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It is shown that multistage concurrent games, or relay-races, are widely used in prac-
tice. It is proposed to model relay-races in the state space, in which discrete co-ordinates are
the mathematical analogue of stages, which participants pass in the current time, and basic
principle of modelling of residence of participant in space states is the M-parallel semi-
Markov process. With use of the proposed formalisms formulae for evaluation of stochastic
and time characteristics of relay-races evolution are obtained. For arbitrary realization of
switching trajectory the recurrent procedure of evolution with evaluation of stochastic and
time characteristics of realization under investigation is worked out. Conception of dis-
tributed forfeit, which depends on difference of stages of participants compete in pairs is
introduced. Dependence for evaluation of total forfeit for every participant is obtained.

Keywords: relay-race; concurrent game; M-parallel semi-Markov process; distance;
stage; state space; evolution; distributed forfeit; trajectory realization; recurrent procedure.

Introduction

Multistage concurrent games, in which situation develops in physical time, or relay-
races objectively exist in different fields of human activity, such as sport, economics, pol-
itics, defense etc. [1-4]. In games of this type "distance" that should be overcome by
participants is broken down into "stages", and efficiency of "distance" passage depends
not only on overall "winning" the whole "distance", but also on "winning" the "stages"
(below terms "distance", "stage", "winning", "forfeit" etc. will be used without inverted
commas).

In the paper assumptions are as follows [5]:

1) relay-race is considered as passing by participants of equal distance in real physical
time;

2) distance of every participant is divided onto stages, every of which has a number
equal for all participants;

3) stages with the same numbers have equal length;

4) all participants start at once;

5) time of passing of every stage by the participant is a random one and is de-fined
individually for him with accuracy to density;

6) after completion of a current stage the participant starts the next one without a
lag;

7) winning or losing of a stage competition is understood as completion of the stage
being the first or not the first;

8) winner’s forfeit is distributed in time and depends on difference of stages, which
winner and losers pass.
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1. Relay-Race as M-Parallel Semi-Markov Process

Distance, stages and participants are shown on Fig. 1, where the following indexes are
used: 1 < m, n < M are numbers of participants under competition; 0 < ¢, j < J are
numbers of stages, or numbers of changeover points. Point 0 is the start one, point J is
the final one. Number of stage is quite similar with number of starting points. Indexes of
stages are performed as functions. Bracketed part of index are points of participants.
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Fig. 1. Distances, stages and participants of relay-race

Model of relay-race with M participants may be performed as M-parallel semi-Markov
process

h(t) = [ha(t), ... k() .. ha(D), ... har(t)], (1)

where ¢ is the time; h,, () is the m-th semi-Markov matrix |6, 7] of size (J + 1) x (J + 1),
which describes passing the stages of distance by m-th participant;

hon(t) = [jmyacm) (1) ], (2)

0, in all other cases,

Pjm) am) (1) = {

figm)(t) is density of time of passing the i-th stage by the m-th participant.
For densities fim)(t) the following restrictions are performed:

/tfi(m)(t)dt < 0o when 0 < i(m) < J, 1<m< M,
0
fiomy(t) = lim §(t —7), 1 <m <M, (3)
T—00

where §(t — 7) is a shifted Dirac d-function.

The first restriction means that all participants pass all stages, except the J-th, during
a finite time. The second restriction means that the J-th stage may be considered as stage
with infinite time of passing.

Numbers of stages may be performed as the cortege p = (0,...,4,...,J), the M-th
Cartesian degree of which gives an M-dimensional space s = p™ of states of process (1)
(Fig. 2). Coordinates of space are fixed on the participants, discrete coordinate values
define numbers of changeover points, or current stages of participants. In the space s an
M-dimensional vector of states is defined
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S =[i(1),....i(m),...,i(M)], (4)

where i(m) is the number of a current stage of the m-th participant.

S,=(0,...,0, ..., 0) i(1)

i(m)

NS = [i(1), ..., i(m), ..., i(M)]

&
) Se=(y sy s J)

Fig. 2. Space s of states

The total number of states is equal to (J + 1)M. Initial meaning of vector
S, =(0,...,0,...,0). Wandering through M-parallel semi-Markov process has the char-
acter of evolution, in which after every switch some element of vector S increments by
a unit. For any switches incremental element is the only one. Switches last till state
S.=(J,...,J,...,J). The total number of switches during evolution is R = JM.

