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Inverse problems of identification of the fractional diffusivity and the order of fractional
differentiation are considered for linear fractional anomalous diffusion equations with the
Riemann — Liouville and Caputo fractional derivatives. As an additional information about
the anomalous diffusion process, the concentration functions are assumed to be known at
several arbitrary inner points of calculation domain. Numerically-analytical algorithms are
constructed for identification of two required parameters of the fractional diffusion equations
by approximately known initial data. These algorithms are based on the method of time
integral characteristics and use the Laplace transform in time. The Laplace variable can be
considered as a regularization parameter in these algorithms. It is shown that the inverse
problems under consideration are reduced to the identification problem for a new single
parameter which is formed by the fractional diffusivity, the order of fractional differentiation
and the Laplace variable. Estimations of the upper error bound for this parameter are
derived. A technique of optimal Laplace variable determination based on minimization of
these estimations is described. The proposed algorithms are implemented in the AD-TIC
package for the Maple software. A brief discussion of this package is also presented.
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Introduction

The fractional calculus [1-3] provides efficient tools for mathematical modelling of
various processes. Differential equations with fractional derivatives of different kinds
(so-called fractional differential equations) represent an important part of mathematical
models used for investigation of processes with nonlocal spatial effects and memory [4-6].
Such processes are frequently observed in complex systems and inhomogeneous media.
Anomalous diffusion processes form a wide class of such phenomena, and appropriate
fractional diffusion equations have been much studied [7-10]. These equations permit the
useful mathematical description of subdiffusion and superdiffusion processes in which the
mean square displacement of a particle is described by a power law with an exponent not
equal to one contrary to the classical Gaussian diffusion process.

However, the lack of initial data for a simulated process is one of the important problem
of the theory of fractional differential equations which limit the practical use of such
equations. In particular, a fractional diffusivity (or an anomalous diffusion coefficient) and
orders of fractional differentiation are the required initial data for fractional anomalous
diffusion equations. So, an important problem of fractional parameters identification
arises. This problem leads to different mathematical formulations of inverse coefficient
problems. It is necessary to note that the problem of identification of the order of fractional
differentiation does not have an analog in the classical theory of inverse problems for integer
order differential equations. Thus, new methods and algorithms of identification should be
developed.

Bectuuk FOYpI'Y. Cepusa «MaTteMaTudecKoe MoJejinpoBaHUe 105
u nporpammupoBanues (Bectuuk FHOYpI'Y MMII). 2016. T. 9, Ne 3. C. 105-118



S.Yu. Lukashchuk

The integral characteristic methods [11-13| give simple and efficient algorithms of
constant coefficients identification applicable to the linear partial differential equations.
These methods were efficiently used for identification of thermal properties of different
materials [11,12]. On the basis of this methods, several non-destructive testing instruments
for automatic identification of conductivity, heat capacity and thermal diffusivity was
developed [14]. Subsequently, methods of integral characteristics were enhanced to inverse
problems for different diffusion models. In particular, the diffusivity and drift coefficient
have been successfully calculated for a model of the radiation-stimulated diffusion
accompanying ion implantation processes [15,16].

The method of time integral characteristics [13] is one of the integral characteristic
methods. In [17] the explicit integral representations for a constant anomalous diffusivity
and the order of fractional differentiation have been derived using this method. These
representations are based on the integral Laplace transform in time for a concentration
function which is measured by time at the boundary and several inner points of calculation
domain. In spite of all advantages of an explicit analytical form, these representations
require that the concentration function must be known in the strictly determined
inner points. This limitation restricts the practical use of these integral representations.
Nevertheless, the restriction can be overcome by numerical algorithms. In this paper, the
appropriate numerically-analytical algorithms based on the time integral characteristic
method are proposed. These algorithms are implemented in the AD-TIC package for the
Maple software. The functionality of this package is also briefly discussed.

