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In the article the mathematical model representing one class of evolution equations in

quasi-Banach spaces is studied. A theorem on the unique solvability of the Cauchy problem

is stated. The conditions for the phase space existence are presented. We also give the

conditions for exponential dichotomies of solutions. Based on the theoretical results there

was developed an algorithm for the numerical solution of the problem. The algorithm is

implemented in Maple. The article includes description of the algorithm which is illustrated

by variety of model examples showing the work of the developed program and represent the

main properties of solutions.
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Introduction

Let {λk} ⊂ R+ be a monotone sequence such that lim
k→∞

λk = +∞. The quasi-Banach
space

ℓmq =

{
u={uk}:

∞∑
k=1

(
λ

m
2
k |uk|

)q

<+∞

}

with a quasi-norm m
q ∥u∥=

(∑∞
k=1

(
λ

m
2
k |uk|

)q)1/q

, m ∈ R is called a quasi-Sobolev space

[1]. Obviously, for q ∈ [1,+∞) the spaces ℓmq are Banach spaces; ℓ0q=ℓq, and there is a
dense and continuous embedding ℓnq into ℓmq for n > m and q ∈ R+.

Example 1. Let U = ℓm+2n
q , F = ℓmq ; Qn(λ), Rs(λ) be polynomials of powers n and s

(n < s) respectively with real coe�cients, without common roots. Consider an operator
L = Qn(Λ)u = {Qn(λk)uk}, where {uk} ∈ U. It is easy to see that the operator L ∈
L(U;F). Construct an operator M = Rs(Λ)u = {Rs(λk)uk}. It is easy to show that
M ∈ Cl(U;F), domM = ℓm+2s

q , the L-spectrum σL(M) of operator M consists of points
µk = Rs(λk)(Qn(λk))

−1, k ∈ N: λk is not the root of the polynomial Qn (λ). Further we
consider polynomials with the coe�cients at the highest powers having opposite signs.

De�nition 1. Vector-function u ∈ C1(R+;U), satisfying

Lu̇=Mu. (1)

pointwise is called a classical solution of this equation. The solution u = u(t) of (1) is
called a solution to the weakened Cauchy problem (in sense of S.G. Krein), if in addition
for u0 ∈ U
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lim
t→0+

u(t) = u0. (2)

holds.

If kerL ̸= {0} then (1) is called a Sobolev type equation. Interest in Sobolev type
equations has recently increased signi�cantly [2�5], moreover, there arose a necessity for
their consideration in quasi-Banach spaces. The need is dictated by the desire to �ll up the
theory as well as by the aspiration to comprehend non-classical models of mathematical
physics in quasi-Banach spaces [6].

Since the Cauchy problem for the Sobolev type equation is not solvable for arbitrary
initial data it is necessary to construct the phase space of equation as the set of admissible
initial values containing all solutions of equation [2]. The phase spaces of evolution and
dynamical Sobolev type equations were constructed earlier in Banach spaces [2]. These
ideas were used to study one class of evolution Sobolev type equations in quasi-Banach
spaces of sequences [6]. There was held an analytical investigation of the considered
problem. A theorem of existence of unique solution was proved. Our gual is to develop
an algorithm for the numerical solution of the problem and carry out computational
experiments.

1. Analytical Study of the Mathematical Model of One Class
of Evolution Equations in Quasi-Banach Spaces

Lemma 1. [6] Operator M de�ned in example 1 is strongly L-sectorial.

Theorem 1. [6] Let operators M and L be de�ned as in example 1. Then
(i) operators L and M generate on spaces U and F degenerate holomorphic semigroups

{U t : t ∈ R+} and {F t : t ∈ R+} respectively given by

U t=
1

2πi

∫
Γ

RL
µ (M) eµtdµ ∈ L (U) F t=

1

2πi

∫
Γ

LL
µ(M)eµtdµ ∈ L(F) (3)

for t ∈ R+, where the contour Γ ⊂ ρL(M) is such that |argµ| → θ ïðè µ → ∞, µ ∈ Γ.
(ii) there exist semigroup's units which are the projectors P ∈ L(U) and Q ∈ L(F)

given by

P =

{
I, if λk is not the root of Qn(λ) for all k ∈ N;
I−

∑
k∈N:k=ℓ

< ., ek > ek, if there exist ℓ ∈ N : λℓ is the root of Qn(λ),

(the projector Q has the same form), splitting the quasi-Banach spaces U and F into direct
sums

U=U0 ⊕ U1, F=F0 ⊕ F1.

De�nition 2. The set P ⊂ U is called a phase space of equation (1), if
(i) any solution u = u(t) of (1) lies in P pointwise, i.e. u(t) ∈ P for all t ∈ R+;
(ii) for all u0 ∈ P there exists a unique solution to (1), (2).

