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It is shown that multistage concurrent games, or relay-races, are widely used in prac-

tice. It is proposed to model relay-races in the state space, in which discrete co-ordinates are

the mathematical analogue of stages, which participants pass in the current time, and basic

principle of modelling of residence of participant in space states is the M -parallel semi-

Markov process. With use of the proposed formalisms formulae for evaluation of stochastic

and time characteristics of relay-races evolution are obtained. For arbitrary realization of

switching trajectory the recurrent procedure of evolution with evaluation of stochastic and

time characteristics of realization under investigation is worked out. Conception of dis-

tributed forfeit, which depends on di�erence of stages of participants compete in pairs is

introduced. Dependence for evaluation of total forfeit for every participant is obtained.

Keywords: relay-race; concurrent game; M -parallel semi-Markov process; distance;
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Introduction

Multistage concurrent games, in which situation develops in physical time, or relay-
races objectively exist in di�erent �elds of human activity, such as sport, economics, pol-
itics, defense etc. [1�4]. In games of this type "distance" that should be overcome by
participants is broken down into "stages", and e�ciency of "distance" passage depends
not only on overall "winning" the whole "distance", but also on "winning" the "stages"
(below terms "distance", "stage", "winning", "forfeit" etc. will be used without inverted
commas).

In the paper assumptions are as follows [5]:
1) relay-race is considered as passing by participants of equal distance in real physical

time;
2) distance of every participant is divided onto stages, every of which has a number

equal for all participants;
3) stages with the same numbers have equal length;
4) all participants start at once;
5) time of passing of every stage by the participant is a random one and is de-�ned

individually for him with accuracy to density;
6) after completion of a current stage the participant starts the next one without a

lag;
7) winning or losing of a stage competition is understood as completion of the stage

being the �rst or not the �rst;
8) winner's forfeit is distributed in time and depends on di�erence of stages, which

winner and losers pass.
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1. Relay-Race as M-Parallel Semi-Markov Process

Distance, stages and participants are shown on Fig. 1, where the following indexes are
used: 1 ≤ m, n ≤ M are numbers of participants under competition; 0 ≤ i, j ≤ J are
numbers of stages, or numbers of changeover points. Point 0 is the start one, point J is
the �nal one. Number of stage is quite similar with number of starting points. Indexes of
stages are performed as functions. Bracketed part of index are points of participants.
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Fig. 1. Distances, stages and participants of relay-race

Model of relay-race withM participants may be performed asM -parallel semi-Markov
process

hhh(t) = [hhh1(t), . . . ,hhhm(t), . . . ,hhhn(t), . . . hhhM(t)] , (1)

where t is the time; hhhm(t) is the m-th semi-Markov matrix [6,7] of size (J + 1)× (J + 1),
which describes passing the stages of distance by m-th participant;

hhhm(t) = ⌊hj(m),l(m)(t)⌋, (2)

hj(m),l(m)(t) =

{
fi(m)(t), when l(m) = j(m) + 1,
0, in all other cases,

fi(m)(t) is density of time of passing the i-th stage by the m-th participant.
For densities fi(m)(t) the following restrictions are performed:

∞∫
0

tfi(m)(t)dt < ∞ when 0 ≤ i(m) < J, 1 ≤ m ≤ M,

fJ(m)(t) = lim
τ→∞

δ(t− τ), 1 ≤ m ≤ M, (3)

where δ(t− τ) is a shifted Dirac δ-function.
The �rst restriction means that all participants pass all stages, except the J-th, during

a �nite time. The second restriction means that the J-th stage may be considered as stage
with in�nite time of passing.

Numbers of stages may be performed as the cortege ρρρ = (0, . . . , i, . . . , J), the M -th
Cartesian degree of which gives an M -dimensional space sss = ρρρM of states of process (1)
(Fig. 2). Coordinates of space are �xed on the participants, discrete coordinate values
de�ne numbers of changeover points, or current stages of participants. In the space sss an
M -dimensional vector of states is de�ned
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SSS = [i(1), . . . , i(m), . . . , i(M)] , (4)

where i(m) is the number of a current stage of the m-th participant.

 Sb = (0, ..., 0, ..., 0) 

Se = (J, ..., J, ..., J) 

i(1) 

i(m) 

i(M) 

S = [i(1), ..., i(m), ..., i(M)] 

s 

 

Fig. 2. Space sss of states

The total number of states is equal to (J + 1)M . Initial meaning of vector
SSSb = (0, . . . , 0, . . . , 0). Wandering through M -parallel semi-Markov process has the char-
acter of evolution, in which after every switch some element of vector S increments by
a unit. For any switches incremental element is the only one. Switches last till state
SSSe = (J, . . . , J, . . . , J). The total number of switches during evolution is R = JM .

