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This paper presents the results of applying the methods of the hydraulic circuit theory

in the interactive modeling of hydrogasdynamic and thermal processes that occur in the

equipment of thermal power plants. The problem statement of �ow distribution in the

energy plants with di�erent pressure drop laws in the branches of complex gas air and

steam-water ducts is formulated. The research shows that the application of traditional

methods of hydraulic circuit theory is challenging for such problems. Some aspects of

solvability of the related systems of nonlinear equations are studied. The numerical methods

for solving these systems as applied to the problems that require calculations in real time

are considered. A computation scheme is proposed. The scheme makes it possible to reduce

the initial statement of the problem to the classical scheme of the nodal pressure method.

The method of decomposition of the hydraulic circuit con�guration into interconnected

circuits of smaller dimension is considered to reduce the computational e�ort. The results

of tests that demonstrate high reliability of the method developed for the �ow distribution

calculation are presented.

Keywords: hydraulic circuits; mathematical models; ducts of power plants; systems of

nonlinear equations; Newton method; �xed point iteration method.

Introduction

At the present time, a successful application of the decomposition principles in the
modelling of complex power plants, as well as the success in implementing of the separate
description of the slow heat-mass exchange and rapid hydrodynamic processes, facilitates
development of universally applied techniques for constructing of mathematical models.
Therefore, development of the generalized algorithm for the �ow distribution calculation
in ducts of power plants on the basis of the hydraulic circuits theory is of interest [1]. The
hydraulic circuit is a planar graph of m nodes and n edges. The edges represent parts of
the power plant through which various types of �uid (water, steam-water, gas, etc.) move.
The ambiguity of mathematical descriptions for the elements of schemes for thermal power
plants is mentioned in [2]. The authors argue that it is necessary to unify the mathematical
description for the elements to develop a universally applied computational software. Thus,
it is important to address the problem of developing a generalized algorithm for the
�ow distribution calculation in ducts of power plants, where the �uid moves along the
pipelines of the various length and pro�le that have connections joints, control valves,
and head sources (pumps, ventilators). The design project for the power generating unit
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has hundreds of nodes and edges which results in high dimension systems of equations
with respect to �ows and pressures. Methods of the hydraulic circuits theory are designed
to solve such systems. In the paper [3], we proposed a modi�ed nodal pressure method
which enabled us to take into consideration the impact of the �uid phase change on closing
relations. The algorithm developed combined properties of the Newton methods and the
�xed point iteration method and allowed the reduction of the problem to the common form
of the nodal pressure method. Investigation of the duct modes di�erent to the regular one
was left behind the framework of the previous research. Therefore, the �ow distribution
calculation problem aims at solving the following sub-tasks:

1. Consideration of the pressure-drop law speci�cities in the duct sections with the
dust-laden �ow (in the pulverized-coal system).

2. E�cient consolidation of the calculation objects interconnected within the power
generating unit (boiler, turbine, regeneration system).

1. The Hydraulic Circuit Model with Various Pressure-Drop
Laws in Pipelines

Any hydraulic circuit satis�es the conditions

AX = Q, ATP = Y,

where A is an (m × n) incident matrix with the elements 0, 1,−1; T denotes matrix
transposition, X = (x1, x2, ..., xn)

T is the pipeline �ow vector; Q = (q1, q2, ..., qm)
T is the

in�ow in the nodes of the hydraulic circuit. The vector of pressures P has the desirable
as well as the given values of pressures. The classic statement of the problem [1] assumes
that the pressure is given at one of the nodes. This paper o�ers the opportunity to set
pressure values in several nodes. Therefore, we consider the vector P as decoupled into
P = (p1, p2, ..., pl)

T and P ∗
m = (p∗l+1, p

∗
l+2, ..., p

∗
m)

T with the desirable and the given

pressures, respectively. The rows of the matrix A
T
correspond to the decoupling of the

vector P . The vector Y = (y1, y2, ..., yn)
T represents heads (pressure di�erences at the ends

of the pipelines with a corresponding number).
Such vector equations re�ect the �rst and the second Kirchho�'s laws: 1) at any

junction, the sum of in�ows is equal to the sum of out�ows; 2) the sum of the pressure
di�erences around any closed hydraulic circuit is zero. The �rst law entails that

∑m
j=0 qj=0.

