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In papers by A.L. Shestakov and G.A. Sviridyuk a new model of the description
of dynamically distorted signals in some radio devices is suggested in terms of so-called
Leontieff type equations (a particular case of algebraic-differential equations). In that model
the influence of noise is taken into account in terms of the so-called symmetric mean
derivatives of the Wiener process instead of using white noise. This allows the authors
to avoid using the generalized function. It should be pointed out that by physical meaning,
the current velocity is a direct analog of physical velocity for the deterministic processes.
Note that the use of current velocity of the Wiener process means that in the construction
of mean derivatives the o-algebra "present" for the Wiener process is under consideration
while there is also another possibility: to deal with the o-algebra "present” of the solution as
it is usually done in the theory of stochastic differential equation with mean derivatives. This
approach was previously suggested by the authors under the assumption that the matrix
pencil, that determines the equation, satisfies the so-called "rank-degree" condition. In this
paper we consider stochastic Leontieff type equation given in terms of current velocities of
the solution without this assumption.
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Introduction

We understand the differential equations of Leontieff type as a special class of algebraic-
differential systems in R™ of the form

Li(t) = Ma(t) + f(2),

where x(t) and f(t) are n-dimensional vectors, L and M are constant n X n matrices where
L is degenerate and M is not degenerate. With the use of such equations in papers by
A L. Shestakov and G.A. Sviridyuk (see e.g. [1,2]) the dynamical distortion of signals in
radio devises is described. In the papers by L.A. Vlasenko T. Sickenberger and R. Winkler
A.G Rutkas, M.S. Filipkovskaya and others such equations arise in mathematical models
of oscillations and electric nets.

For applications of the above mentioned models it is important to take into account
noise in the right-hand side of the Leontieff type equation, i.e., random perturbation
of white noise type. Recall that the white noise is well-posed in the space of generalized
functions. In papers [3-5] a new approach for investigation of Leontieff type equations with
noise is suggested that replaces the white noise by Nelson’s symmetric mean derivative
(current velocity, see e.g. [7-9]|) of the Wiener process that allows one to avoid using
the generalised functions. The current velocities are natural analogues of usual physical
velocities of deterministic processes. In this paper we investigate the processes that are
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described by Leontieff type equations in terms of the current velocities of the solutions.
In should be pointed out that in such setting the current velocities of Wiener process are
not involved from the very beginning.

The Leontieff type differential equations in terms of current velocity of solution are
introduced and investigated in [6] under the additional assumption that the pencil of
constant matrices satisfies the so-called "rank-degree" condition. Here we deal with the
systems that do not satisfy this condition.

For simplicity we consider equations, their solutions and other objects on a finite time
interval t € [0, 7.

Everywhere in the text we use Einstein’s summation convention in repeated upper and
lower index.

1. Preliminaries on the Mean Derivatives

Consider a stochastic process £(t) in R™, ¢ € [0,1], given on a certain probability space
(Q, F,P) and such that £(t) is Li-random variable for all ¢.

Every stochastic process {(t) in R™, ¢ € [0, (], determines three families of o-subalgebras
of o-algebra F:
(i) the "past" PF generated by pre-images of Borel sets in R” by all mappings &(s) : Q — R”
for 0 < s <t
(ii) the "future" F¢ generated by pre-images of Borel sets in R” by all mappings &(s) -
Q—R"fort<s<;
(iii) the "present" ("now") N generated by pre-images of Borel sets in R” by the mapping
§(t).
All families are supposed to be complete, i.e., containing all sets of probability 0.

For convenience we denote the conditional expectation of £(¢) with respect to /\/'t’s by
E; ().

Ordinary ("unconditional™) expectation is denoted by E.

Strictly speaking, almost surely (a.s.) the sample paths of {(¢) are not differentiable for
almost all . Thus its "classical" derivatives exist only in the sense of generalized functions.
To avoid using the generalized functions, following Nelson (see, e.g., [7-9]) we give

Definition 1. (i) Forward mean derivative DE(t) of £(t) at time t is an Li-random variable
of the form
§(t+ At) — (1)

Dg(t) = lim E( N ) (1)

where the limit is supposed to exists in L1(Q2, F,P) and At — +0 means that At tends to
0 and At > 0.
(11) Backward mean derivative D,E(t) of £(t) at t is an Ly-random variable

D.&(t) = AP—I)I}FO Ef(g(ﬂ - i(i =

) (2)

where the conditions and the notation are the same as in (i).