1. Formulations of Inverse Problems

Consider a set of fractional anomalous diffusion equations
Difu = kug, + f(t)g(x), =€ (a,b), t>0, «aec(0,2). (1)

Here Df*u is a left-sided fractional derivative of function w with respect to ¢ of order o.
The Riemann — Liouville D?u and Caputo © D®u time-fractional derivatives will be used
as Dj'u. The difinitions of these fractional derivatives are as follows:

o o 1 o [t u(x,7)
‘Dt u = % (It U) = m%/ md’r, (2)

0"u 1 ' 1 omu(x,T)
CDO& = ]n—a — / , d .
e <8tn ) I(n—a)fy (t—7)o L Orm T (3)

Here I'(z) is the Gamma function, n = [a] 4+ 1 and

1 Lo, T)
]n—a — Y
t YT Th—a) /0 (t — r)o—n+l dr

is the left-sided time-fractional integral of order n — a.

Equation (1) with a € (0,1) can be used as a mathematical model for subdiffusion
procesess, and with o € (1,2) as a model for diffusion-wave transfer. In the limiting case
of @ = 1 this equation coinsides with the classical diffusion equation, and for a = 2 it
coincides with the classical wave equation.
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Initial and boundary conditions are necessary for unique solvability of equation (1).
The form of the initial conditions is defined by the type of fractional derivative. If the
Riemann — Liouville fractional derivative (2) is used in equation (1) then the appropriate
initial conditions have the form

]tn_au|t:0 = @Z)O(I)a ZAES (CL, b)’ ac (07 2)7 (4)
D¢ tulimg = i (x), € (a,b), «a€(1,2). (5)

For the Caputo fractional derivative (3) the initial conditions have the form

ult:O = @O(x)v YIS (CL, b)’ o€ (072)7 (6)
Utli=0 = @1(x), =z € (a,b), «a€(1,2). (7)

In this paper, the boundary conditions of the first kind will be used:
uw(a,t) = ua(t), wu(b,t) =uy(t), t>0. (8)

In [9] it was proved that unique solutions exist for initial-boundary problems (1), (4),
(5), (8) and (1), (6) — (8) if all functions in (4) — (7) and function "~ f(¢) are continuous
functions in their domains of definition, and the following consistency conditions hold:

lim I “u,(t) = o(a), llg(} I %up(t) = vo(b);

t—0
lim Df~ua(£) = (@), i DF (1) = (D)

t—0

if the Riemann — Lioville fractional derivative is used in equation (1), and

limu,(t) = @ola), limu(t) = po(b);

t—0 t—=0
lgréu;(t) = ¢1(a), %g% uy(t) = ¢1(b)

if the Caputo fractional derivative is used. Further, we assume that these consistency
conditions hold.

Now, let us formulate the inverse coefficient problem for identification of the diffusivity
k and the order of fractional differentiation o. We assume that the appropriate initial
conditions (4), (5) or (6), (7) and the boundary conditions (8) are known. Then the
corresponding direct problems are solvable for all £ > 0 and « € (0,2). An additional
information about diffusion process is necessary for solving an inverse problem. Therefore,
the concentration function u(x,t) will be assumed to be known at the certain inner points
x = [; of calculation domain, i.e.

u(ly, t) =wi(t), 1 € (a,b), i=1,2,...,n, n>1, 9)
where u;(t) are known functions. If only one parameter (k or «) should be calculated

whereas another parameter is known then one function w;(¢) is enough for solvability of
the inverse problem (in this case n = 1).
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2. Identification Algorithms

The time integral characteristic method is based on an integral transform in time
domain. The Laplace transform is commonly used as a such transform. Taking the
Laplace transform of the linear initial-boundary problem, one can obtain a linear ordinary
differential equation which can be solved analytically. Then the desired parameters can be
found from this solution using an additional information about the process.