2. Common Formulae for Evolution Parameters

During evolution the ordinary semi-Markov processes, described by (1), compete be-
tween them [2,5]. Let us consider the common case, when processes under competition
are described with densities 6 (t),...,0,(t),...,04(t). In such a case density of time till a
first switching is defined as

Ou(t) = Zewa(t) Z H [1—©Op(t) (5)
= b

Where 9wa( ) is the weighted density of time of winning the a-th density;
= Jo 05(7)dr is distribution function.

The probablhty of win of the a-th density and pure density of time of winning the
a-th density are, correspondingly, equal to:

Broa (1)
R )
0
The following proposition is quite correct.
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Proposition 1. If density 0,(t) is under restriction (3), i.e. 0,(t) = lim,; o 6(t — 7),
then Tpe = 0.

Really, in this case

S A A
o= [ i st6= ) T 11 - 6]t = i T 1040
s B=1 B=1

B#a B#a

If among the functions ©4(t) there are functions, for which O4(t) = lim, ., n(t — 7),
where n(t — 7) is shifted Heaviside function, then one can always demand the solution of
indeterminacy as lim,_,, fooo d(t — 7)n(t — 7)dt = 0. So, proposition 1 may be considered
to be proven.

The second formula, necessary for relay-races simulation, is the dependence for waiting
time density. If from competing processes of 0, (t) and 05(t), 05(t) wins the process, it waits
until 6, (¢) will be completed, which may be evaluated as |2, 5]

T 05(€)0lt + €)de
Opa(t) = —= : (7)
/

O5(t)dO4(t)

Proposition 2. If 0,(t) is restricted by (3), then the lower boundary of the domain and
expectation of Op_(t) tend to infinity.

Really, in that case denominator of (7) is equal to f O©s(t) lim, o 6(t—7)dt = 1. Lower

boundary of 65(t ) is min {arg|0s(t) > 0]} = Thmin > 0. So lower boundary of numerator

of (7) is min argf Op(&) lim, 0o 6(t — 7+ €)dE > 0 = lim, o0 (Thuin + 7) — 0.
0

It is known |8, that for every random value expectation ranges in domain
Thin < T < Thax, where T' is an expectation, Tiin, Tmax are lower and upper boundaries
of domain. Consequently, if Tgmin — 00, then T — oo, where T = fooo t0s(t)dt is an
expectation of time of completion 0s(t).

So, proposition 2 may be considered to be proven.

Proposition 3. If lower boundary of density 0,(t) is as Tpmin — 00, then

o

A
T = / 0.(0) [T 11 — ©s(8)) dt =
o

Really, density 0,(t) may be performed as a result of ideal multiplicative sampling
with the infinitesimal sampling period:

= lim Z 0, ()0t — Cl), (8)

(—o0

where ( — 0o is the sampling period.
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All readouts of function (8) belong to t > T min — 00, thus

[e.o]

904 (t) = lim lim 904 (t)(S( annn Cl)

Ta min—7>00 C_>OO

So, according to proposition 1,

o 00 A
Twa = / [ lim lim Qa(t)é(t T min H 1 - 65 =0,

Ta min 00 C—>OO
0 1=0

and proposition 3 is proved.

Proposition 4. If density distribution 6,(t) has the property min arg 6, (t) = Ty min — 00,
then lower boundary of domain and mathematical expectation of 05_,4(t) tend to infinity.

Really, in accordance with intermediate result of proposition 2, in this case the de-

nominator of (7 f Op(t) lim hm Z 00 (t)0(t — Toymin — ¢l)dt = 1. Lower boundary of
—00

a min

numerator of (7) in this case

o

mmarg/ 05(8) hm lim Oa(t)é(t— amin — C0)dE > 0 = Ty min — 00,

and proposition 4 is proved.
With use of dependences obtained and propositions proved a recursive procedure of
relay-race evolution analysis may be formed.

3. Recursive Procedure of Relay-Race Evolution Analysis

Evolution of relay-race develops as competition in M-parallel semi-Markov process [9—
12]. Let us introduce the concept of switching trajectory in the space s of states (Fig. 2) as
the realization of stochastic sequence of vector S from state Sy till state S,. The trajectory
as a whole is occasional, the realization is quite deterministic for every concrete case of
evolution [6, 8.

Let us consider some (f.e. k-th) case of evolution, which starts from state
Sp=(0,...,0,...,0). When no switches took place, the total number of switches is equal
to r = 0, and participants pass zero stages of their distances. Initial densities from zero
rows of matrices h,,(t),1 < m < M participate in competition.

