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This paper presents the results of applying the methods of the hydraulic circuit theory
in the interactive modeling of hydrogasdynamic and thermal processes that occur in the
equipment of thermal power plants. The problem statement of flow distribution in the
energy plants with different pressure drop laws in the branches of complex gas air and
steam-water ducts is formulated. The research shows that the application of traditional
methods of hydraulic circuit theory is challenging for such problems. Some aspects of
solvability of the related systems of nonlinear equations are studied. The numerical methods
for solving these systems as applied to the problems that require calculations in real time
are considered. A computation scheme is proposed. The scheme makes it possible to reduce
the initial statement of the problem to the classical scheme of the nodal pressure method.
The method of decomposition of the hydraulic circuit configuration into interconnected
circuits of smaller dimension is considered to reduce the computational effort. The results
of tests that demonstrate high reliability of the method developed for the flow distribution
calculation are presented.
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Introduction

At the present time, a successful application of the decomposition principles in the
modelling of complex power plants, as well as the success in implementing of the separate
description of the slow heat-mass exchange and rapid hydrodynamic processes, facilitates
development of universally applied techniques for constructing of mathematical models.
Therefore, development of the generalized algorithm for the flow distribution calculation
in ducts of power plants on the basis of the hydraulic circuits theory is of interest [1|. The
hydraulic circuit is a planar graph of m nodes and n edges. The edges represent parts of
the power plant through which various types of fluid (water, steam-water, gas, etc.) move.
The ambiguity of mathematical descriptions for the elements of schemes for thermal power
plants is mentioned in [2]. The authors argue that it is necessary to unify the mathematical
description for the elements to develop a universally applied computational software. Thus,
it is important to address the problem of developing a generalized algorithm for the
flow distribution calculation in ducts of power plants, where the fluid moves along the
pipelines of the various length and profile that have connections joints, control valves,
and head sources (pumps, ventilators). The design project for the power generating unit
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has hundreds of nodes and edges which results in high dimension systems of equations
with respect to flows and pressures. Methods of the hydraulic circuits theory are designed
to solve such systems. In the paper [3], we proposed a modified nodal pressure method
which enabled us to take into consideration the impact of the fluid phase change on closing
relations. The algorithm developed combined properties of the Newton methods and the
fixed point iteration method and allowed the reduction of the problem to the common form
of the nodal pressure method. Investigation of the duct modes different to the regular one
was left behind the framework of the previous research. Therefore, the flow distribution
calculation problem aims at solving the following sub-tasks:

1. Consideration of the pressure-drop law specificities in the duct sections with the
dust-laden flow (in the pulverized-coal system).

2. Efficient consolidation of the calculation objects interconnected within the power
generating unit (boiler, turbine, regeneration system).

1. The Hydraulic Circuit Model with Various Pressure-Drop
Laws in Pipelines

Any hydraulic circuit satisfies the conditions
AX =Q, ATP =Y,

where A is an (m x n) incident matrix with the elements 0,1, —1; 7" denotes matrix
transposition, X = (x1, 29, ...,7,)7 is the pipeline flow vector; @ = (q1, ¢, ..., ¢m)" is the
inflow in the nodes of the hydraulic circuit. The vector of pressures P has the desirable
as well as the given values of pressures. The classic statement of the problem [1] assumes
that the pressure is given at one of the nodes. This paper offers the opportunity to set
pressure values in several nodes. Therefore, we consider the vector P as decoupled into
P = (p1,pa,....m)’ and P, = (pji1.Pf12s - Ph)" with the desirable and the given

pressures, respectively. The rows of the matrix A correspond to the decoupling of the
vector P. The vector Y = (y1, 4o, ..., ¥ )" represents heads (pressure differences at the ends
of the pipelines with a corresponding number).

Such vector equations reflect the first and the second Kirchhoff’s laws: 1) at any
junction, the sum of inflows is equal to the sum of outflows; 2) the sum of the pressure
differences around any closed hydraulic circuit is zero. The first law entails that Z;n:o q; =0.

In what follows, we need the matrix A, formed by throwing out the last m — [ rows
from A, and the vector Q, formed by throwing out the last m — [ elements from the vector
Q. Write down the new system

AX =Q, ATP+ ATP: =Y, (ATAT)=4A".

(1)
The matrix A is full rank: rank A = [. In the classic statement of the problem, the matrix
A is obtained by deleting an arbitrary row from A.