Denote by v*(p) the Laplace transform of a function v(t):

v*(p) = /000 e Ply(t)dt. (10)

Taking transform (10) of initial-boundary conditions for equation (1), we get the
following boundary value problem for the linear ordinary differential equation of the second
order:

prut(x,p) = kug, (x,p) + h(z,p, @), (11)
u*(a,p) = ug(p),  u'(b,p) = uy(p)- (12)

Here
f*(p)g(x) + o(2), a € (0,1),
f(p)g(x) + i (x) + pibo(x), € (1,2)

if the Riemann — Liouville fractional derivative is used, and

h(l’,p, O‘) = {

h(z,p, a) = {f*(P)g(x) + " o(x), a € (0,1),
77 f*(p)g(x) +pa_1c,00(x) +pa_2¢1($)7 a € (17 2)

if the Caputo fractional derivative is used.
The solution of problem (11), (12) is well-known and can be represented in the form

a

sinh A(b — a)u*(z,p) = sinh A\(b — z) {ué(p) + (kM) /x h(&, p, ) sinh A(§ — a)df] +
+sinh A(z — a) [u;j(p) + (k) / h(&, p, ) sinh A(b — f)dﬁ} . (13)

where A = /p®/k.
Substituting the Laplace transforms of the known concentration functions (9) into
(13), we get a system of algebraic equations. The residual quadratic functional for this

system has the form
n

O(k,o,p) =Y (Si+ KF), (14)

i=1

where K = k71,

Si(A, p) = sinh A(b — l;)ug (p) + sinh A(l; — a)uy (p) — sinh A(b — a)u; (p),
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l;
Fi(\p)=\)"" {sinh A(b— lz)/ h(&, p, ) sinh A\(§ — a)dé+

b
+sinh A(l; — a) / h(&,p, ) sinh A(b — &)d¢
L
if the Riemann — Liouville fractional derivative is used, and

Si(A,p) = sinh A(b — [;)u; (p) + sinh A(l; — a)u; (p) — sinh A(b — a)u; (p)+

l;
ASBAG = 8) [ [ 0l€) + 701 (6)] sinh A(E - a)d+

b
+ Asinh A(l; — a) /l [ 00(€) + p 21 (€)] sinh M(b — £)dE,

i

F(hp)= (3" [sinh Ab=1) [ £ gl smh AE - ayde+

b
+sinh A(l; =) [ 1 (p)al€) sinh A(b — €)dg

if the Caputo fractional derivative is used.

As it follows from the analysis of the above formulas, in the case of homogeneous
equation (1) (i.e. if f(t)g(x) = 0) considered with the Caputo fractional derivative, the
desired parameters k and « are coupled in ® by A because in this case F;, = 0, 1 =
1,2,...,n. If equation (1) is considered with the Riemann — Liouville fractional derivative
then the order of fractional differentiation « is also coupled with k£ in & by A but the
diffusivity k is also presented in ® independently from A.

Thus, if equation (1) is considered with the Riemann — Liouville fractional derivative or
it is the nonhomogeneous equation with the Caputo fractional derivative then the desired
parameters £ and « can be found from the solution of the system of equations which is
derived from the necessary conditions of an extremum for function (14):

o od

ok =" Ba "

In the case of homogeneous equation (1) with the Caputo fractional derivative, A is

the only parameter which can be determined from the equation

0P

=

Minimization of (14) as a function of parameters k and a by a numerical routine leads

to computational difficulties since the order of fractional differentiation « is presented in

® only as the power function p®. Nevertheless, the pair (k, \) can be considered insted of
the pair (k, ). Substituting (14) into (15) we get the following system

0. (15)

0. (16)

- dS; OF;
Si+ KF) [ = + K= + 9K F,) =0,
;( +KF) < o T )
- dS; OF;
Sz‘ KFI . K . = O
2_(5i+ KF) <8)\ " aA)
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The explicit representation for K can be found from this system as

e (S (57) "

Then we get a unique equation for A:

n

-1 —1
n n aSZ a . n n
> |s-r(Ssn) (8) |55 (Sen) (L) | -0
j=1 j=1 j=1 j=1

i=1

In the case of homogeneous equation (1) with the Caputo fractional derivative
condition (16) leads to a more simple equation for the parameter A evaluation:

", 95,
; Sioy =0 (19)

As a result, we get the following algorithm for identification of parameters k& and «.
Solving (18) or (19), one can find the parameter A. Then from the representation (17)
the diffusivity £ can be calculated. Finally, the order of fractional differentiation « can be
calculated from A by known k.