Note that mainly DE(t) # D.E(t), but if, say, £(¢) a.s. has smooth sample paths, these
derivatives evidently coinside.
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From the properties of conditional expectation (see [10]) it follows that DE(t) and
D,£(t) can be represented as compositions of £(t) and Borel measurable vector fields
(regressions)

§(t + At) — €(1)

Vo) = gim BB e g
Vo) = tim B 80 ) _p 3)

on R”. This means that DE(t) = YO(t,£(t)) and D,E(t) = Y2(t,£(1)).

Definition 2. The derivative Dg = %(D + D.) is called symmetric mean derivative. The
derivative Dy = %(D — D) is called anti-symmetric mean derivative.

Consider the vector fields
1
V(1) = 5V (12) + Y01, 2)

and
w(t,2) = S (VO(t,2) = Y2(1,2))

Definition 3. v°(t) = v*(t,£(t)) = Ds&(t) is called current velocity of £(t);
ut(t) = us(t, £(t)) = DAE() is called osmotic velocity of £(t).

For stochastic processes the current velocity is a direct analogue of ordinary physical
velocity of deterministic processes (see, e.g., [7-9,11]). The osmotic velocity measures how
fast the "randomness" grows up.

Recall that Tto process is a process £(t) of the form

t t

£®=&+/M$%+/A®M@% (4)

0 0

where a(t) is a process in R” whose sample paths a.s. have bounded variation; A(t) is
a process in L(R™ R") such that for any element A’(t) of matrix A(t) the condition
P(wl| fOT(Af)zdt < 00) = 1 holds; w(t) is a Wiener process in R™; the first integral is
Lebesgue integral, the second one is It6 integral and all integrals are well-posed.

Definition 4. An Ité process £(t) is called a process of diffusion type if a(t) and A(t)
are not anticipating with respect to Pf and the Wiener process w(t) is adapted to Pf.
If a(t) = a(t,&(t)) and A(t) = A(t,&(t)), where a(t,x) and A(t,z) are Borel measurable
mappings from [0,T] x R™ to R™ and to L(R"™,R™), respectively, the Ito process is called a
diffusion process.

Below we are dealing with smooth fields of non-degenerate linear operators A(zx) :
R* — R" = € R" (i.e., (1,1)-tensor field on R"™). Let £(t) be a diffusion process in
which the integrand under Ito integral is of the form A(£(t)). Then its diffusion coefficient
A(z)A*(z) is a smooth field of symmetric positive definite matrices a(z) = (a¥(x)) ((2,0)-
tensor field on R™). Since all these matrices are non-degenerate and smooth, there exist
the smooth field of converse symmetric and positive definite matrices (a;;). Hence this
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field can be used as a new Riemannian a(-,-) = a;;dz’ ® dz? on R"™. The volume form of
this metric has the form A, = \/det(;;)daz! Adz?* A -+ A dz"

Remark 1. Below we deal with constant matrices A and «. Please note that in this case
the field a(-,-) becomes a new Euclidean metric (inner product) on R".

Denote by p*(¢,x) the probability density of random element £(¢) with respect to the
volume form dt A A, = \/det(ay;)dt Adax' Ada* A--- Ada™ on [0,T] x R, i.e., for every
continuous bounded function f :[0,7] x R" — R the relation

T

!Eumwmwz/ !ﬂm@MPdhi/ [ oo,

0 [O,T] n
holds.

Lemma 1. [5,12] Let &(t) satisfy the Ito equation

€0 =&+ [ als.eds+ [ Als.)duls)
e L (0, 2) 9
a7 p>(t, x
58 pE(t,x)  Oat (5)

where (a'7) is the matriz of operator AA*.

ut(t,x) =

Corollary 1. If A (and so also the matriz (a'7)) is constant and non-degenerate,

1 . 1
u = 5(1”% log pf(t.x)% = §Grad log p*(t.zv) (6)

where Grad is the gradient with respect to the inner product a(-,-).