Let the n-th participant win in the k-th realization under consideration. Probability
of his winning may be obtained from (5) [13]:

oy M
Tok = / %90y (t) [T [1 = Gy (1)] it (9)
0 Jj=1,
j#n
where ~G _(t) — [~g.(r)dr is the distribution function; °goi;(t) = fou)(t),

0
0(1) <0(j) <0(M), upper left index points to the number of previous switches; lower
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right index points to the number of stage, in which the j-th participant stays in current
moment of time.
Density of time spent by the winner for passing zero stage is equal to (5)

M
) H1 (1= Gy (1))
=1L
#n
— . 10
Go — (10)

After winning of the n-th participant on the zero stage he begins to pass the first stage,
although all others continue passing their zero stages. This is why after the first switch
the following densities participate in the competition:

Loy Gomy—o()(t), when j #n,
gz(]) (t) { fl(n) (t), When ] _ (11)

where go(m)—o¢)(t) is the density of waiting time for the n-th participant until the j-th
participant completes his zero stage.

Lower right indexes of 'g;;(¢) in the switching trajectory realization are as follows:
i(1)=0,...,i(m)=0,...,i(n)=1,...i(M) = 0.

Let us analyze the situation after r switches of the k-th realization. In accordance to
conditions of evolution total number of switches is equal to

Zl(j) =T, (12)

where (1), ...,2(m), ...,i(n), ..., i(M) are different, in common case, nominations of indexes,
which define numbers of stages, passed by participants in the k-th realization after r
switches.

Let us denote the densities, which participate in competition after r switches, as
"gi1) (1), )" Gigm) (1), " Gimy (L), " gaany (t), and suppose, that the I-th participant wins.
The probability of his winning is equal to

o0 M

Tk = /rgi(l)(t) H [1— "Gy (t)] dt, (13)
0 Jj=1,
J#l

where "g;(;)(t) are densities, which participate in competition after r switches.
In particular, if after r switches in the k-th realization the first participant wins, then
the probability of his winning is equal to

o0 M
Tp ks = /Tgi(l)(t) H (1= "Gy ()] dt.
L

Density of between switches in a general case is equal to

M

r r
giy(t) TT [1 = "Gigy(1)]
j:17
il
Crk = . (14)
7Tr,k
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Let us note, that after J switches in M cases from the M7 realization,
there emerges a situation, when vector S takes one of the next nominations:
(J,0,...,0,...,0),...,(0,...,0,J,0,...,0),...,(0,...,0,...,0,J). After that quantity of
possible competition outcomes from denominated sates decreases to unit. If the m-th par-
ticipant gets the state J, then the probability of outcome from this state, according to
propositions 1 and 3 is equal to zero.

After winning of the I-th participant for the r-th switching, he starts the [i({) + 1]-th
stage of his distance. All other participants continue the i(j)-th stage, 1 < j < M,j # L.
This is why in competition for the (r + 1)-th switching the next densities participate:

"G —i(i) (), when j #1
gy =4 9i=i)(E); 71, 15
9i)(t) Fos (@), when j =1, (15)

where g;1)—i(;)(t) is the waiting time (7).
In particular, if in the k-th realization the first participant wins, for (r+1)-th switching
the next densities contend:

g (1) = "gi1)—i(j) (1), when j # 1,
i) fi(l)+1<t)7 When j = 1

And lastly, let us assume, that in the k-th realization after the (R — 1)-th switching the
state
J when [ #m, <
i(l) :{ J—1, whenl=m, ;Z(l) =h-1
emerges.
Probability of winning of the m-th participant is as follows:

° M

TR-1k = /ngJ(m)—1<t> [T - "G at. (16)
0 Jj=1,
jm

Due to propositions 1 and 3, mr_1 = 1. Probabilities of winning of all other partici-
pants (they reach the states J) are equal to zeros. Densities of residence in states after R
switchers are as follows:

R _ [ Fasem—1m0(t), when j=1#m;
o fip@), j=1=m.