If all initial data are known without any errors then the proposed algorithm gives
exact values of parameters k£ and « for any value of Laplace variable p. Nevertheless, in
practice the initial data (such as a concentration function) are usually obtained from the
experiments and therefore is known approximately. Then the values of k£ and a will depend
on the value of p. So, a new important problem arises: it is necessary to determine the
value of p such that the errors of identification of k£ and « will be minimal. Note that in the
time integral characteristic method the parameter p can be considered as a regularization
parameter of the identification algorithm. Therefore, the value of p should be consistent
with the errors of initial data.

3. Estimation of the Laplace Variable

In the method of time integral characteristics the values of the Laplace variable p
always belong to a finite interval [Pmin, Pmax] Which is determined by the chosen numerical
algorithm for the Laplace transform calculation and by the time intervals in which
the initial data are known. An efficient numerical algorithm for the Laplace transform
calculation is based on a quadrature which is derived from an expansion of the Laplace
integral by the system of the orthogonal Laguerre polynomials [18]:

n

= [ erarm= [ o)t ()G e

k=1

Here the quadrature points 7, are the roots of the Laguerre polynomial of degree n:
Ln(Tk) = 0.

If a function v is known on the interval [0, ] then the minimal value of p can be found
from a condition that all quadrature points should belong to this interval: ppi, = 7./t
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All known values of a function v(¢) should be used for a proper calculation of the Laplace
transform by (20). Therefore, the quadrature points should cover the finite interval [0, t] in
which the variation of this function is significant (we assume that ¢ < # because the Laplace
transformation can not be calculated correctly otherwise). Then we have ppax = 7,/ t.

Another case is also possible if v(t) — vy = const with ¢ — co. Then £ — 0o and ¢ can
be chosen from the equality |v(t) — vo| = A,, where A, is an estimation for the absolute
error of the function v(¢). In this case the following rule can be accepted: let [ and m be
given positive integers and no less than [ and m quadrature points belong to the intervals
[0,7] and [f, o0), correspondingly. Then we have puin, = 71/t and Puax = Tn_m/1.

If there is no information about the errors of initial data then the parameters £ and
a can be evaluated from the function \(p) by the least square method for p € [puin, Pmax)-
In such approach these parameters are found by minimization of the function

Pmax
Uk, a)= / [alnp — Ink — 21In \(p)]dp.

Pmin

Then we get the following explicit representations:

Pmax rnax1 max ~ Mmin 1 min Pmax
a=2 [/ In\(p)Inpdp — (p np Prmin 1 Pin - _ 1) / In )\(p)dp} X

Pmin pmax pl’IllIl Pmin

max — Pmin Pmin

-1
PminPmax Pmax
X |:(pmax - pmin) - 1112 :| ) (21)

Pmax

k = €Xp |:(pmax - pmin>_1 /
p

'min

(alnp —21In A(p)) dp} : (22)

If the error bounds for initial data are known then the optimal value p,, of the
Laplace variable p can be evaluated by minimization of the error bound estimation for the
parameter A which is derived from (18) or (19).