In what follows, we need the matrix A, formed by throwing out the last m − l rows
from A, and the vector Q, formed by throwing out the last m− l elements from the vector
Q. Write down the new system

AX = Q, ATP + AT
1 P

∗
m = Y, (ATAT

1 ) = A
T
. (1)

The matrix A is full rank: rank A = l. In the classic statement of the problem, the matrix
A is obtained by deleting an arbitrary row from A.

The Kirchho�'s laws equations are complemented by the laws for the movement of
various �uid along the pipelines. This paper assumes that the �ows in the pipeline with
the number v ∈ [1, 2, · · · , n] are connected with the pressure at the ends of the pipelines
via

hv + fv(pi(v), pj(v)) = sv(pi(v), pj(v), xv)xv|xv|, (3)
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where i(v), j(v) are nodes of the given pipeline, sv(pi(v), pj(v), xv) are the resistance
functions (in many research works they are assumed to be constant: sv(pi(v), pj(v), xv) =
sv = const). Note that the form of (3) provides solvability with respect to xv for any signs
of hv + fv(pi(v), pj(v)) and sv(pi(v), pj(v), xv) [1]. In applications, it is often assumed that

fv(pi(v), pj(v)) = yv = pi(v) − pj(v). (4)

Recall that yv is a head in the given pipeline. We assume that the functions in (3) are
continuous and have the following properties:

signfv(pi(v), pj(v)) = sign[pi(v) − pj(v)], fv(pi(v), pj(v)) = 0 ⇔ pi(v) − pj(v) = 0; (5)

there exist constants smin > 0, smax > 0, such that

smin ≤ sv(pi(v), pj(v), xv) ≤ smax ∀pi(v), pj(v), xv ∈ R, ∀v ∈ [1, 2, · · · , n]. (6)

In other words, the �uid moves from the node with a bigger pressure to the node with a
smaller pressure, and the resistance functions are bounded for any values of the arguments.

Suppose that the elements of H are zero in the sections of form (4). Multiply the
equations for the nonlinear sections by yv and divide by fv(pi(v), pj(v)). The closing relations
will have the form

yv = s̃v(pi(v), pj(v), xv)xv|xv|, s̃v(pi(v), pj(v), xv) =
yv

fv(pi(v), pj(v))
sv(pi(v), pj(v), xv). (7)

Note that s̃v(pi(v), pj(v), xv) > 0 when yv ̸= 0 due to (5) and (6). To simplify further
reasoning, suppose that

lim
yv→0

s̃v(pi(v), pj(v), xv) = sv = const,

although analysis of the real-life models does not always justify it.
Taking into account (1) and (7), we obtain

AX = Q, ATP + AT
1 P

∗
m = Y, Y +H = S̃(P,X)XX, (8)

where S̃(P,X) = diag{s̃1(pi(1), pj(1), x1), s̃2(pi(2), pj(2), x2), ..., s̃n(pi(n), pj(n), xn)},
X = diag{|x1|, |x2|, ..., |xn|}. We can omit the vector equations in (8), and as a
result arrive at

AX = Q, ATP +H = S̃(P,X)XX, (9)

where H = AT
1 P

∗
m+H. System (9) has l+n equations with l+n variables, where n is the

element of X and l is the element of P .
Hence, we obtained an analogue of the system that corresponds to the nodal pressure

method in the hydraulic circuit theory [1]. Now investigate some properties of the system
(9). In the monograph [1], the unique solvability of (9) is proved for the matrix S̃(P,X)
with constant diagonal elements. In our situation, the following statement holds:

Lemma 1. Let (9) have no �ows and no sources of head and pressures: Q = 0, H = 0.
Then (9) has a unique zero solution.
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Proof. Let X satisfy AX = 0. Consider the inner product of X and the second vector
equation in (9). We obtain (

X,ATP − S̃(P,X)XX
)
=

= (P,AX)−
(
X, S̃(P,X)XX

)
= −

n∑
v=0

s̃v(pi(v), pj(v), xv)x
2
v|xv| = 0. (10)

Due to positivity of the resistance functions, (10) holds if and only if X = 0. Since the
matrix A is full rank, the equation ATP = 0 possesses only a zero solution.

2
Theorem 1. Let system (9) have no in�ows and no heads: Q = 0, H = 0, and the
di�erent pressure values be given only in the dangling nodes. Then (9) has at least one
solution.

Proof. Choose an arbitrary vector S̄ = (s̄1, s̄2, ..., s̄n) from the cube [smin, smax]
n and

consider (9) with the matrix S̃(P,X) = diag{s̄1, s̄2, ..., s̄n}. According to [1], this system
has a unique solution, and the vector-functions (P (S̄), X(S̄)) are continuous with respect
to S̄. Having searched through all the values from the cube [smin, smax]

n, we derive bounded
sets P,X, where the values of all solutions are located. The biggest and the smallest values
of the pressures pmin, pmax are reached in the dangling nodes. Some tedious reasoning leads
to the conclusion that the assumption of existence of a node with bigger or smaller values
than pmin, pmax violates the �rst Kirchho�'s law in this node. Set K = [pmin, pmax]

m, �nd
S̃(P,X) and solve the resultant system. We conclude that all the values of the set P are
located in the cube K. Correspondingly, we can point out a closed convex set that contains
X. Hence, we have a continuous transformation of the convex set into itself. According to
Brauer's theorem, the function corresponding to such a set has at least one �xed point in
this set.

2

2. The Flow Distribution Models for the Power Plants Dynamic
Calculations

The power plants models, which have been considered by the authors, have three ducts:
water-steam duct, gas-steam duct, and fuel duct. Consider a speci�c hydraulic circuit for
a water-steam duct:

Example 1.

In the node 14, the pump pumps water into the boiler and it is being heated along
the duct from node to node 14 → 1 → 2 → 3 → 4 → 5 → 6 → 8 by hot gases and
emission from the combustion unit. Water �ows through the pipelines 1, 2, 3, 4, 7, 14;
the water-steam mixture �ows through 5 and 6; steam �lls all the other pipelines. Steam
goes from the boiler to the node 6 through the pipeline 21; the control valve is located
in the pipeline 9. Steam goes from the node 7 to the turbine governing stage (pipeline
10). Afterwards, a portion of steam �ows along the pipelines 12 and 11 to be heated
again in the boilers 1 and 2. In the pipeline 11, steam is partly used to heat water in the
high pressure reheater. Moving along the pipelines 12, 13, 15, 20 and being additionally
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The principal design project: straight-through boiler-turbine

reheated, steam goes to the turbine stage 16 and then, after the necessary portion of steam
gets into the low pressure reheater, it reaches the last turbine stage 17 and in�ows into the
capacitor (K). Steam turns into water in the capacitor, and water, reheated and puri�ed
in the regeneration system, �ows into the node. The pipelines 2, 7, 14 have automatic
regulators. The in�ow q(t) is used to simulate the variation of the �uid density in the
pipelines 5 and 6.

Figure shows the principal design project for the hydraulic circuit. To simulate the work
of the real-life power equipment, the project must have hundreds of nodes and edges. The
dynamics is de�ned by the fact that the data, in particular, the pressure in the boundary
nodes, is a solution to some di�erential equations Ṗ ∗

m(t) = Z(P ∗
m(t), P,X, ..., t), ˙≡ d/dt.