2. Common Formulae for Evolution Parameters

During evolution the ordinary semi-Markov processes, described by (1), compete be-
tween them [2, 5]. Let us consider the common case, when processes under competition
are described with densities θ1(t), . . . , θα(t), . . . , θA(t). In such a case density of time till a
�rst switching is de�ned as

θw(t) =
A∑

α=1

θwα(t) =
A∑

α=1

θα(T )
A∏

β=1
β ̸=α

[1−Θβ(t)] , (5)

where θwα(t) is the weighted density of time of winning the α-th density;
Θβ(t) =

∫ t

0
θβ(τ)dτ is distribution function.

The probability of win of the α-th density and pure density of time of winning the
α-th density are, correspondingly, equal to:

πwα =

∞∫
0

θwα(t)dt; φwα =
θwα(t)

πwα(t)
. (6)

The following proposition is quite correct.
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Proposition 1. If density θα(t) is under restriction (3), i.e. θα(t) = limτ→∞ δ(t − τ),
then πwα = 0.

Really, in this case

πwα =

∞∫
0

lim
τ→∞

δ(t− τ)
A∏

β=1
β ̸=α

[1−Θβ(t)] dt = lim
τ→∞

A∏
β=1
β ̸=α

[1−Θβ(τ)] .

If among the functions Θβ(t) there are functions, for which Θβ(t) = limτ→∞ η(t − τ),
where η(t− τ) is shifted Heaviside function, then one can always demand the solution of
indeterminacy as limτ→∞

∫∞
0

δ(t− τ)η(t− τ)dt = 0. So, proposition 1 may be considered
to be proven.

The second formula, necessary for relay-races simulation, is the dependence for waiting
time density. If from competing processes of θα(t) and θβ(t), θβ(t) wins the process, it waits
until θα(t) will be completed, which may be evaluated as [2, 5]

θβ→α(t) =

η(t)
∞∫
0

θβ(ξ)θα(t+ ξ)dξ

∞∫
0

Θβ(t)dΘα(t)

. (7)

Proposition 2. If θα(t) is restricted by (3), then the lower boundary of the domain and
expectation of θβ→α(t) tend to in�nity.

Really, in that case denominator of (7) is equal to
∞∫
0

Θβ(t) limτ→∞ δ(t−τ)dt = 1. Lower

boundary of θβ(t) is min {arg⌊θβ(t) > 0⌋} = Tβmin ≥ 0. So lower boundary of numerator

of (7) is min arg
∞∫
0

Θβ(ξ) limτ→∞ δ(t− τ + ξ)dξ > 0 = limτ→∞(Tβmin + τ) → ∞.

It is known [8], that for every random value expectation ranges in domain
Tmin ≤ T ≤ Tmax, where T is an expectation, Tmin, Tmax are lower and upper boundaries
of domain. Consequently, if Tβmin → ∞, then Tβ → ∞, where Tβ =

∫∞
0

tθβ(t)dt is an
expectation of time of completion θβ(t).

So, proposition 2 may be considered to be proven.

Proposition 3. If lower boundary of density θα(t) is as Tαmin → ∞, then

πwα =

∞∫
0

θα(t)
A∏

β=1
β ̸=α

[1−Θβ(t)] dt = 0.

Really, density θα(t) may be performed as a result of ideal multiplicative sampling
with the in�nitesimal sampling period:

θα(t) = lim
ζ→∞

∞∑
l=0

θα(t)δ(t− ζl), (8)

where ζ → ∞ is the sampling period.
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All readouts of function (8) belong to t > Tαmin → ∞, thus

θα(t) = lim
Tαmin→∞

lim
ζ→∞

∞∑
l=0

θα(t)δ(t− Tαmin − ζl).

So, according to proposition 1,

πwα =

∞∫
0

[
lim

Tαmin→∞
lim
ζ→∞

∞∑
l=0

θα(t)δ(t− Tαmin − ζl)

]
A∏

β=1
β ̸=α

[1−Θβ(t)] dt = 0,

and proposition 3 is proved.

Proposition 4. If density distribution θα(t) has the property min arg θα(t) = Tαmin → ∞,
then lower boundary of domain and mathematical expectation of θβ→α(t) tend to in�nity.