The Kirchhoff’s laws equations are complemented by the laws for the movement of
various fluid along the pipelines. This paper assumes that the flows in the pipeline with

the number v € [1,2,--- ,n| are connected with the pressure at the ends of the pipelines
via

hv + fv(pi(v)vpj(v)) = Sv<pi(v)apj(v)> mv)xv|xv|> (3)
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where i(v),j(v) are nodes of the given pipeline, s,(piw),Pjw), Tv) are the resistance
functions (in many research works they are assumed to be constant: Sv(pi(v),pj(v),xv) =
s, = const). Note that the form of (3) provides solvability with respect to z, for any signs
of hy + fo(Diw)s Pj(v)) and sy(Diw): Pj(w)> Tv) [1]. In applications, it is often assumed that

Jo(Pi(w), Pjw)) = Yo = Di(w) — Pi(v)- (4)

Recall that y, is a head in the given pipeline. We assume that the functions in (3) are
continuous and have the following properties:

sign fo (Piw), Pjw)) = SigN[Piw) — Piw))s JoDi)s Piw)) = 0 € Diw) — Dj(w) = 0; (5)

there exist constants Spin > 0, Smax > 0, such that
Smin < Sv<pi(v)7pj(v)7 xv) < Smax vpi(ﬂu)7pj(12)7x’u € R7 NORS [17 27 o 7”]' (6>

In other words, the fluid moves from the node with a bigger pressure to the node with a
smaller pressure, and the resistance functions are bounded for any values of the arguments.

Suppose that the elements of H are zero in the sections of form (4). Multiply the
equations for the nonlinear sections by y, and divide by f,(pi(), Pjv))- The closing relations
will have the form

- ~ Yo
Yo = Sv(pi(v)7pj(v)7 $v)l’v|l’v|, Sv(pi(v)7pj(v)a xv) = )Sv(pi(v)apj(v)a xv)' (7)

Jo(Piw)s Pjw)

Note that 5,(pi(), Pj(v), o) > 0 when y, # 0 due to (5) and (6). To simplify further
reasoning, suppose that

ylﬂlgo Sy (pi(v)apj(v)a xv) = 5, = const,

although analysis of the real-life models does not always justify it.
Taking into account (1) and (7), we obtain

AX =Q, ATP+ ATP =Y, Y+ H=5(P,X)XX, (8)

where S(P, X) = diag{51(piat), Pj(1)> 1), 52(Di(2): Dj2)> T2)s -5 Sn(Di(n)s Pi(n)s Tn) }s

X = diag{|z],|z2|, ..., |xn]}. We can omit the vector equations in (8), and as a
result arrive at 3

AX=Q, ATP+ H =S(P,X)XX, (9)

where H = ATP* 4+ H. System (9) has [ +n equations with [ +n variables, where n is the
element of X and [ is the element of P.

Hence, we obtained an analogue of the system that corresponds to the nodal pressure
method in the hydraulic circuit theory [1|. Now investigate some properties of the system
(9). In the monograph [1], the unique solvability of (9) is proved for the matrix S(P, X)
with constant diagonal elements. In our situation, the following statement holds:

Lemma 1. Let (9) have no flows and no sources of head and pressures: Q =0, H = 0.
Then (9) has a unique zero solution.
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Proof. Let X satisfy AX = 0. Consider the inner product of X and the second vector
equation in (9). We obtain

(X, ATP — 3(P, X)YX) -

— (P, AX) — <X, S(P, X)Yx) = =Y 5, (piteys i )72 = 0. (10)
v=0
Due to positivity of the resistance functions, (10) holds if and only if X = 0. Since the
matrix A is full rank, the equation AT P = 0 possesses only a zero solution.
O
Theorem 1. Let system (9) have no inflows and no heads: Q = 0, H = 0, and the
different pressure values be given only in the dangling nodes. Then (9) has at least one
solution.

Proof. Choose an arbitrary vector S = (31,5y,...,5,) from the cube [Spin, Smax]” and
consider (9) with the matrix S(P, X) = diag{5, 52, ..., 5, }. According to [1], this system
has a unique solution, and the vector-functions (P(S), X (S)) are continuous with respect
to S. Having searched through all the values from the cube [Spin, Smax]”, We derive bounded
sets P, X, where the values of all solutions are located. The biggest and the smallest values
of the pressures puin, Pmax are reached in the dangling nodes. Some tedious reasoning leads
to the conclusion that the assumption of existence of a node with bigger or smaller values
than pmin, Pmax violates the first Kirchhoff’s law in this node. Set K = [puin, Pmax]™, find
S(P, X) and solve the resultant system. We conclude that all the values of the set P are
located in the cube K. Correspondingly, we can point out a closed convex set that contains
X. Hence, we have a continuous transformation of the convex set into itself. According to
Brauer’s theorem, the function corresponding to such a set has at least one fixed point in
this set.