Note that (5) is valid in the case where A and so (/) may be degenerate. If A and
so () are not degenerate, the following proposition takes place.

Lemma 2. [9,11]] Let the matrices (a9) be non-degenerate. For v*(t,z) and p*(t,z) the
following interrelation
0p*(t,x)
ot

(known as the equation of continuity) takes place where Div denotes the divergence with
respect to Riemannian metric o-,-).

= —Div(v4(t, z)p5 (L, ) (7)

Following [11,13] we introduce the differential operator Dy that differentiates an L;
random process £(t), t € [0, T] according to the rule

D2£<t) — lim Ef( (f(t + At) — é(t)if;(t + At) B f(t))*), (8)

At—+0

where ({(t+ At) —£(t)) is considered as a column vector (vector in R™), ((t+At) —&(t))*
is a row vector (transposed, or conjugate vector) and the limit is supposed to exists in
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L1(2, F,P). We emphasize that the matrix product of a column on the left and a row on
the right is a matrix so that Dy&(t) is a symmetric positive semi-definite matrix function
on [0, 7] x R™. We call D, the quadratic mean derivative.

Theorem 1. [11,13| For an Ité diffusion type process &(t) as (4) the forward mean
derivative DE(t) exists and equals Ef(a(t)). In particular, if £(t) a diffusion process,

DE(t) = alt, (1))

Theorem 2. [11,13] Let £(t) be a diffusion type process as (4). Then Dof(t) = Ef[a(t)]
where ot) = AA* is the diffusion coefficient. In particular, if £(t) is a diffusion process,
Dy&(t) = a(t, &£(t)) where o = AA* is the diffusion coefficient.

Theorem 3. [11,13] Let a(t,x) be a jointly continuous (measurable, smooth) mapping
from [0, T] x R™ to Si(n) (i.e., those matrices are non-degenerate). Then there exists a
jointly continuous (measurable, smooth, respectively) mapping A(t,z) from [0,T] x R™ to
L(R™,R™) such that for allt € R, x € R™ the equality A(t,z)A*(t,x) = a(t,z) holds.

2. The Main Result

We start this section with a glossary of some facts from matrix theory. Detailed
explanation of this material can be found, e.g., in [14,15].

Definition 5. Let two n X n constant matrices A and B be given. The expression NA+ B
where X 1s a real or complex valued parameter, is called the matriz pencil. The polynomial
det(ANA + B) (with respect to \) is called the characteristic polynomial of the pencil. If
det(ANA + B) is not identical zero, the pencil is called reqular.

Theorem 4. Let the matriz pencil NA + B be reqular. Then there exist non-degenerate
matrices P and () such that

P(/\A+B)Q:>\([6i ]%)+<‘é In0d>’ (9)

where 15 and I,,_q are unit matrices of the corresponding dimensions, N is an upper triangle
matriz consisting of Jordan boxes with zeros on diagonal and J is a certain d x d block.

Let L be a degenerate n X n matrix and M be a non-degenerate n x n matrix such that
the pencil AL 4+ M is regular. Introduce a certain symmetric positive semi-definite n x n
matrix © and consider the matrix © = QOQ*. Evidently © is symmetric and positive
semi-definite.

For C'*-smooth vector-function f(t) we consider the system

iDs{f(t = ME(t) + f(t)
{ Do(t) = © (10)

that we call the stochastic Leontieff type equation with current velocities.
Take matrices P and @ from Theorem 4 and construct matrices L = PL(Q) and M =
PMQ@Q. From formula (9) it follows that

(I 0O (J 0
L(O N)andM<OIn_d>' (11)
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Note that since M is non-degenerate, J is also non-degenerate.