Really, in accordance with intermediate result of proposition 2, in this case the de-

nominator of (7)
∞∫
0

Θβ(t) lim
Tαmin→∞

lim
ζ→∞

∞∑
l=0

θα(t)δ(t− Tαmin − ζl)dt = 1. Lower boundary of

numerator of (7) in this case

min arg

∫ ∞

0

θβ(ξ) lim
Tαmin→∞

lim
ζ→∞

∞∑
l=0

θα(t)δ(t− Tαmin − ζl)dξ > 0 = Tαmin → ∞,

and proposition 4 is proved.
With use of dependences obtained and propositions proved a recursive procedure of

relay-race evolution analysis may be formed.

3. Recursive Procedure of Relay-Race Evolution Analysis

Evolution of relay-race develops as competition in M -parallel semi-Markov process [9�
12]. Let us introduce the concept of switching trajectory in the space sss of states (Fig. 2) as
the realization of stochastic sequence of vector SSS from state SbSbSb till state SeSeSe. The trajectory
as a whole is occasional, the realization is quite deterministic for every concrete case of
evolution [6, 8].

Let us consider some (f.e. k-th) case of evolution, which starts from state
SbSbSb = (0, . . . , 0, . . . , 0). When no switches took place, the total number of switches is equal
to r = 0, and participants pass zero stages of their distances. Initial densities from zero
rows of matrices hhhm(t), 1 ≤ m ≤ M participate in competition.

Let the n-th participant win in the k-th realization under consideration. Probability
of his winning may be obtained from (5) [13]:

π0,k =

∞∫
0

0g0(n)(t)
M∏

j=1,
j ̸=n

[
1− 0G0(j)(t)

]
dt, (9)

where ...G...(t) −
∞∫
0

...g...(τ)dτ is the distribution function; 0g0(j)(t) = f0(j)(t),

0(1) ≤ 0(j) ≤ 0(M), upper left index points to the number of previous switches; lower
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right index points to the number of stage, in which the j-th participant stays in current
moment of time.

Density of time spent by the winner for passing zero stage is equal to (5)

φ0,k =

0g0(n)(t)
M∏

j=1,
j ̸=n

[
1− 0G0(j)(t)

]
π0,k

. (10)

After winning of the n-th participant on the zero stage he begins to pass the �rst stage,
although all others continue passing their zero stages. This is why after the �rst switch
the following densities participate in the competition:

1gi(j)(t) =

{
g0(n)→0(j)(t), when j ̸= n,
f1(n)(t), when j = n,

(11)

where g0(n)→0(j)(t) is the density of waiting time for the n-th participant until the j-th
participant completes his zero stage.

Lower right indexes of 1gi(j)(t) in the switching trajectory realization are as follows:
i(1) = 0, . . . , i(m) = 0, . . . , i(n) = 1, . . . i(M) = 0.

Let us analyze the situation after r switches of the k-th realization. In accordance to
conditions of evolution total number of switches is equal to

M∑
j=1

i(j) = r, (12)

where i(1), ..., i(m), ..., i(n), ..., i(M) are di�erent, in common case, nominations of indexes,
which de�ne numbers of stages, passed by participants in the k-th realization after r
switches.

Let us denote the densities, which participate in competition after r switches, as
rgi(1)(t), ...,

r gi(m)(t), ...,
r gi(m)(t), ...,

r gi(M)(t), and suppose, that the l-th participant wins.
The probability of his winning is equal to

πr,k =

∞∫
0

rgi(l)(t)
M∏

j=1,
j ̸=l

[
1− rGi(j)(t)

]
dt, (13)

where rgi(j)(t) are densities, which participate in competition after r switches.
In particular, if after r switches in the k-th realization the �rst participant wins, then

the probability of his winning is equal to

πr,k =

∞∫
0

rgi(1)(t)
M∏

j=1,
j ̸=1

[
1− rGi(j)(t)

]
dt.

Density of between switches in a general case is equal to

φr,k =

rgi(l)(t)
M∏

j=1,
j ̸=l

[
1− rGi(j)(t)

]
πr,k

. (14)
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Let us note, that after J switches in M cases from the MJ realization,
there emerges a situation, when vector S takes one of the next nominations:
(J, 0, . . . , 0, . . . , 0), . . . , (0, . . . , 0, J, 0, . . . , 0), . . . , (0, . . . , 0, . . . , 0, J). After that quantity of
possible competition outcomes from denominated sates decreases to unit. If the m-th par-
ticipant gets the state J , then the probability of outcome from this state, according to
propositions 1 and 3 is equal to zero.