Let the absolute errors bounds A,, A, Ay, Ay, Ay, Ay, Ay, corresponding to the
functions u(t, x), f(t), g(x), o(z), v1(x), Yo(x), ¥1(x) be known. The following estimates
are valid for the absolute errors of the Laplace transform functions:

Ay, - - A
|@*(p, x) — u*(p, x)| < R [ (p) = 1" (p)] < ?f,

where @, f and @, f are correspondingly exact (unknown) and approximate (known) values
of the functions v and f. Then the estimate of the absolute error for A derived from (18)
has the form

Ay < LT (s ] As, + 1R,

=1

Ap, +1Si + KFE| (Ass, + KAor,)] = Ax(p),  (23)

where

TIn=Y (654 (Si+ KF)oy] —6°> F?, Js, =0F,— 6y, Jp, = (Si+2KF)5 — K6y,

=1 =1

-1
as;  OF 025 PF . [ e - OF, S; 08
=gy TR = g TG 5_<;F) Z(Kﬂﬁ_ﬁm)

i=1
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and K is evaluated by (17). In addition,

4 AN —a) A=) Al —a)
Ap = ﬁAh sinh 5 sinh 5 sinh T—i_

l; b
"‘Z%Af {sinh Ab— ZZ)/a |G(€)] sinh A(€ — a)d€ + sinh A(; — a)/li |g(&)|sinh A(b — f)df} :

2 oAb —a) . MNli—a) . ANb—1)
pAh sinh 5 sinh 5 sinh 5 X

X {(ll — a) coth —)\(li; @) + (b — ;) coth —)\<b2_ k) + (b — a) coth )\(bz_ a) = 4] +

Ao, =

4 % {[A(b 1) cosh A(b — 1) — sinh A(b — ;)] / " GO simh A€ — a)de
+ M — a) cosh Al — a) — sinh A(l — a)] /l * 15(6) sinh A(D — £)de+
+ Asinh A(b — 1)) /l G(E)](€ — a) cosh A(€ — a)de+
Fxs AL~ a) [ 1610~ cosh b - )¢ |

and

Ab—a)

Ag, = 4ﬁ sinh A — &) cosh Al —a)

D
Nps, = Bu [(b—1;)cosh A(b—1;) + (I; — a) cosh A\(I[; — a) + (b — a) cosh A\(b — a)],
p

cosh

)

L= |f:*(p)|Ag+Awo, a € (0,1);
|f*(p)|Ag +pA¢o+A¢17 OAS (172)7

if the Riemann — Liouville fractional derivative is used, and

Ag = é sinh Ab—a) [pAu cosh Ab = k) cosh Al — a) +
T 2 2
+ (pAy, + Ay, ) sinh )\(b; L) sinh )\(ZiQ_ a) ,
A
Nps, = ?u [(b—a)cosh A(b—a)+ (b—1;)cosh A\(b—1;) + (I; — a) cosh A\(l; — a)] +
PAg + Ay,
I s 4 > £L1(b—a)cosh A\(b—a) — (b —1;) cosh \(b — ;) — (I; — a) cosh A\(l; — a)]

Ay = ‘f*(p)’Ag

if the Caputo fractional derivative is used.
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The value of p = pop: such that
Ak(poz)t) = min A/\(p)a

PE[Pmin,Pmax]
where the estimate Ay (p) is determined by (23) is called an optimal value of the Laplace
variable p. Note that since A,\(p) > 0, for a finite interval [puin, Pmax] the positive value of
Popt always exists.
Thus, the solution of inverse coefficient problem for equation (1) is represented by the
values of k and a which are calculated from A(p,,:) and representation (17).

4. AD-TIC Package

The proposed algorithms from Sections 2 and 3 are implemented in the AD-TIC
package for the math software Maple [19]. Employment of the Maple software permits to
save the analytical evaluation for the most parameters of identification algorithms such us
the estimate Ay (p) from (23), etc. This approach also permits the analytical representation
of initial data in the graphical user interface and enables the access to all special functions
in the Maple library.

The AD-TIC is a Maple package which includes a set of the Maple procedures. All
these procedures are divided into four different groups:

1) computational routines, which implement the proposed algorithms of parameters
identification;

2) input/output routines,

3) postprocessing routines, which realize an additional processing of identification
results,

4) routines of graphical user interface.