O

2. The Flow Distribution Models for the Power Plants Dynamic
Calculations

The power plants models, which have been considered by the authors, have three ducts:
water-steam duct, gas-steam duct, and fuel duct. Consider a specific hydraulic circuit for
a water-steam duct:

Example 1.

In the node 14, the pump pumps water into the boiler and it is being heated along
the duct from node to node 14 - 1 - 2 - 3 -4 — 5 — 6 — 8 by hot gases and
emission from the combustion unit. Water flows through the pipelines 1, 2, 3, 4, 7, 14;
the water-steam mixture flows through 5 and 6; steam fills all the other pipelines. Steam
goes from the boiler to the node 6 through the pipeline 21; the control valve is located
in the pipeline 9. Steam goes from the node 7 to the turbine governing stage (pipeline
10). Afterwards, a portion of steam flows along the pipelines 12 and 11 to be heated
again in the boilers 1 and 2. In the pipeline 11, steam is partly used to heat water in the
high pressure reheater. Moving along the pipelines 12, 13, 15, 20 and being additionally
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© - Node ¢ — Node with known pressure q(t)— Inflow C — Capacitor
[ - Steam HPR - High pressure reheater
[ — Water-steam mixture [ LPR - Low pressure reheater
— Turbine stage

% Boiler 2

o

The principal design project: straight-through boiler-turbine

reheated, steam goes to the turbine stage 16 and then, after the necessary portion of steam
gets into the low pressure reheater, it reaches the last turbine stage 17 and inflows into the
capacitor (K). Steam turns into water in the capacitor, and water, reheated and purified
in the regeneration system, flows into the node. The pipelines 2, 7, 14 have automatic
regulators. The inflow ¢(t) is used to simulate the variation of the fluid density in the
pipelines 5 and 6.

Figure shows the principal design project for the hydraulic circuit. To simulate the work
of the real-life power equipment, the project must have hundreds of nodes and edges. The
dynamics is defined by the fact that the data, in particular, the pressure in the boundary
nodes, is a solution to some differential equations P¥(t) = Z(P%(t), P, X, ...,t), "= d/dt.
During implementation, the differential equations are replaced by difference relations and
at every time step the vectors P, X are substituted into the equations as parameters.

The step by step calculation of the flow distribution in dynamic models of power
generating units implies splitting of the closing relations into four subsets, where the
pressure-drop laws in the pipelines are defined by the formulas:

fv(pi(v)apj(v)) = Pi(v) — Pjw) = Sv‘xv‘xvav € [17 11

)
fv(pi(v)apj(v)) = sz(U) - p?(v) = Sv|$v|$vvv € ]2a 12)
Fo (i) Diw)) = CoPiy + C1Pi)Piw) + C2Diwy = Solu|Tv, v € I, 13)
fv(pi(v)apj(v)) = Pi(v) — Pj(v) = Sv(pi(v)7pj(v)7 Ly, ...>|JIU|JIU,U € I47 14)
where ¢ = —0,09;¢1 = 1,09;¢c2 = —1, 54(Piw), Pj(v) Tos ---) = K(1 4+ 2(p'/p")/p’ is the
resistance in the pipelines with boiling water; p’, p” stand for water and steam density at
saturation; x is the flow quality; x, 1 are the coefficients reflecting the impact of the flow
structure on the frictional head [4].
Here, (11) describes water flows in pipelines, (12) and (13) define steam movement,

through the turbine sections [5] and control valves [6]. Equation (14) describes the water-
steam flow on heating surfaces and in pipelines with account of (4).

(
(
(
(
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Modify (12) and (13) using (7). We obtain

Sy

—|[L‘v|l‘v, v E ]2;
Pi(v) T Piv)

Jo(Diw) Pjw)) = Diw) — Pi(w) =

Sy

Pitw) — 0,09,

fv(pi(v)ypj(v)) = Di(v) — Pjv) = |$v|$v>v € [3;

These equations were successfully employed in the nodal pressure method [3| when
calculating the flow distribution in the ducts of the thermal power plant.