After winning of the l-th participant for the r-th switching, he starts the [i(l) + 1]-th
stage of his distance. All other participants continue the i(j)-th stage, 1 ≤ j ≤ M, j ̸= l.
This is why in competition for the (r + 1)-th switching the next densities participate:

r+1gi(j)(t) =

{
rgi(l)→i(j)(t), when j ̸= l,
fi(l)+1(t), when j = l,

(15)

where gi(l)→i(j)(t) is the waiting time (7).
In particular, if in the k-th realization the �rst participant wins, for (r+1)-th switching

the next densities contend:

r+1gi(j)(t) =

{
rgi(1)→i(j)(t), when j ̸= 1,
fi(1)+1(t), when j = 1.

And lastly, let us assume, that in the k-th realization after the (R − 1)-th switching the
state

i(l) =

{
J, when l ̸= m,
J − 1, when l = m,

M∑
l=1

i(l) = R− 1

emerges.
Probability of winning of the m-th participant is as follows:

πR−1,k =

∞∫
0

R−1gJ(m)−1(t)
M∏

j=1,
j ̸=m

[
1− R−1GJ(l)(t)

]
dt. (16)

Due to propositions 1 and 3, πR−1,k = 1. Probabilities of winning of all other partici-
pants (they reach the states J) are equal to zeros. Densities of residence in states after R
switchers are as follows:

Rgi(j)(t) =

{
RgJ(m)−1→J(l)(t), when j = l ̸= m;

fJ(j)(t), j = l = m.

Results of the k-th recursive procedure are shown in Table 1.
The probability of the k-th realization of evolution and the time density for �nishing

of the k-th realization of relay-race are as follows:

πk =
R−1∏
r=0

πk,r, (17)

φk(t) = L−1

R−1∏
r=0

L [φk,r(t)] , (18)
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Table 1

k-th recursive procedure

r S Densities
0 0, . . . , 0, . . . , 0, . . . , 0 f0(1), . . . , f0(m), . . . , f0(n), . . . , f0(M)

0g0(1), . . . ,
0g0(m), . . . ,

0g0(n), . . . ,
0g0(M)

1 0, . . . , 0, . . . , 1, . . . , 0 0g0(n)→0(1), . . . ,
0g0(n)→0(m), . . . , f1(n), . . . ,

0g0(n)→0(M)
1g0(1), . . . ,

1g0(m), . . . ,
1g1(n), . . . ,

1g0(M)

2 0, . . . , 1, . . . , 1, . . . , 0 1g0(m)→0(1), . . . , f1(m), . . . ,
1g0(m)→1(n), . . . ,

0g0(m)→0(M)
2g0(1), . . . ,

2g1(m), . . . ,
2g1(n), . . . ,

2g0(M)

3 0, . . . , 1, . . . , 2, . . . , 0 2g1(n)→0(1), . . . ,
2g1(n)→1(m), . . . , f2(n), . . . ,

2g2(n)→0(M)
3g0(1), . . . ,

3g1(m), . . . ,
3g1(n), . . . ,

3g0(M)

4 0, . . . , 1, . . . , 3, . . . , 0 3g2(n)→0(1), . . . ,
3g2(n)→1(m), . . . , f3(n), . . . ,

3g2(n)→0(M)
4g0(1), . . . ,

4g1(m), . . . ,
4g3(n), . . . ,

4g0(M)

. . . . . . . . .
r i(1), . . . , i(m), . . . ,

i(n), . . . , i(M)
. . .
rgi(1), . . . ,

rgi(m), . . . ,
rgi(n), . . . ,

rgi(M)

r + 1 i(1) + 1, . . . , i(m),
. . . , i(n), . . . , i(M)

fi(1)+1, . . . ,
rgi(1)→i(m), . . . ,

rgi(1)→i(n), . . . ,
rgi(1)→i(M)

r+1gi(1), . . . ,
r+1gi(m), . . . ,

r+1gi(n), . . . ,
r+1gi(M)

. . . . . . . . .
R− 2 J(1), . . . , J(m)− 1

, . . . ,
J(n), . . . , J(M)− 1

. . .
R−2gJ(1), . . . ,

R−2gJ(m)−1, . . . ,
R−2gJ(n), . . . ,

R−2gJ(M)−1

R− 1 J(1), . . . , J(m)− 1
, . . . ,
J(n), . . . , J(M)