Theorem 2. [6] Let operators M and L be de�ned as in example 1. Then the subspace
U1 is a phase space of (1), for arbitrary u0 ∈ U1 there exists a unique solution to (1), (2).
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De�nition 3. We say that solutions of (1) have exponential dichotomy, if
(i) the phase space of (1) can be represented as P = J1 ⊕ J2, where J1(2) are invariant

spaces of equation (1);
(ii) for arbitrary u0 ∈ J1 (u0 ∈ J2) solution u = u(t) of (1), (2) is such that U ∥u(t)∥ ≤

C1(u0)e
−at (U ∥u(t)∥ ≥ C2(u0)e

at) for some a > 0 and all t ∈ R+.

Theorem 3. [6] Let operators L,M ∈ L(U;F) be de�ned as in example 1 and condition

σL(M) ∩ iR = ∅ and there exists µk ∈ σL(M) with Reµk > 0

hold. Then solutions of (1) have exponential dichotomy.

2. Numerical Solution Algorithm

Based on the theoretical results there was developed an algorithm for numerical
solution of problem (1), (2), implemented in a software environment Maple 15.0. The
program uses a phase space method [2].

Fig. 1. A block diagram of algorithm

A numerical solution algorithm is shown in a block diagram in Fig. 1. The developed
program allows you to:

1. Enter the polynomials of the Laplace quasi-operator and consider one class of
evolution equations in quasi-Sobolev spaces.

2. Take into account degeneracy of equation and apply the phase space method.
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3. Find the necessary for the accuracy ε number of nonzero members of approximate
solution.

4. Find and print the approximate solution of the problem.
5. Get a graphical image of the components of received solution over time.
A detailed description of the algorithm (each block of the algorithm corresponds to

one step):
Step 1. After the start of the program the user enters the powers of the polynomials

s, n, the time period T : t ∈ [0, T ] and the accuracy of an approximate solution ε.

Step 2. In a cycle the polynomial Rs(x) =
s∑

k=1

dkx
k is constructed.

Step 3. In a cycle the polynomial Qn(x) =
n∑

k=1

ckx
k is constructed.

Step 4. The monotone increasing sequence {λk} is entered by user.
Step 5. The initial sequence u0 is set.
Step 6. Input of parameters of a quasi-norm of a quasi-Sobolev space.
Step 7. Calculation of a quasi-norm of the initial sequence.
Step 8. Checking if the quasi-norm of the initial sequence is in�nite.
If the eighth step is true go to Step 5.
If the eighth step is false:
Step 9. Veri�cation of number N of nontrivial components of approximate solution

needed to take into account degeneracy and to obtain the accuracy ε so that
T∫
0

m
q ∥u(t) −

ũN(t)∥dt.
Step 10. In a cycle check if Qn(λk) = 0, i.e. equation is degenerate.
If the tenth step is true:
Step 11. Check if initial data u0 belongs to the phase space of equation.
If the eleventh step is true:
Step 12. End of cycle by k.
If the eleventh step is false:
Step 13. Output the message:"There is no solution".
If the tenth step is false:
Step 14. The k-th equation is a di�erential one. Add it to the system of di�erential

equations to solve.
Step 15. End of cycle by k.
Step 16. Solve the system of di�erential equations to �nd the nontrivial components

of an approximate solution.
Step 17. The resulting approximate solution is put on the screen and displayed as

graphs of the components of an approximate solution.
Step 18. End of program.

3. Numerical Experiment

Let U = ℓm+2n
q , F = ℓmq . Consider the Cauchy problem

u(0) = u0, t ∈ [0, T ], u0 ∈ U, (4)

Qn(Λ)u̇ = Rs(Λ)u. (5)
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Example 2. It is required to �nd a numerical solution of problem (4) � (5) where
Q1(x) = 2− x, R2(x) = x2, λk = k2, u0k =

1
k
, q = 0, 5, m = 1, T = 0, 5, ε = 0, 01.

The program checks the condition m
q ∥u0∥ = +∞. Since it holds, there is no solution

to the problem. The program gives output: "There is no solution".

Example 3. It is required to �nd a numerical solution of problem (4) � (5) where
Q1(x) = 2− x, R2(x) = x2, λk = k2, u0k =

1
k2
, q = 0, 5, m = 1, T = 0, 5.

Depending on accuracy ε we received the following results:
For ε1 = 0, 1,

ũ1(t)=(e
t, 0,25 e−8t, 0,11 e−11,57t, 0,06 e−18,29t, 0,04 e−27,17t, 0, 0, ..., 0,...).

ε2 = 0, 01,
ũ2(t)=(e

t, 0,25 e−8t, 0,11 e−11,57t, 0,06 e−18,29t, 0,04 e−27,17t, 0,03 e−38,12t, 0,02 e−51t, 0,02
e−66t, 0,01 e−83t, 0,01 e−102t, 0,008 e−123t, 0,007 e−146t, 0,006 e−171t, 0,005 e−198t, 0,004
e−227t, 0, 0, ..., 0, ...).

