 (t)
ηd+2
2 (t)
...

ηd+p
2 (t)

ηd+p+1
2 (t)

 =


ηd+1
2 (t) + fd+1

2

ηd+2
2 (t) + fd+2

2
...

ηd+p
2 (t) + fd+p

2

ηd+p+1
2 (t) + fd+p+1

2

 . (16)

Thus ηd+p+1
2 (t) = −fd+1

2 and so ηd+p+1
2 (t) is not random. Note that for non-random

processes DS coincides with d
dt
. Then from the last but one line in (16) we see that

ηd+p
2 (t) =

dηd+p+1
2 (t)

dt
− fd+p

2 = −dfd+p+1
2 (t)

dt
− fd+p

2 and so ηd+p
2 (t) is not random either.

Analogous arguments show that all other coordinates of η2(t) in (16) are not random.
Note that (14) splits into independent equations corresponding to the Jordan boxes in N
and for all those equations the above arguments are valid. Hence the process η2(t) is not
random. But for any non-random process its quadratic derivative is equal to zero. So, (14)
is solvable only if α2 = 0.

Note in addition that since η2(t) is non-random, the "present" σ-algebra for η(t)
coincides with that for η1(t).

Thus we have proved the following statement:

Theorem 5. Let L̃ and M̃ be degenerate (rankL̃ = d) and non-degenerate, respectively,
n× n-matrices, such that the pencil λL̃+ M̃ is regular; let P an Q be n× n matrices that
transform the pencil λL̃ + M̃ into canonical form with L = PL̃Q and M = PM̃Q; let
α1 be a symmetric positive de�nite d × d matrix and n × n matrix Θ have the form Θ =(

α1 0
0 0

)
. Then for every �nite interval [0, T ] and for every C∞-smooth n-dimensional

vector-function f(t) equation (12) with initial conditions η2(0) = x0 in Rn−d and η1(0)
equal to a random variable with density ρ0 nowhere equal to zero in Rd, has a solution that
is well-posed on the entire interval [0, T ].

If η(t) is the above-mentioned solution of (12), the process ξ(t) = Qη(t) is a solution
of (10).

Acknowledgements. The research is supported by Russian Science Foundation
(RSF) Grant 14-21-00066, being carried out in Voronezh State University.

References

1. Shestakov A.L., Sviridyuk G.A. A New Approach to Measurement of Dynamically Distorted
Signals. Bulletin of the South Ural State University. Series: Mathematical Modelling,

Programming and Computer Software, 2010, no. 16 (192), pp. 116�120. (in Russian)

2. Shestakov A.L., Sviridyk G.A. Optimal Measurement of Dynamically Distorted Signals.
Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming

and Computer Software, 2011, no. 17 (234), pp. 70�75. (in Russian)

3. Shestakov A.L., Sviridyk G.A. On the Measurement of the "White Noise". Bulletin of the

South Ural State University. Series: Mathematical Modelling, Programming and Computer

Software, 2012, no. 27 (286), pp. 99�108.

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
è ïðîãðàììèðîâàíèå≫ (Âåñòíèê ÞÓðÃÓ ÌÌÏ). 2016. Ò. 9, � 3. Ñ. 31�40

37



Yu.E. Gliklikh, E.Yu. Mashkov

4. Gliklikh Yu.E. Investigation of Leontie� Type Equations with White Noise by the Method of
Mean Derivatives of Stochastic Processes. Bulletin of the South Ural State University. Series:

Mathematical Modelling, Programming and Computer Software, 2012, no. 27 (286), pp. 24�34.
(in Russian)

5. Gliklikh Yu.E., Mashkov E.Yu. Stochastic Leontie� Type Equations and Mean Derivatives
of Stochastic Processes. Bulletin of the South Ural State University. Series: Mathematical

Modelling, Programming and Computer Software, 2013, vol. 6, no. 2, pp. 25�39.

6. Gliklikh Yu.E., Mashkov E.Yu. Stochastic Leontie� Type Equations in Terms of Current
Velocities of the Solution. Journal of Computational and Engineering Mathematics, 2014,
vol. 1, no. 2, pp. 45�51.

7. Nelson E. Derivation of the Schrodinger Equation from Newtonian Mechanics. Physical
Review, 1966, vol. 150, no. 4, pp. 1079�1085. DOI: 10.1103/PhysRev.150.1079

8. Nelson E. Dynamical Theory of Brownian Motion. Princeton, Princeton University Press,
1967.

9. Nelson E. Quantum Fluctuations. Princeton: Princeton University Press, 1985.

10. Parthasarathy K.R. Introduction to Probability and Measure. N.Y., Springer, 1978.

11. Gliklikh Yu.E. Global and Stochastic Analysis with Applications to Mathematical Physics.
London, Springer, 2011. DOI: 10.1007/978-0-85729-163-9

12. Cresson J., Darses S. Stochastic Embedding of Dynamical Systems. Journal of Mathematical

Physics, 2007, vol. 48, pp. 072703-1�072303-54.

13. Azarina S.V., Gliklikh Yu.E. Di�erential Inclusions with Mean Derivatives. Dynamic Systems
and Applications, 2007, vol. 16, no. 1, pp. 49�71.