The flow distribution calculation for the pulverized-coal system possesses some features
related to drastic changes of the fluid properties. In order to account for the nonhomogenity
of the air/dust flow, we consider dust concentration |7]|. Resistance of mills, downflow fuel
drying, separators etc. has the form

s = 80(1 + b/l,),

where b is a coefficient, p is the dust concentration mixture defined in general as

(1l—aAW)1-0)K,
a(l+zK,)+alAW’

= (15)
where a is a share of withdrawn humidity, W is fuel humidity, K., K. are some coefficients,

x is a suction share at the section, g; is the amount of drying agent per 1kg of humid fuel
delivered to the inlet of the pulverized—coal system:

3V, AW 9
N =\ 2731 1,1000B,  0804) 1+K,,

where 7 is the mixture relative density [kg/m?|, V, is a gas flowrate. To identify the impact
of the fuel flowrate dynamics on resistance, and therefore on the flow distribution in the
pulverized-coal duct, consider (15) as applied to the pulverized fun. The fuel concentration
required to calculate the pulverized fun performance is a function of the fuel flowrate B,.,
which can be readily seen from the relation [7]:

~1000B,(100 — WK,
B oo —wyvyr

Therefore, the resistance in the pulverized-coal section of the duct is, similarly to (14),
a function of the fluid flow.

3. Numerical Methods and Application of Decomposition
to Calculations of Complex Ducts

Since the elements of the matrix S (X, P) are not, in general, differentiable, we cannot
apply the Newton method in its classic form. We suggest the following tactics. Consider a
system

F(z)+ V(2)G(2) =0, (16)
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where F'(z), G(z) are differentiable vector-functions, W(z) is a non-differentiable matrix,
z is a desirable vector from R”. Start an integrating process

a1 =2 — ag(j” + \y(zj>a%(jf) B [F(2) + U()G(z)), j=0,1,2,.... (17

Method (17) is a combination of the Newton method and the fixed point iteration method.
We have carried numerical experiments with model examples. Sometimes, the method
preserved the quadratic convergence, but occasionally showed geometric convergence.

Theorem 2. Let in (9) the vector-functions F(z), G(z) and the matriz V(z) be
differentiable in RY, and let (9) have a solution z* satisfying

det [al;(;*) + \If(z*)aGa(zZ*)] # 0, (18)

provided that the vector-function

B(z) = 2 - ng) ¥ \If(z)a(;iz)} () + WG]

possesses a contraction property in some neighborhood of © = {z : ||z* — z|| < o}
[P(21) = ®(22)[| < all2r — 22l @ <1, V21,20 € 0.
Then, if zo € ©, method (17) converges geometrically.

Proof. Indeed, it follows from (18) that the matrix 0F(z)/0z+ V(2)0G(2)/0% is invertible
in some neighborhood of z*. The iterative process zj11 = ®(z;), j = 0,1,2,..., converges
geometrically 8] and coincides with the iterative process (17).

O
We applied this approach to systems of the form (9) and replaced the Jacobian by the
matrix similar to the one in (17). The resultant iterative method had the form

Xi) _ (X5 _ (SO, P)X; AT\ (8(X;, P)X, X, + ATP, — H 0.1
Pii)  \ P A 0 AX; - Q =L

(19)
We continued the process until

max(|zy 41 — Tojl, v=1,...n5|pyi+1 — Pyjl, n=1,...,1) > €,

where € is a given number. The initial approximation (Xo, Py) was taken close enough to
the solution, and then we could observe the almost quadratic convergence.

Consider another simplification for the matrix inversion in (19). When applying the
method, at each step we solve a linear system

S(X;, P)X; AT\ o _ (S(X, P)X X+ ATP = HY (X _ (X;
( A 0o )V = AX; - Q Py )= \p )T (20

J
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Using the diagonal form of the block S(X;, P;)X;, multiply the first block line in (20) by

A[S(X;, P;)X ;]! and deduct it from the second block line. We obtain

(S(Xj, P)X; AT )

00 AS(X, P)X,| AT

The matrix A[S(X;, P;)X ;] *AT is called the Maxwell matrix and it is invertible due to
the full rank of the matrix A, the vector X; has no zero elements. Hence, we proved that
the matrix from (20) is invertible, and therefore we can perform process (19). Moreover,
if we apply this technique, the number of arithmetic operations required to solve (20) is
proportional to [*> and not to (n +1)3.

This method was used to calculate the steam-water and gas-and-air ducts of the power
generating unit with two straight-through boilers, two control valves, and a turbine with
seven sections. The parameters of the hydraulic circuit were: n = 125, m = 85. The
numerical results demonstrate stable convergence of the nodal pressure method.

