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In the article the mathematical model representing one class of evolution equations in
quasi-Banach spaces is studied. A theorem on the unique solvability of the Cauchy problem
is stated. The conditions for the phase space existence are presented. We also give the
conditions for exponential dichotomies of solutions. Based on the theoretical results there
was developed an algorithm for the numerical solution of the problem. The algorithm is
implemented in Maple. The article includes description of the algorithm which is illustrated
by variety of model examples showing the work of the developed program and represent the
main properties of solutions.
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Introduction

Let {\x} C R, be a monotone sequence such that klim Ar = +00. The quasi-Banach
— 00

space
b= {u:{uk}: Z <)\,?|uk|>q< + oo}
k=1

m a\ 1/q
with a quasi-norm 7" |ul| :(Zzozl ()\,f ]uk]> ) , m € R is called a quasi-Sobolev space

[1]. Obviously, for ¢ € [1,+00) the spaces (] are Banach spaces; ﬁgzﬁq, and there is a
dense and continuous embedding £ into (i for n > m and ¢ € R,.

Example 1. Let U = 62”2”, § =4 Qu(N), Rs(M) be polynomials of powers n and s
(n < s) respectively with real coefficients, without common roots. Consider an operator
L = Q,(Mu = {Qn(A\)ur}, where {u,} € U It is easy to see that the operator L €
L(4;F). Construct an operator M = R (A)u = {Rs(\)ux}. It is easy to show that
M € Cl(i;§), domM = 6’61"”3, the L-spectrum o(M) of operator M consists of points
e = Re(Ae)(Qn(Mi))7Y, k € N: )\, is not the root of the polynomial @, (\). Further we
consider polynomials with the coefficients at the highest powers having opposite signs.

Definition 1. Vector-function u € C'(R,; ), satisfying
Lu=Mu. (1)
pointwise is called a classical solution of this equation. The solution u = wu(t) of (1) is

called a solution to the weakened Cauchy problem (in sense of S.G. Krein), if in addition
for ug € U
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t1—1>%}&— u(t) = up. (2)

holds.

If ker L # {0} then (1) is called a Sobolev type equation. Interest in Sobolev type
equations has recently increased significantly [2-5|, moreover, there arose a necessity for
their consideration in quasi-Banach spaces. The need is dictated by the desire to fill up the
theory as well as by the aspiration to comprehend non-classical models of mathematical
physics in quasi-Banach spaces [6].

Since the Cauchy problem for the Sobolev type equation is not solvable for arbitrary
initial data it is necessary to construct the phase space of equation as the set of admissible
initial values containing all solutions of equation [2|. The phase spaces of evolution and
dynamical Sobolev type equations were constructed earlier in Banach spaces [2]. These
ideas were used to study one class of evolution Sobolev type equations in quasi-Banach
spaces of sequences [6]. There was held an analytical investigation of the considered
problem. A theorem of existence of unique solution was proved. Our gual is to develop
an algorithm for the numerical solution of the problem and carry out computational
experiments.

1. Analytical Study of the Mathematical Model of One Class
of Evolution Equations in Quasi-Banach Spaces

Lemma 1. [6] Operator M defined in example 1 is strongly L-sectorial.

Theorem 1. [6]| Let operators M and L be defined as in example 1. Then
(1) operators L and M generate on spaces 4 and § degenerate holomorphic semigroups
{U':t e R} and {F" :t € R} respectively given by

1 1
U=— [ RE(M)eMdpe L ()  F'=— [ LY (M)e"dp € L 3
s [REOne ety Pz [ LHOnetne 1@ @)
for t € Ry, where the contour T' C p“(M) is such that |argu| — 0 npu pp — oo, p € T,
(1) there exist semigroup’s units which are the projectors P € L(U) and Q € L(F)
given by

I— > < .ep>e, ifthereexist ¢ € N: )\ is the root of Q,(N),

{ I if \; is not the root of @, ()) for all k € N;
pP—
keNT=¢

(the projector Q has the same form), splitting the quasi-Banach spaces 3 and § into direct
sums

U=tou!, F=3'o3F".
Definition 2. The set P C U is called a phase space of equation (1), if

(i) any solution u = u(t) of (1) lies in P pointwise, i.e. u(t) € P for all t € Ry;
(ii) for all up € P there exists a unique solution to (1), (2).