The graphical user interface of the AD-TIC package was created using the Maplets
technology of the Maple software. It contains several interactive forms. The Main Form is
used for creating a calculation task in the work project format. The necessary functions
of initial data (such as initial conditions, boundary conditions, the source function of the
fractional diffusion equation) can be defined in explicit analytical forms in the Maple
notation or by the tables with appropriate numerical values which are saved in the text
files. If a function is defined by the table then a spline approximation is used. The order
of spline approximation can be changed by user (the cubic spline approximation is used as
a default setting). All fields of the Main Form are protected against incorrect data entry.
Initial data are saved in the structural text file of the special format " .tic". An existing
project file can be loaded from the Main Menu.

The AD-TIC package can be used for identification of the fractional diffusivity £ and
the order of fractional differentiation « for the fractional anomalous diffusion equation (1)
with the Riemann — Liouville (2) and Caputo (3) fractional derivatives. The subdiffusion
(v € (0, 1)) and diffusion-wave (« € (1,2)) equations are allowed. Two required parameters
can be evaluated simultaneously as well as a single parameter identification (k or «) is
available. The single coefficient k£ can be evaluated by the AD-TIC package for two limited
cases of the classical diffusion equation (with & = 1) and the classical wave equation (with
a=2).

The known time concentration functions at several inner points of a calculation domain
are used as initial data for identification. The values of coordinates of these inner points
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(up to five) are entered in the appropriate fields of the Main Form of the package. The
values of concentration functions are entered in the table format and are saved in the text
files.

If the absolute error bounds for initial data are known then its values can also be
entered in the appropriate fields of the Main Form. In this case the identification algorithm
with pep evaluation by minimization of (23) is available. Otherwise, the identification
algorithm based on the least square method with averaging by the variable p € [puin, Pmax]
is used. All identification algorithms implemented in the AD-TIC package have several
inner parameters and their values can be changed by user.

Now let us consider two test examples which were used for the verification of the
AD-TIC package.

Example 1. The homogeneous subdiffusion equation (1) with the Riemann — Liouville
fractional derivative was considered in the interval x € [0, 1]. The initial condition (4) and
boundary conditions (8) were chosen as

() = (1 — ) up(t) = 1+t7"%7, uy (t) = 0.

Using the finite difference method, a numerical solution of this initial-boundary value
problem was obtained for the following numerical values of parameters: £k =1, a = 0, 85.
This solution at the three points [y = 0,25, I, = 0,5 and I3 = 0,75 was employed as initial
data for the inverse coefficient problem. To simulate experimental errors, this solution
was perturbed by the normally distributed random noise with zero mean. The variance of
this noise was calculated from the condition that the absolute error of the concentration
function does not exceed 5 %, i.e. A, =0, 05.

The AD-TIC package was used for identification of k£ and «. The identification
algorithm with p,, evaluation by minimization of (23) was chosen. Thirty quadrature
points (n = 30) were used for the numerical Laplace transform calculation by (20). The
following numerical values of the boundaries for the Laplace variable p have been found:
Pmin = 7,86 and pnax = 34, 97. Figure 1 shows the curve of dependence of Ay on p. It can be
seen that this curve has a minimum at the inner point of the interval [pmin, Pmax|- This point
corresponds to the optimal value of the Laplace variable p,, = 22, 82. Using this optimal
value, the following values of the diffusivity and the order of fractional differentiation have
been obtained: £ = 0,933 and a = 0, 823.

So, the proposed algorithm permits to identify the parameters of the anomalous
subdiffusion equation with the Riemann — Liouville fractional derivative with an acceptable
accuracy.

Example 2. As a second example, the nonhomogeneous diffusion-wave equation with
the Caputo fractional derivative was considered. The problem parameters were as follows:

g(x) ==z, @o(x)=2®+sin(rz), @i(x) =0, ze€]l0,1];
f(t)=—1, wue(t) =0, u(t)y=1, t>0.