Results of the k-th recursive procedure are shown in Table 1.
The probability of the k-th realization of evolution and the time density for finishing
of the k-th realization of relay-race are as follows:

R-1
Ty = H Th,rs (17)
r=0

R—-1
ka(t) = L_l H L [(pk,r(t)] ) (18)
r=0
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Table 1
k-th recursive procedure

r S Densities

0 O,...,O,...,O,...,O fO(l)a---7f0(7n)7-"7f0(n)7"'7f0(]V1)
090(1), . 7090(m) R gO(n) 7090(M)

1 O,...,O,...,l,...,O 090(77()_}0(1),...7 g()(n)—>0 ---;fl --~7090(n)—>0(M)
90(1) - ,190(m) ces gl(n) R gO(M)

2 0,...,1,...,1,...,0 90( f1 m),...,lgo(m)ﬁl(n),...,Ogo(m)_m(M)
90(1) ) 91(m) R gl(n) "-7290(M)

3 0,...,1,...,2,...,0 2g1(n)_>0() ..., 91(n)—>1( K --;f2(n)7--~72g2(n)—>0(M)
390(1), R 91(m) R 91(n) "-7390(M)

4 0,...,1,...,3,...,0 392(n)—>0( )’...73g2(n)_>1(m),...’f3(n)’...,392(n)_>0(]u')
490(1), . 7491(m), e 7493(n)7 e 7490(M)

r i, . im), .., ...

Z(n), Ce ,Z(M) Tgi(l), Ce ,Tgi(m), e ,Tgi(n), e ,Tgi(M)
r+1 2(1) +1,... ,i(m), fi(l)—&—la - ,ng‘(l)—n‘(m)’ - ;ng'(l)—n‘(n), - ,ng‘(l)—n‘(M)

B Z(”’)? s 7Z(M) r+1gi(1)7 s 7T+1gi(m)7 <. 7r+lgi(n)7 o 7r+1g’i(M)

P R—ng(l)’ s 7R_29J(m)—17 R 7R_29J(n)7 )
J(n),...,J(M) -1 B 20 0m-1

R—1]J(1),....J(m) =1 | "2g;0n-1-s0 ) G (M) =1 ()15 - - - s

e B2 g 0n-1500m) - fJ (M)
J(n), ,J(M) Rilgj() .. R gJ(m) Rfng(n),...,Rfng(M)
R ‘](]—>» R ‘](m)a ce Ring( M)—1—-J(1 fJ Ring(m)—l—x](n)y BRI
J(n)’ 7‘](M) 719J(m)71HJ(M)
Rg.](l)a e ,RQJ(m), e >R9J(n), e >R9J(M)

where L[...] and L™ [...] are the direct and the inverse Laplace transforms correspond-
ingly. Total quantity of realization K grows fast in dependence on number of participants
and number of stages (R. Bellman’s "curse of dimensionality" [1]). The growth of realiza-
tions quantity is restricted by the fact that during switches some participants get the J-th
stage and further evolution on this branch is impossible. So it born difficulty of calculation
of total quantity of realizations.

4. Evaluation of Effectiveness of Relay-Race Strategy
It is quite natural for evaluation of effectiveness to use the model, in which
e the pairs of participants, f.e. the m-th and the n-th are considered;

e participant, who gets a stage with higher number, acquires a forfeit from participants,
who get a stage with lower number;
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e forfeit is defined as a distributed payment c;(m).i(n) (t), value of which depends on
time.

Elements  ¢iom),i(n) (t) are stacked into four-dimensional matrix of size
(J+1) x (J+1)x M x M:

() = [Fpn(®)],1 < myn < M. (19)

where n,,,(t) is a symmetrical matrix of size (J + 1) x (J + 1), which characterizes pay-
ments of the m-th participant to the n-th one;

corm)om)(t) - Commyim)(t) - Copm),am) (1)
Cmn(t) = | Cigmyom)(t) v Cimyim) ) o Cigmyam(t) | (20)
Cam)om)(t) o Caamyim () oo Crm),am)(t)
0 ... 0
Conn(t) = 1<m< M.
0 ... 0

Let us extract from the general k-th realization only participants m and n and tabulate
the kg, n-th realization of pair evolution.

Table 2
F2.m n-th realization of pair evolution
r S Densities r S Densities
0 10,0 fowmys o), r+ 1 [im) 1, | figmar, T Gigm) i)
°om),” Jorm) i(n) " Gitm)+1," M Gim)
I 101 0 g0(n)—0(m)» J1(n)»
*go(m),” 91(n)
2 |11 Fimys" Gomy—1(n) R—21Jm)~1, | "2g50m)-1,"> grm)1
J(n)—1
R—1|Jm)—1, | "gsmm)-1-50)-1: fin)
J(n) B g1 -1, Gumy
r L im),i(n) | "gim)," Gim) R J(m), J()| from)," " 9s(n)—a0m)—1

Analysis of evolution shows that situation, which changes conditions of forfeit pay-
ments, emerges from the winning of one of the participants and lasts till the next switch-
ing. If after r switches densities "g;(m)(t) and "gix)(t) compete, then the entire sum of
forfeit on the stage is as follows [2]:

PR G = / {"9im) @) [1 = Gimy )] +" 9im) (1) [1 = Gy (V)] } Citmyimydt. — (21)
0

Due to (21) the n-th participant pays to the m-th, if i(m) > i(n), and the m-th
participant pays to the n-th, if i(m) < i(n). For the kg, ,-th realization of relay-race on
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formulae, obtained from (5), the probabilities 7, g, m.n, corresponding to concrete order of
switching can be found. So, winner’s sum (the m-th participant) is defined as

~ M Ko 2J 2J
Nm - Z Z Hﬂ‘r,k@,m,n (Z T,kgﬂn,ncmm) ) (22)

n=1, ko mn r=0 r=0
n#Em

where K5 is common quality of realization of pair evolution, which consists of J stages.

Conclusion

Concurrent game was represented as a relay-race, in which participants pass the dis-
tance, divided into stages, time of passing of which is known accurate to densities. Usage
of the conception of M-parallel semi-Markov process allows to work out a recurrent proce-
dure of relay-race evolution. On the base of common recursive procedure a pair evolution
was constructed. For the pair evolution a mathematical expression for evaluation of win-
ner’s sum is obtained. Expression for calculation of winner’s sum is the key to form the
optimal strategies of multistage dynamical competitions in the case, when one can control
the densities of passing by participants.

Further investigation in this area should be directed to find both formula, which con-
nects quantities of participants and stages with total quantity of trajectories and formula,
which permit to generate trajectories of relay-races evolution (now such trajectories are
generated algorithmically), that helps to overcome curse of dimensionality. Also a mathe-
matical apparatus, which connects the proposed models with classical game theory [14,15],
and permits to build up optimal strategies of relay-race evolution, may be worked out.

Acknowledgements. The reported study was partially supported by RFBR and Tula
Region Government, research project No. 16-41-710160 r_ a.
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MOAOEJINMPOBAHUE «<9CTA®ET>

E.B. Jlapxun, B.B. Komos, A.H. Usymun, A.H. IIpusa.aos

IMokazano, 4TO MHOTOCTAAWIHBIE COPEBHOBATEILHBIE WUIPHI, WU SCTADETHI, YACTO
BCTPEYAIOTCST B TPAKTUYECKON mesitenibHOCTH. [lpemmorkeno momenupoearh 3cradery B
TMIPOCTPAHCTBE COCTOSTHUM, TUCKPETHBIE KOOPAUHATHI KOTOPOTO SABJISIOTCSI MATEMAaTHIECKUM
AHAJIOTOM 3TAIOB, IIPOXOINMBIX B TEKYIIUI MOMEHT YIaCTHUKAMU, & DA30BBIM MPUHITUIIOM
MOJIETUPOBAHNA MPEOBIBAHNS YYaCTHUKOB B COCTOSHUAX TPOCTPAHCTBA sBjgercda M-
napaJuesibublii  mosymMapkoBckuii  npomecc. llosiyueHbl HeoODXOguMble  3aBHCHMOCTH,
TIOJIO2KEHHBIE B OCHOBY PacydeTa BPEMEHHDLIX W BEPOSTHOCTHBIX XaPAKTEPUCTHUK SBOJIOTUU
scracdersl. st TPOM3BOMBHON peanm3aliuy TPAGKTOPUU TEPeKIdYeHnit paspaboraHna
PeKyppeHTHAs NPOIEeayPa IBOMIOMUU ICTA(PETHI C OIEHKON BEPOATHOCTU BPEMEHHBIX
W BEPOATHOCTHBIX XAPAKTEPUCTUK WCCIEIyeMON peanm3anuu. DBBEIeHO [OHATHE
pacupenesieHHOro 1mrpada, 3aBUCAINErO OT PA3HOCTHU ITANOB, HA KOTOPBIX HAXOIATCHI
TIOMAPHO KOHKYpPUpPYIOMe yYIacTHUKU. l[lomydeHa 3aBUCHMOCTHL JJIsT OIIEHKH CYMMBI
mrpada, KOTOPYIO MOMYyYIAeT KAXK/IbIH U3 yIACTHUKOB.

Karoweswe  caosa:  acmagema;  copesnosamenvnas  uepa;  M-napassesvnnid
NOAYMEPKOBCKUT NPOYECE; OUCTAHUUA; IMAN; NPOCMPAHCINGO COCMOAHUT; IBOMOUUA;
pacnpedesennvili wmpad; peasusayus MpPeeKmopu; peKyppPeHmuas npoyedypa.
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