Theorem 2. [6] Let operators M and L be defined as in example 1. Then the subspace
U is a phase space of (1), for arbitrary ug € U there exists a unique solution to (1), (2).
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Definition 3. We say that solutions of (1) have exponential dichotomy, if
(i) the phase space of (1) can be represented as P = J* ©J2, where J'@ are invariant

spaces of equation (1);

(ii) for arbitrary ug € J* (up € J?) solution u = u(t) of (1), (2) is such that y ||u(t)|| <
Cr(ug)e™™ (y |lu(t)|| > Cz(ug)e™) for some a > 0 and all t € R,.

Theorem 3. 6| Let operators L, M € L(;§) be defined as in example 1 and condition

o"(M)NiR = 0 and there exists i, € o=(M) with Repy, > 0

hold. Then solutions of (1) have exponential dichotomy.

2. Numerical Solution Algorithm

Based on the theoretical results there was developed an algorithm for numerical
solution of problem (1), (2), implemented in a software environment Maple 15.0. The
program uses a phase space method [2].
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Fig. 1. A block diagram of algorithm
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A numerical solution algorithm is shown in a block diagram in Fig. 1. The developed

program allows you to:

1. Enter the polynomials of the Laplace quasi-operator and consider one class of
evolution equations in quasi-Sobolev spaces.
2. Take into account degeneracy of equation and apply the phase space method.
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3. Find the necessary for the accuracy € number of nonzero members of approximate
solution.

4. Find and print the approximate solution of the problem.

5. Get a graphical image of the components of received solution over time.

A detailed description of the algorithm (each block of the algorithm corresponds to
one step):

Step 1. After the start of the program the user enters the powers of the polynomials
s,m, the time period T : ¢ € [0,T] and the accuracy of an approximate solution .

S
Step 2. In a cycle the polynomial R,(z) = . diz" is constructed.

k=1

n
Step 8. In a cycle the polynomial Q,(z) = >_ cpx* is constructed.

k=1
Step 4. The monotone increasing sequence {\x} is entered by user.
Step 5. The initial sequence ug is set.
Step 6. Input of parameters of a quasi-norm of a quasi-Sobolev space.
Step 7. Calculation of a quasi-norm of the initial sequence.
Step 8. Checking if the quasi-norm of the initial sequence is infinite.
If the eighth step is true go to Step 5.
If the eighth step is false:

Step 9. Verification of number N of nontrivial components of approximate solution
T

needed to take into account degeneracy and to obtain the accuracy ¢ so that [ 7*||u(t) —
0

an(t)||dt.

Step 10. In a cycle check if Q,(\;) = 0, i.e. equation is degenerate.

If the tenth step is true:

Step 11. Check if initial data ug belongs to the phase space of equation.

If the eleventh step is true:

Step 12. End of cycle by k.

If the eleventh step is false:

Step 13. Output the message:"There is no solution".

If the tenth step is false:

Step 14. The k-th equation is a differential one. Add it to the system of differential
equations to solve.

Step 15. End of cycle by k.

Step 16. Solve the system of differential equations to find the nontrivial components
of an approximate solution.

Step 17. The resulting approximate solution is put on the screen and displayed as
graphs of the components of an approximate solution.

Step 18. End of program.

3. Numerical Experiment

Let 4 = EZ”Q”, § = {;". Consider the Cauchy problem

u(0) = up,t € [0, 7], ug € 4, (4)
Qn(N)u = Rs(A)u. (5)
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Example 2. It is required to find a numerical solution of problem (4) — (5) where
Qi(z) =2 —x, Ry(x) =22 N\, = k?, ugp = %, q=0,5, m=1, T =0,5,¢=0,01.

The program checks the condition *[|ug|| = +oc. Since it holds, there is no solution
to the problem. The program gives output: "There is no solution".

Example 3. It is required to find a numerical solution of problem (4) — (5) where
Qi(z) =2 —x, Ro(x) =22 N\, = k?, ugp = #, qg=0,5 m=1, T=0,5.