R−2gJ(M)−1→J(1), . . . ,
R−2gJ(M)−1→J(m)−1, . . . ,

R−2gJ(M)−1→J(n) . . . , fJ(M)
R−1gJ(1), . . . ,

R−1gJ(m)−1, . . . ,
R−1gJ(n), . . . ,

R−1gJ(M)

R J(1), . . . , J(m), . . . ,
J(n), . . . , J(M)

R−1gJ(M)−1→J(1), . . . , fJ(M) . . . ,
R−1gJ(m)−1→J(n), . . . ,

R−1gJ(m)−1→J(M)
RgJ(1), . . . ,

RgJ(m), . . . ,
RgJ(n), . . . ,

RgJ(M)

where L [. . .] and L−1 [. . .] are the direct and the inverse Laplace transforms correspond-
ingly. Total quantity of realization K grows fast in dependence on number of participants
and number of stages (R. Bellman's "curse of dimensionality" [1]). The growth of realiza-
tions quantity is restricted by the fact that during switches some participants get the J-th
stage and further evolution on this branch is impossible. So it born di�culty of calculation
of total quantity of realizations.

4. Evaluation of E�ectiveness of Relay-Race Strategy

It is quite natural for evaluation of e�ectiveness to use the model, in which

• the pairs of participants, f.e. the m-th and the n-th are considered;

• participant, who gets a stage with higher number, acquires a forfeit from participants,
who get a stage with lower number;
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• forfeit is de�ned as a distributed payment ci(m),i(n)(t), value of which depends on
time.

Elements ci(m),i(n)(t) are stacked into four-dimensional matrix of size
(J + 1)× (J + 1)×M ×M :

ñ(t) = ⌊ñm,n(t)⌋, 1 ≤ m,n ≤ M. (19)

where ñm,n(t) is a symmetrical matrix of size (J + 1)× (J + 1), which characterizes pay-
ments of the m-th participant to the n-th one;

cm,n(t) =


c0(m),0(n)(t) . . . c0(m),i(n)(t) . . . c0(m),J(n)(t)

. . .
ci(m),0(n)(t) . . . ci(m),i(n)(t) . . . ci(m),J(n)(t)

. . .
cJ(m),0(n)(t) . . . cJ(m),i(n)(t) . . . cJ(m),J(n)(t)

 ; (20)

cm,n(t) =

 0 . . . 0
. . .

0 . . . 0

 , 1 ≤ m ≤ M.

Let us extract from the general k-th realization only participantsm and n and tabulate
the k2,m,n-th realization of pair evolution.

Table 2

k2,m,n-th realization of pair evolution

r S Densities r S Densities
0 0, 0 f0(m), f0(n),

0g0(m),
0 g0(n)

r + 1 i(m) + 1,
i(n)

fi(m)+1,
r+1 gi(m)→i(n)

r+1gi(m)+1,
r+1 gi(n)

1 0, 1 0g0(n)→0(m), f1(n),
0g0(m),

0 g1(n)

. . .

2 1, 1 f1(m),
1 g0(m)→1(n) R− 2 J(m)−1,

J(n)− 1

R−2gJ(m)−1,
R−2 gJ(n)−1

. . . R− 1 J(m)−1,
J(n)

R−2gJ(m)−1→J(n)−1, fJ(n)
R−1gJ(m)−1,

R−1 gJ(n)
r i(m), i(n) rgi(m),

r gi(n) R J(m), J(n) fJ(m),
R−1 gJ(n)→J(m)−1

Analysis of evolution shows that situation, which changes conditions of forfeit pay-
ments, emerges from the winning of one of the participants and lasts till the next switch-
ing. If after r switches densities rgi(m)(t) and rgi(n)(t) compete, then the entire sum of
forfeit on the stage is as follows [2]:

r,k2,m,nCm,n =

∞∫
0

{
rgi(m)(t)

[
1−Gi(n)(t)

]
+r gi(n)(t)

[
1−Gi(m)(t)

]}
ci(m)i(n)dt. (21)

Due to (21) the n-th participant pays to the m-th, if i(m) > i(n), and the m-th
participant pays to the n-th, if i(m) < i(n). For the k2,m,n-th realization of relay-race on
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formulae, obtained from (5), the probabilities πr,k2,m,n, corresponding to concrete order of
switching can be found. So, winner's sum (the m-th participant) is de�ned as

Ñm =
M∑

n=1,
n ̸=m

K2∑
k2,m,n

2J∏
r=0

πr,k2,m,n

(
2J∑
r=0

r,k2,m,nCm,n

)
, (22)

where K2 is common quality of realization of pair evolution, which consists of J stages.