Consider n(t) = Q '(t) and f(t) = Pf(t). Then according to the transformation
of equation (10) explained in Theorem 4, we obtain the first line in (10) in the form
LDgn(t) = Mn(t) + f(t). Since n(t) = Q~ 5( ), from the definition of © and definition of
Dy by formula (8) we get that the second line of (10) for n(t) takes the form Don(t) = ©.
Thus, equation (10) is transformed into the equation for n(t) in the form

{ Lfkn(i

n(t) + f(t)
Dyn(t) <12)

©.

Thus, taking into account formula (11), one can easily see that the first equation
in (12) splits into two independent equations: Dgny(t) = Jni(t) + fi(t) and NDgna(t) =
n2(t)+ f2(t) where ny(t) and f1(t) are constructed from the first d coordinates of vectors n(t)
and f(t), respectively, and 7,(t) and f>(t) are constructed from the last n — d coordinates
of n(t) and f(t), respectively. This means that (12) might be solvable only if the matrix ©
061 0(3 where oy = (o) is a symmetric positive semi-definite d x d

2
matrix and ap = () is a symmetric positive semi-definite (n — d) % (n — d) matrix.
Hence (12) splits into two independent systems:

takes the form

Dsm(t) = Jm(t) + f(?)
{ Dj?h(t) = ay (13)
and
NDgna(t) = na(t) + f2(t)
{ DQUf(t) = Qa. (14)

Let us first consider (13). Suppose that the matrix «; is non-degenerate (i.e., positive
definite). For convenience we denote C*°-smooth vector field Jz+ f1)(¢) in R by v(t, z) and
denote its flow by g;. Consider a probability density po in R? such that it nowhere equals
zero. In this case it follows from [16, Theorem 3| that the density p(t) of the solution

o (13) with initial density po takes the form p(t) = e where p(t,z) = po(g_¢(z)) —
fJ(Div v)(s, gs(g—¢(x))ds, po = Inpo. Here Div denotes the divergence with respect to
inner product a;(+,-) (see Remark 1). Note that p(t,z) is well-posed for all ¢t € [0,T]. By
the construction v is the current velocity of 7;(¢). Since the quadratic mean derivative is
given as a1 and we have found the density p, we can also find the osmotic velocity u by
formula (6) and so the forward mean derivative a = v 4 u. Since «; is non-degenerate, by
Theorem 3 there exists a matrix A such that a; = AA*. Then 7, must satisfy the following
stochastyic differential equation in Tto form:

m(t) = m(0) + / afs,mi(s))ds + / Als,m(s))du(s) (15)

in R? where 7;(0) is the random variable with density po. Equation (15) evidently has a
strong and strongly unique solution well-posed on the entire interval [0, 7T]. .

Now let us turn to (14). Consider this equation on the example of (p + 1) x (p + 1)
Jordan box in the upper left corner of N. In coordinates, equation (14) in this blok has
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the form:
O 1 0 0 ng+1(t) d+1(t) +fd+1
001 ..0 ny (1) ny () + £
oo | Ds : = . : (16)
VoY ! g?ﬁt) dfj(t) +fj:p+1
000 0 My () my )+ S
Thus 4™ (t) = —f&t and so 74P (4) is not random. Note that for non-random
processes Dg coincides with 4. Then from the last but one line in (16) we see that
d+p+1 d+p+1
Pty = W — ftr A P and so n4P(t) is not random either.

Analogous arguments show that all other coordinates of 72(¢) in (16) are not random.
Note that (14) splits into independent equations corresponding to the Jordan boxes in N
and for all those equations the above arguments are valid. Hence the process 1y(t) is not
random. But for any non-random process its quadratic derivative is equal to zero. So, (14)
is solvable only if as = 0.

Note in addition that since 79(t) is non-random, the "present" o-algebra for n(t)
coincides with that for n;(¢).

Thus we have proved the following statement:

Theorem 5. Let L and M be degenerate (rankf) = d) and non-degenerate, respectively,
n X n-matrices, such that the pencil \L + M is regular; let P an Q be n X n matrices that
transform the pencil AL + M into canonical form with L = PLQ and M = PMQ; let
a1 be a symmetric positive definite d X d matriz and n X n matrix © have the form © =

( CBI 8 > Then for every finite interval [0, T] and for every C*-smooth n-dimensional

vector-function f(t) equation (12) with initial conditions 1y(0) = x¢ in R"™¢ and 1,(0)
equal to a random variable with density py nowhere equal to zero in R, has a solution that
is well-posed on the entire interval [0,T).