Depending on accuracy € we received the following results:

For e; =0,1,
ap(t)=(e', 0,25 e78 0,11 e 1157 0,06 e~ 182% (0,04 2717 0, 0, ..., 0,...).

g9 = 0,01,
uz(t)=(e', 0,25 e78, 0,11 e~ 157 0,06 ¢~ 182 0,04 72717 0,03 3312 0,02 75, 0,02
e7% 0,01 78 0,01 7192 0,008 e7123 0,007 =16 0,006 e~ 17, 0,005 719 0,004
e2% 0,0, ..., 0, ...).

The graph of the solution is presented in Fig. 2.
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Fig. 2. Solution from example 3 Fig. 3. Solution from example 5

Example 4. It is required to find a numerical solution of problem (4) — (5) where
Qi(z) =4 —x,Ry(x) = 22, N\ = KX upr = k%l, ,q=05 m=1,T =0,5¢ =0,1.
Equation (5) in this case is degenerate. Since the initial data do not belong to the phase
space of equation the program gives output: "There is no solution".

Example 5. Tt is required to find the numerical solution of problem (4) — (5) where
Q1(z) =4 — 1z, Ry(x) = 22, N\, = K2,

1 .
B F
0 ifk=2

Equation is degenerate (Q1(A2) = 0) and initial data belong to the phase space of equation
(5). For € = 0,01 we have
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u(t)=et, 0, 0,1 e~ 1157 0,06 71829 0,04 ¢72717 0,03 73812 0,02 7?1, 0,02 75
0,01 e, 0,01 e~192¢ 0,008 =123 0,007 e 145, 0,006 e~ 171, 0,005 e 19 0,004 =227,
0,004 =258, 0,003 =271, 0,003 =326, 0,003 €353, 0,003 e~40%, 0,002 e=*43¢, 0,002 =486,
0, 0,..., 0,...).

The graph of the solution is presented in Fig. 3.

Example 6. It is required to find a numerical solution of problem (4) — (5) where
Q2(x) =T+ 2%, Ry(x) = —5+a—52>—a®, Ny =k* uop =75, ¢=05, m=1, T =0.5.
Fore; =0,1,
G1(H)=(e~12%, 0,13 ¢203% 0,04 e 59 0, 0,..., 0,...).
For e5 = 0,01,
Uy (t)=(e~ 1% 0,13 2039 (0,04 ¢35 0,02 e20% 0, 0,..., 0,...). The graph of the solution
is presented in Fig. 4.
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Fig. 4. Solution from example 6
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BBIUYNCJINTEJIBHBIN SKCIEPUMEHT AJ1d OJHOT'O
KJIACCA BOJIIOITMOHHBIX MATEMATUNYECKUX
MO/JEJIEN B KBA3MCOBOJIEBBIX ITPOCTPAHCTBAX

A K. T. Aav Hcasu, A.A. Samviwasesa

B crarpe m3ydaercs mMaTeMaTHUecKasd MOJENb, MMPEJACTABIAIONIAA OTUH KJIACC IBOJIIO-
IMOHHBIX YPABHEHHUH B KBa3u DAHAXOBLIX IIPOCTPAHCTBAX MOCIeA0BaTebHOCTEH. [Ipencras-
JieHa, TeopeMa, 00 OIHO3HAYHON DA3PENTMMOCTH B BUE YCJIOBUI CYIECTBOBAaHUS (PA30BOTO
NPOCTPAHCTBA YPABHEHUS U IIPUBEJEHBI YCIOBUA CYIIECTBOBAHUSA JKCIIOHEHIIMAJIBHBIX IIU-
xoromuii pemrennii. Ha ocHOBE TeopeTnyuecknx pe3yabTaToB pa3pabOTaH ajJrOPUTM YUCIEH-
HOro pelieHus 3a1a4n. AaropurM peaians3oal B cpege Maple. Crarbst comepKuT onmcanue
AJTOPUTMA M PA3MUYIHBIE TIPHUMEPHI UILIIOCTPAITIN PabOThl IPOTPAMMBI HA €TI0 OCHOBE, ZIe-
MOHCTPUPYIOIINE PA3JIUIHbIE CBOMCTBA PeIeHuit.

Kaouesvie cr06a: 360M0UUOHHOE YPAGHEHUE; KEA3UDGHATOBHL NPOCTNPAHCNGA; “LUCAEH-

HOE peuweHue.
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