During implementation, the di�erential equations are replaced by di�erence relations and
at every time step the vectors P,X are substituted into the equations as parameters.

The step by step calculation of the �ow distribution in dynamic models of power
generating units implies splitting of the closing relations into four subsets, where the
pressure-drop laws in the pipelines are de�ned by the formulas:

fv(pi(v), pj(v)) = pi(v) − pj(v) = sv|xv|xv, v ∈ I1, (11)

fv(pi(v), pj(v)) = p2i(v) − p2j(v) = sv|xv|xv, v ∈ I2, (12)

fv(pi(v), pj(v)) = c0p
2
i(v) + c1pi(v)pj(v) + c2p

2
j(v) = sv|xv|xv, v ∈ I3, (13)

fv(pi(v), pj(v)) = pi(v) − pj(v) = sv(pi(v), pj(v), xv, ...)|xv|xv, v ∈ I4, (14)

where c0 = −0, 09; c1 = 1, 09; c2 = −1, sv(pi(v), pj(v), xv, ...) = κ(1 + xψ(ρ′/ρ′′)/ρ′ is the
resistance in the pipelines with boiling water; ρ′, ρ′′ stand for water and steam density at
saturation; x is the �ow quality; κ, ψ are the coe�cients re�ecting the impact of the �ow
structure on the frictional head [4].

Here, (11) describes water �ows in pipelines, (12) and (13) de�ne steam movement
through the turbine sections [5] and control valves [6]. Equation (14) describes the water-
steam �ow on heating surfaces and in pipelines with account of (4).

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
è ïðîãðàììèðîâàíèå≫ (Âåñòíèê ÞÓðÃÓ ÌÌÏ). 2016. Ò. 9, � 4. Ñ. 53�62

57



A.A. Levin, V.F. Chistyakov, E.A. Tairov

Modify (12) and (13) using (7). We obtain

fv(pi(v), pj(v)) = pi(v) − pj(v) =
sv

pi(v) + pj(v)
|xv|xv, v ∈ I2;

fv(pi(v), pj(v)) = pi(v) − pj(v) =
sv

pi(v) − 0, 09pj(v)
|xv|xv, v ∈ I3;

These equations were successfully employed in the nodal pressure method [3] when
calculating the �ow distribution in the ducts of the thermal power plant.

The �ow distribution calculation for the pulverized-coal system possesses some features
related to drastic changes of the �uid properties. In order to account for the nonhomogenity
of the air/dust �ow, we consider dust concentration [7]. Resistance of mills, down�ow fuel
drying, separators etc. has the form

s = s0(1 + bµ),

where b is a coe�cient, µ is the dust concentration mixture de�ned in general as

µ =
(1− a△W )(1− θ)Kc

g1(1 + xKpr) + a△W
, (15)

where a is a share of withdrawn humidity,W is fuel humidity,Kpr, Kc are some coe�cients,
x is a suction share at the section, g1 is the amount of drying agent per 1kg of humid fuel
delivered to the inlet of the pulverized�coal system:

g1 =

(
273

273 + tg

Vg
1000Br

− △W
0.804

)
γ0

1 +Kpr

where γ0 is the mixture relative density [kg/m
3], Vg is a gas �owrate. To identify the impact

of the fuel �owrate dynamics on resistance, and therefore on the �ow distribution in the
pulverized-coal duct, consider (15) as applied to the pulverized fun. The fuel concentration
required to calculate the pulverized fun performance is a function of the fuel �owrate Br,
which can be readily seen from the relation [7]:

µ =
1000Br(100−W r)Kc

(100−W pl)V γ′′
.

Therefore, the resistance in the pulverized-coal section of the duct is, similarly to (14),
a function of the �uid �ow.