14. Chistyakov V.F., Shcheglova A.A. Selected Chapters of Di�erential Algebraic Equations

Theory. Novosibirsk, Nauka, 2003. (in Russian)

15. Gantmacher F.R. The Theory of Matrices. N.Y., Chelsea Publishing Company, 1959.

16. Azarina S.V., Gliklikh Yu.E. On Existence of Solutions to Stochastic Di�erential Equations
with Current Velocities. Bulletin of the South Ural State University. Series: Mathematical

Modelling, Programming and Computer Software, 2015, vol. 8, no. 4, pp. 100�106.
DOI: 10.14529/mmp150408

Received May 11, 2016

ÓÄÊ 517.9+519.216.2 DOI: 10.14529/mmp160303

ÑÒÎÕÀÑÒÈ×ÅÑÊÈÅ ÓÐÀÂÍÅÍÈß ËÅÎÍÒÜÅÂÑÊÎÃÎ
ÒÈÏÀ Â ÒÅÐÌÈÍÀÕ ÒÅÊÓÙÈÕ ÑÊÎÐÎÑÒÅÉ
ÐÅØÅÍÈß II

Þ.Å. Ãëèêëèõ, Å.Þ. Ìàøêîâ

Â ðàáîòàõ À.Ë. Øåñòàêîâà è Ã.À. Ñâèðèäþêà ïðåäëîæåíà íîâàÿ ìîäåëü îïèñàíèÿ

äèíàìè÷åñêè èñêàæåííûõ ñèãíàëîâ â íåêîòîðûõ ðàäèî óñòðîéñòâàõ íà îñíîâå èñïîëü-

çîâàíèÿ òàê íàçûâàåìûõ óðàâíåíèé ëåîíòüåâñêîãî òèïà (÷àñòíûé ñëó÷àé
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äèôôåðåíöèàëüíî-àëãåáðàè÷åñêèõ óðàâíåíèé). Â ýòèõ ðàáîòàõ â ýòîé ìîäåëè áûëè
ó÷òåíû ïîìåõè â òåðìèíàõ òàê íàçûâàåìûõ ñèììåòðè÷åñêèõ ïðîèçâîäíûõ â ñðåäíåì
(òåêóùèõ ñêîðîñòåé) âèíåðîâñêîãî ïðîöåññà âìåñòî èñïîëüçîâàíèÿ áåëîãî øóìà. Ýòî
ïîçâîëèëî àâòîðàì èçáåæàòü èñïîëüçîâàíèÿ îáîáùåííûõ ôóíêöèé. Ñëåäóåò îòìåòèòü,
÷òî ïî ôèçè÷åñêîìó ñìûñëó òåêóùèõ ñêîðîñòåé, îíè ÿâëÿþòñÿ ïðÿìûì àíàëîãîì ôèçè-
÷åñêîé ñêîðîñòè äåòåðìèíèðîâàííûõ ïðîöåññîâ. Îòìåòèì, ÷òî èñïîëüçîâàíèå òåêóùèõ
ñêîðîñòåé âèíåðîâñêîãî ïðîöåññà îçíà÷àåò, ÷òî â êîíñòðóêöèè ïðîèçâîäíûõ â ñðåäíåì
çàäåéñòâîâàíà σ-àëãåáðà ≪íàñòîÿùåå≫ èìåííî âèíåðîâñêîãî ïðîöåññà, õîòÿ èìååòñÿ
òàêæå äðóãàÿ âîçìîæíîñòü � èñïîëüçîâàòü σ-àëãåáðó ≪íàñòîÿùåå≫ ðåøåíèÿ, êàê ýòî
îáû÷íî äåëàåòñÿ â òåîðèè ñòîõàñòè÷åñêèõ äèôôåðåíöèàëüíûõ óðàâíåíèé ñ ïðîèçâîä-
íûìè â ñðåäíåì. Òàêîé ïîäõîä áûë ïðåäëîæåí ðàíåå â ðàáîòàõ àâòîðîâ ïðè äîïîëíè-
òåëüíîì óñëîâèè, ÷òî ìàòðè÷íûé ïó÷îê, îïðåäåëÿþùèé óðàâíåíèå, óäîâëåòâîðÿåò òàê
íàçûâàåìîìó óñëîâèþ ≪ðàíã-ñòåïåíü≫. Â íàñòîÿùåé ðàáîòå ìû ðàññìàòðèâàåì ñòîõà-
ñòè÷åñêèå óðàâíåíèÿ ëåîíòüåâñêîãî òèïà â òåðìèíàõ òåêóùèõ ñêîðîñòåé ðåøåíèÿ áåç
ïðåäïîëîæåíèÿ î âûïîëíåíèè óñëîâèÿ ≪ðàíã-ñòåïåíü≫.

Êëþ÷åâûå ñëîâà: ïðîèçâîäíûå â ñðåäíåì; òåêóùèå ñêîðîñòè; ñòîõàñòè÷åñêîå

óðàâíåíèå ëåîíòüåâñêîãî òèïà.
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