The equation parameters were chosen as k = 0,166 and a = 1, 3.
Asin the previous example, a numerical solution of this initial-boundary value problem
was calculated using the finite difference method. This solution at the points [; = 0, 25,
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Fig. 1. The dependence of the absolute error estimate A, for the parameter A on the
Laplace variable p
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Fig. 2. The dependence of the parameter A on the Laplace variable p as a log-log plot

[, =0,5 and I3 = 0,75 was used as initial data for the inverse coefficient problem without
any perturbations. The absolute error bounds for the concentration function and other
initial data were assumed to be unknown.

The AD-TIC package was used for identification of k£ and «. The identification
algorithm based on the least square method with averaging by the variable p € [puin, Pmax]
was used. A numerical calculation gave the following results for the boundaries of the
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Laplace parameter interval: pyi, = 0,314 and puax = 1,398. The dependence of In(\) on
In(p) for 25 values of p is plotted on Figure 2. It can be seen that a straight line is a
very good approximation for this data. The slope of this straight line corresponds to the
following value of the order of fractional differentiation: o = 1, 305. Using this value of «,
the anomalous diffusivity k& was evaluated as £ = 0, 165. Thus, the identification algorithm
based on the least square method gives a good identification results for the case of small
errors of the initial data.
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NIEHTU®NKAIINSA TTAPAMETPOB
JTPOBHO-TN®P®EPEHIINAJILHBIX MO/JIEJIEN
AHOMAJILHON TU®®Y3NU METOJIOM BPEMEHHBIX
NHTETPAJIBHBIX XAPAKTEPMCTUK

C.H0. Jlyxawyx

Paccmarpusaiorcs ko3 puImenTHbIe 00paTHBIE 33Ja9H WICHTH(MUKAINA TOCTOSHHBIX
KO3(UIIeHTOB ApobHO-1nd depeHITnaIbHBIX YPaBHEHHH anoManbHol auddy3un ¢ apod-
HbIMH TpOW3BOAHBIMEU Tuna Pumana — Jlmysuiana u Kamyro. B kagectBe anpmopnoii ns-
dopmarum, HeOOXOTUMOHN 71 peliennsi OOPATHBIX 33,144, BBICTYIIAIOT W3BECTHBIE 3HAYEHUS
GYHKIINM KOHIIEHTPAIINK B HECKOJIBKUX BHYTPEHHUX TOUYKAX pacueTHoil obnactu. s pe-
IIEHUs TTOCTABJIEHHBIX 331249 MTPE/JIOKEHBI YHCIEHHBIE AJITOPUTMbI, OCHOBAHHBIE HA, METOJIE
BPEMEHHBIX MHTEIPAJBbHBIX XapPAKTEPUCTUK C WHTErpaJbHBIM MpeodpasoBanueM Jlamiaca.
TTokazamo, 9TO 331a49% CBOIATCA K HACHTU(MDUKAINE KOMIIIEKCA, CBI3BIBAIONIEr0 KO3h durim-
eHT aHoMaJIbHON muddy3un u mopsaoK apobHoro murerpoand depenmupopanmns. IlocTpoe-
HBI OIIEHKW A0COJIIOTHON TIOMPEITHOCTH UACHTU(DUKAIINN JAHHOTO KOMILJIEKCA, TOCPEICTBOM
MUHAMW3AIUH KOTOPBIX HAXOAATCS ONTUMAJIbHBIE 3HAUEHWS MapaMerpa npeobpasoBaHus
Jlammaca. Ilpenjoykennuble aJrOPUTMbBL PEATH30BAHBI B BHI€ TPOrPAMMHOIO KOMILIEKCA B
makere Maple.

Kaoueevie cao6a: aHOMaAbHAA Juddysud; npouseodHvie dpodHo20 nopadka; Ko3ddu-

yuenmuas o6pammnas 360a%a; aA20pUMM UIEHMUPUKAUUL; NPOZPAMMHBLY KOMNAEKC.
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