3. Numerical Methods and Application of Decomposition
to Calculations of Complex Ducts

Since the elements of the matrix S̃(X,P ) are not, in general, di�erentiable, we cannot
apply the Newton method in its classic form. We suggest the following tactics. Consider a
system

F (z) + Ψ(z)G(z) = 0, (16)
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where F (z), G(z) are di�erentiable vector-functions, Ψ(z) is a non-di�erentiable matrix,
z is a desirable vector from Rν . Start an integrating process

zj+1 = zj −
[
∂F (zj)

∂z
+Ψ(zj)

∂G(zj)

∂z

]−1

[F (zj) + Ψ(zj)G(zj)], j = 0, 1, 2, ... . (17)

Method (17) is a combination of the Newton method and the �xed point iteration method.
We have carried numerical experiments with model examples. Sometimes, the method
preserved the quadratic convergence, but occasionally showed geometric convergence.

Theorem 2. Let in (9) the vector-functions F (z), G(z) and the matrix Ψ(z) be
di�erentiable in Rν, and let (9) have a solution z∗ satisfying

det

[
∂F (z∗)

∂z
+Ψ(z∗)

∂G(z∗)

∂z

]
̸= 0, (18)

provided that the vector-function

Φ(z) = z −
[
∂F (z)

∂z
+Ψ(z)

∂G(z)

∂z

]−1

[F (z) + Ψ(z)G(z)]

possesses a contraction property in some neighborhood of Θ = {z : ∥z∗ − z∥ ≤ ϱ}:

∥Φ(z1)− Φ(z2)∥ ≤ α∥z1 − z2∥, α < 1, ∀z1, z2 ∈ Θ.

Then, if z0 ∈ Θ, method (17) converges geometrically.

Proof. Indeed, it follows from (18) that the matrix ∂F (z)/∂z+Ψ(z)∂G(z)/∂z is invertible
in some neighborhood of z∗. The iterative process zj+1 = Φ(zj), j = 0, 1, 2, ..., converges
geometrically [8] and coincides with the iterative process (17).

2
We applied this approach to systems of the form (9) and replaced the Jacobian by the

matrix similar to the one in (17). The resultant iterative method had the form(
Xj+1

Pj+1

)
=

(
Xj

Pj

)
−

(
S̃(Xj, Pj)Xj AT

A 0

)−1 (
S̃(Xj, Pj)XjXj + ATPj −H

AXj −Q

)
, j = 0, 1, ... .

(19)
We continued the process until

max(|xv,j+1 − xv,j|, v = 1, ..., n; |pη,j+1 − pη,j|, η = 1, ..., l) ≥ ϵ,

where ϵ is a given number. The initial approximation (X0, P0) was taken close enough to
the solution, and then we could observe the almost quadratic convergence.

Consider another simpli�cation for the matrix inversion in (19). When applying the
method, at each step we solve a linear system

(
S̃(Xj, Pj)Xj AT

A 0

)
W =

(
S̃(Xj, Pj)XjXj + ATPj −H

AXj −Q

)
,

(
Xj+1

Pj+1

)
=

(
Xj

Pj

)
+W. (20)
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Using the diagonal form of the block S̃(Xj, Pj)Xj, multiply the �rst block line in (20) by
A[S̃(Xj, Pj)Xj]

−1 and deduct it from the second block line. We obtain(
S̃(Xj, Pj)Xj AT

0 A[S̃(Xj, Pj)Xj]
−1AT

)
.

The matrix A[S̃(Xj, Pj)Xj]
−1AT is called the Maxwell matrix and it is invertible due to

the full rank of the matrix A, the vector Xj has no zero elements. Hence, we proved that
the matrix from (20) is invertible, and therefore we can perform process (19). Moreover,
if we apply this technique, the number of arithmetic operations required to solve (20) is
proportional to l3 and not to (n+ l)3.