For the bigger values of n and m, we might face difficulties in real time calculations.
In this situation, we suggest decomposition of the original design project into graphs
of smaller dimension with a few number of common nodes. As an example, consider a
hydraulic circuit of two boilers and three turbines with 4 common nodes. The calculation
algorithm has the form:

1. Set the initial approximation in the nodes common for the turbine and the boiler:

b1, P2, D3.
2. Solve the following system for the turbine and the boiler with py, po, p3:

A Xy =@y, AF{P1 +H, = 51(P1,X1)71X1,

A Xy = Q2, AJPy + Hy = g2<P27X2)72X2'
3. Write down the system using the first Kirchhoff’s law:

f1<p17p27p3) = $1,k(p17p2,p3) - $1,t(p17]92,]93) =
F(p17p27p3) = f2(p17p27p3) = xz,k(plupmp?)) - IQ,t(plap%pa) =
f3(P17p2,P3) = $3,k:(p1,p2,p3> - $3,t(p17p27173) =

o O O

4. Set the increment and find the Jacobian
M == (ub u2>u3)7
where
uy = [F(p1 + Ap,p2,p3) — F(1,p2,p3)]/ A p
uy = [F(p1,p2 + Ap,p3) — F(1,p2,p3)]/ A p

Uz = [F(plv s P2, D3 + Ap) - F(17p27p3)]/ Ap
5. Solve the system

[y

Mh = F(p1,p2,p3), h = (h1, ha, h3)T-
6. Find a new approximation

(p1,p2,03) == (p1 + h1,p2 + ha, ps + hs).

7. Verify the inequality ||F'(p1,p2,ps)|| < €, where € is a stopping criterion. If the
inequality is not satisfied then move to Step 2.
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The numerical solution of real-life problems showed that application of our algorithm

reduces the number of arithmetic operations by a factor of 1.5 if we carry out calculations
in the neighborhood of nominal conditions.
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OB HCIIOJIb3OBAHUN CTPYKTYPHI CUCTEMBI
HEJIMHENMHBIX YPABHEHUN, OIIUCHIBAIOIIINX
TMIPABJINYECKUE IIENIU SHEPTOYCTAHOBOK
TP YNCJIEHHBIX PACUETAX

A.A. Jlesun, B.®. Yucmaxos, 9.A. Taupos

B cratbe mpencTaBieHbl pe3ynbTaThl MPUMEHEHHUS METOJOB TEOPUH THUIPABIMIECKUX
neneit 414 THTEPAKTUBHOI'O MOJEINPOBAHUA I'HIPOra30IuHAMUIECKIUX U TEIJIOBBIX IIPOLIeC-
COB B ODODY/IOBAHWM TEIJIOBBIX 3JeKTpuueckux crannmit. ChopMyInpoBaHa TOCTAHOBKA
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3a/a41 pacdeTra MOTOKOPACIPeNeIeH!s] B TPAKTAaX JHEPTOYCTAHOBOK € PA3JIMIHBIMHU 3aKO-
HaMU IaJ€HUs JaBJIEHNd HA BETBAX B CJIO2KHBIX Ma30BO3JyIIHBIX U [IAPOBO/ISHBIX TPAKTAX.
[Tokazano, 9TO MpUMEHEHNE TPASUITHOHHBIX CITOCOO0B PACIETA MOTOKOPACIPEIEIEHUST METO-
JaMU TEOPUH THAPABIUIECKUX Tenelt 3aTPYIHUTENbHO 71 331a49. MccmemoBanbl HEKOTOPbLIE
ACMEKThI PA3PEMIUMOCTHA COOTBETCTBYIOMINX CACTEM HEJIMHEHHDBIX ypaBHeHuit. PaccMoTpensr
YHCJIEHHBIE METOIbI PEIEHNs STUX CHUCTEM NPUMEHHUTENHHO K 33/a9aM, TPeOYIOMHUM BbI-
[IOJTHEHUST PACYETOB B Maciirabe peasbHOro Bpemenu. IIpemyioxkena pacdernasi cxema, mo3-
BOJIAIONIAST CBECTHU MCXOIHYIO TIOCTAHOBKY 3aJIa9M K KJIACCUYIECKON CXeMe METOMa Y3JIOBBIX
nmasyrennit. PaccMoTper ¢rmocod MeKOMIIO3UIUN CTPYKTYPHI THAPABIUYECKON €U HA, B3a-
MMOCBA3aHHbIE TIEMN MEHDLITEH Pa3sMEPHOCTH JJI YMEHBINEHUS BBIUUCIUTEIbHBIX 3aTPAaT.
[IpuBenersr pe3yabTATHI TECTOB, JTEMOHCTPUPYIOMINX BHICOKYIO HA/IEKHOCTH Pa3pabOTaHHO-
ro crnocoda pacyera mOTOKOPACIPEIEIEHUS.

Karoueevte cao6a: 2udpasiuteckue yenu; Mamemamuieckue Mo0eau; mpaKmos IHep20-

YCMAHOBOK; CUCTNEMbE HeAUNETUHBT ypasHenul; memod Hwvtomona; memod npocmot ume-
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