Conclusion

Concurrent game was represented as a relay-race, in which participants pass the dis-
tance, divided into stages, time of passing of which is known accurate to densities. Usage
of the conception of M -parallel semi-Markov process allows to work out a recurrent proce-
dure of relay-race evolution. On the base of common recursive procedure a pair evolution
was constructed. For the pair evolution a mathematical expression for evaluation of win-
ner's sum is obtained. Expression for calculation of winner's sum is the key to form the
optimal strategies of multistage dynamical competitions in the case, when one can control
the densities of passing by participants.

Further investigation in this area should be directed to �nd both formula, which con-
nects quantities of participants and stages with total quantity of trajectories and formula,
which permit to generate trajectories of relay-races evolution (now such trajectories are
generated algorithmically), that helps to overcome curse of dimensionality. Also a mathe-
matical apparatus, which connects the proposed models with classical game theory [14,15],
and permits to build up optimal strategies of relay-race evolution, may be worked out.
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ÌÎÄÅËÈÐÎÂÀÍÈÅ ≪ÝÑÒÀÔÅÒ≫

Å.Â. Ëàðêèí, Â.Â. Êîòîâ, À.Í. Èâóòèí, À.Í. Ïðèâàëîâ

Ïîêàçàíî, ÷òî ìíîãîñòàäèéíûå ñîðåâíîâàòåëüíûå èãðû, èëè ýñòàôåòû, ÷àñòî

âñòðå÷àþòñÿ â ïðàêòè÷åñêîé äåÿòåëüíîñòè. Ïðåäëîæåíî ìîäåëèðîâàòü ýñòàôåòó â

ïðîñòðàíñòâå ñîñòîÿíèé, äèñêðåòíûå êîîðäèíàòû êîòîðîãî ÿâëÿþòñÿ ìàòåìàòè÷åñêèì

àíàëîãîì ýòàïîâ, ïðîõîäèìûõ â òåêóùèé ìîìåíò ó÷àñòíèêàìè, à áàçîâûì ïðèíöèïîì

ìîäåëèðîâàíèÿ ïðåáûâàíèÿ ó÷àñòíèêîâ â ñîñòîÿíèÿõ ïðîñòðàíñòâà ÿâëÿåòñÿ M-

ïàðàëëåëüíûé ïîëóìàðêîâñêèé ïðîöåññ. Ïîëó÷åíû íåîáõîäèìûå çàâèñèìîñòè,

ïîëîæåííûå â îñíîâó ðàñ÷åòà âðåìåííûõ è âåðîÿòíîñòíûõ õàðàêòåðèñòèê ýâîëþöèè

ýñòàôåòû. Äëÿ ïðîèçâîëüíîé ðåàëèçàöèè òðàåêòîðèè ïåðåêëþ÷åíèé ðàçðàáîòàíà

ðåêóððåíòíàÿ ïðîöåäóðà ýâîëþöèè ýñòàôåòû ñ îöåíêîé âåðîÿòíîñòè âðåìåííûõ

è âåðîÿòíîñòíûõ õàðàêòåðèñòèê èññëåäóåìîé ðåàëèçàöèè. Ââåäåíî ïîíÿòèå

ðàñïðåäåëåííîãî øòðàôà, çàâèñÿùåãî îò ðàçíîñòè ýòàïîâ, íà êîòîðûõ íàõîäÿòñÿ

ïîïàðíî êîíêóðèðóþùèå ó÷àñòíèêè. Ïîëó÷åíà çàâèñèìîñòü äëÿ îöåíêè ñóììû

øòðàôà, êîòîðóþ ïîëó÷àåò êàæäûé èç ó÷àñòíèêîâ.

Êëþ÷åâûå ñëîâà: ýñòàôåòà; ñîðåâíîâàòåëüíàÿ èãðà; M -ïàðàëëåëüíûé

ïîëóìàðêîâñêèé ïðîöåññ; äèñòàíöèÿ; ýòàï; ïðîñòðàíñòâî ñîñòîÿíèé; ýâîëþöèÿ;

ðàñïðåäåëåííûé øòðàô; ðåàëèçàöèÿ òðàåêòîðèè; ðåêóððåíòíàÿ ïðîöåäóðà.
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