The graph of the solution is presented in Fig. 2.

Fig. 2. Solution from example 3 Fig. 3. Solution from example 5

Example 4. It is required to �nd a numerical solution of problem (4) � (5) where
Q1(x) = 4 − x,R2(x) = x2, λk = k2, u0k = 1

k4
, , q = 0, 5, m = 1, T = 0, 5, ε1 = 0, 1.

Equation (5) in this case is degenerate. Since the initial data do not belong to the phase
space of equation the program gives output: "There is no solution".

Example 5. It is required to �nd the numerical solution of problem (4) � (5) where
Q1(x) = 4− x,R2(x) = x2, λk = k2,

u0k =

{
1
k2
, if k ̸= 2;

0 if k = 2.

Equation is degenerate (Q1(λ2) = 0) and initial data belong to the phase space of equation
(5). For ε = 0, 01 we have
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ũ(t)=et, 0, 0,1 e−11,57t, 0,06 e−18,29t, 0,04 e−27,17, 0,03 e−38,12t, 0,02 e−51t, 0,02 e−66t,
0,01 e−83, 0,01 e−102t, 0,008 e−123t, 0,007 e−146t, 0,006 e−171t, 0,005 e−198t, 0,004 e−227t,
0,004 e−258t, 0,003 e−291t, 0,003 e−326t, 0,003 e−363t, 0,003 e−402t, 0,002 e−443t, 0,002 e−486t,
0, 0,..., 0,...).

The graph of the solution is presented in Fig. 3.

Example 6. It is required to �nd a numerical solution of problem (4) � (5) where
Q2(x) = 7 + x2, R3(x) = −5 + x− 5x2 − x3, λk = k4, u0k =

1
k3
, q = 0.5, m = 1, T = 0.5.

For ε1 = 0, 1,
ũ1(t)=(e

−1,25t, 0,13 e−20,39t, 0,04 e−85,9t, 0, 0,..., 0,...).
For ε2 = 0, 01,

ũ2(t)=(e
−1,25t, 0,13 e−20,39t, 0,04 e−85,9t, 0,02 e−260t, 0, 0,..., 0,...). The graph of the solution

is presented in Fig. 4.

Fig. 4. Solution from example 6
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ÂÛ×ÈÑËÈÒÅËÜÍÛÉ ÝÊÑÏÅÐÈÌÅÍÒ ÄËß ÎÄÍÎÃÎ
ÊËÀÑÑÀ ÝÂÎËÞÖÈÎÍÍÛÕ ÌÀÒÅÌÀÒÈ×ÅÑÊÈÕ
ÌÎÄÅËÅÉ Â ÊÂÀÇÈÑÎÁÎËÅÂÛÕ ÏÐÎÑÒÐÀÍÑÒÂÀÕ

Ä.Ê.Ò. Àëü Èñàâè, A.A. Çàìûøëÿåâà

Â ñòàòüå èçó÷àåòñÿ ìàòåìàòè÷åñêàÿ ìîäåëü, ïðåäñòàâëÿþùàÿ îäèí êëàññ ýâîëþ-

öèîííûõ óðàâíåíèé â êâàçè áàíàõîâûõ ïðîñòðàíñòâàõ ïîñëåäîâàòåëüíîñòåé. Ïðåäñòàâ-

ëåíà òåîðåìà îá îäíîçíà÷íîé ðàçðåøèìîñòè â âèäå óñëîâèé ñóùåñòâîâàíèÿ ôàçîâîãî

ïðîñòðàíñòâà óðàâíåíèÿ è ïðèâåäåíû óñëîâèÿ ñóùåñòâîâàíèÿ ýêñïîíåíöèàëüíûõ äè-

õîòîìèé ðåøåíèé. Íà îñíîâå òåîðåòè÷åñêèõ ðåçóëüòàòîâ ðàçðàáîòàí àëãîðèòì ÷èñëåí-

íîãî ðåøåíèÿ çàäà÷è. Àëãîðèòì ðåàëèçîâàí â ñðåäå Maple. Ñòàòüÿ ñîäåðæèò îïèñàíèå

àëãîðèòìà è ðàçëè÷íûå ïðèìåðû èëëþñòðàöèè ðàáîòû ïðîãðàììû íà åãî îñíîâå, äå-

ìîíñòðèðóþùèå ðàçëè÷íûå ñâîéñòâà ðåøåíèé.

Êëþ÷åâûå ñëîâà: ýâîëþöèîííîå óðàâíåíèå; êâàçèáàíàõîâû ïðîñòðàíñòâà; ÷èñëåí-

íîå ðåøåíèå.
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