If n(t) is the above-mentioned solution of (12), the process £(t) = Qn(t) is a solution

of (10).
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CTOXACTNYECKUNE YPABHEHU A JIEOHTHBEBCKOTI'O
TUIIA B TEPMUHAX TEKYIIIIX CKOPOCTEH
PEINTEHN A 11

IO.E. I'nuxauz, E.JO. Mawxos

B paborax A.JIL. Illecrakosa u I'A. CBUpHIIOKa IPEIJIOKEHA HOBAS MOIEIIL OIHCAHUS
JUHAMAYIECKN UCKAXKEHHBIX CUTHAJIOB B HEKOTOPBIX PAJMO YCTPOMCTBAX HA OCHOBE MCIIOJb-

30BaHUA TaK HA3bIBAE€MBIX ypaBHeHI/IfI JEOHTHEBCKOI'O THIIQ (‘IaCTHbeI cnyqaﬁ
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nuddepennpanbao-anrebpandeckux ypasaenuii). B stux paborax B sroil Mozjenu 6buin
YUTEHBI IIOMEXU B TEPMHUHAX TAK HA3BIBAEMBIX CUMMETPHYECKHUX [IPOU3BOJHBIX B CPEHEM
(TeKymumx CKOpOCTeil) BUHEPOBCKOTO MPOLECCa BMECTO MCIOIb30BAHUA OENI0ro IMyMa. JT0
MTO3BOJIMJIO ABTOPaM m30eXKaTh UCIOIb30BaHNs 0000meHHbIX hyHKImi. Cleayer OTMEeTUTh,
9T0 10 PUBNIECKOMY CMBICITY TEKYIIUX CKOPOCTEH, OHU SABISTIOTCS IPSIMBIM aHAJIOTOM (DU3H-
9eCKOM CKOPOCTH JIETePMUHUPOBAHHBIX MPOIEccoB. OTMETHM, 9TO UCMOIB30BAHNE TEKYITHX
CKOPOCTEH BUHEPOBCKOT'O MPOIECCa O3HAYALT, YTO B KOHCTPYKIIUU MTPOU3BOIHBIX B CPETHEM
3a/eiCTBOBAHA, 0-a/Iredpa <HACTOSAIIEE> MMEHHO BUHEPOBCKOTO TMPOIECCA, XOTS UMEETCS
TaK¥Ke APYyrasi BO3MOXKHOCTb — HCIOJB30BATH 0-AJre0py <HACTOSIIEe> DEIeHNs, KAK ITO
OOBIYHO [TE/TAETCH B TEOPUHU CTOXACTHIECKUX NUMDPEPEHITUATBHBIX YPABHEHWI C MPOM3BO/I-
HBIMHU B cpenHeM. Takoil moaxon ObLI IPeIoKeH paHee B paboTax aBTOPOB IMPH JOMOJIHH-
TEJIbHOM YCJIOBHUU, 9TO MATPUYHBIN MyYOK, ONMPEAeIsIONnil ypaBHEeHUEe, YIOBICTBOPIET TaK
Ha3BIBAEMOMY VCJIOBHUIO <PAHT-CTENeHb>. B HACTOsIIel paboTe Mbl pacCMaTPUBAEM CTOXa~
CTUYECKHE YPABHEHUs JIECOHTHEBCKOIO THUIA B TEPMUHAX TEKYIIUX CKOPOCTEll permenus 0Oe3
MIPE/ITOIOKEHYST O BHITIOJIHEHUN YCJIOBUS <PAHT-CTEIEHb> .

Karouesvie caosa: npoudsodusie 8 cpeduem; MeKyUue CKOPOCMU; CMOTACTNUNECKOE

YypasHeHUue AEOHTTIBEBCKO20 TMUNG.
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