This method was used to calculate the steam-water and gas-and-air ducts of the power
generating unit with two straight-through boilers, two control valves, and a turbine with
seven sections. The parameters of the hydraulic circuit were: n = 125, m = 85. The
numerical results demonstrate stable convergence of the nodal pressure method.

For the bigger values of n and m, we might face di�culties in real time calculations.
In this situation, we suggest decomposition of the original design project into graphs
of smaller dimension with a few number of common nodes. As an example, consider a
hydraulic circuit of two boilers and three turbines with 4 common nodes. The calculation
algorithm has the form:

1. Set the initial approximation in the nodes common for the turbine and the boiler:
p1, p2, p3.

2. Solve the following system for the turbine and the boiler with p1, p2, p3:

A1X1 = Q1, A
T
1 P1 +H1 = S̃1(P1, X1)X1X1,

A2X2 = Q2, A
T
2 P2 +H2 = S̃2(P2, X2)X2X2.

3. Write down the system using the �rst Kirchho�'s law:

F (p1, p2, p3) =

 f1(p1, p2, p3) = x1,k(p1, p2, p3)− x1,t(p1, p2, p3) = 0
f2(p1, p2, p3) = x2,k(p1, p2, p3)− x2,t(p1, p2, p3) = 0
f3(p1, p2, p3) = x3,k(p1, p2, p3)− x3,t(p1, p2, p3) = 0

 .

4. Set the increment and �nd the Jacobian

M = (u1, u2, u3),

where  u1 = [F (p1 +△p, p2, p3)− F (1, p2, p3)]/△ p
u2 = [F (p1, p2 +△p, p3)− F (1, p2, p3)]/△ p
u3 = [F (p1, , p2, p3 +△p)− F (1, p2, p3)]/△ p

 .

5. Solve the system

Mh = F (p1, p2, p3), h = (h1, h2, h3)
T .

6. Find a new approximation

(p1, p2, p3) := (p1 + h1, p2 + h2, p3 + h3).

7. Verify the inequality ||F (p1, p2, p3)|| ≤ ϵ, where ϵ is a stopping criterion. If the
inequality is not satis�ed then move to Step 2.
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The numerical solution of real-life problems showed that application of our algorithm
reduces the number of arithmetic operations by a factor of 1.5 if we carry out calculations
in the neighborhood of nominal conditions.
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À.À. Ëåâèí, Â.Ô. ×èñòÿêîâ, Ý.À. Òàèðîâ

Â ñòàòüå ïðåäñòàâëåíû ðåçóëüòàòû ïðèìåíåíèÿ ìåòîäîâ òåîðèè ãèäðàâëè÷åñêèõ

öåïåé äëÿ èíòåðàêòèâíîãî ìîäåëèðîâàíèÿ ãèäðîãàçîäèíàìè÷åñêèõ è òåïëîâûõ ïðîöåñ-

ñîâ â îáîðóäîâàíèè òåïëîâûõ ýëåêòðè÷åñêèõ ñòàíöèé. Ñôîðìóëèðîâàíà ïîñòàíîâêà

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
è ïðîãðàììèðîâàíèå≫ (Âåñòíèê ÞÓðÃÓ ÌÌÏ). 2016. Ò. 9, � 4. Ñ. 53�62
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çàäà÷è ðàñ÷åòà ïîòîêîðàñïðåäåëåíèÿ â òðàêòàõ ýíåðãîóñòàíîâîê ñ ðàçëè÷íûìè çàêî-

íàìè ïàäåíèÿ äàâëåíèÿ íà âåòâÿõ â ñëîæíûõ ãàçîâîçäóøíûõ è ïàðîâîäÿíûõ òðàêòàõ.

Ïîêàçàíî, ÷òî ïðèìåíåíèå òðàäèöèîííûõ ñïîñîáîâ ðàñ÷åòà ïîòîêîðàñïðåäåëåíèÿ ìåòî-

äàìè òåîðèè ãèäðàâëè÷åñêèõ öåïåé çàòðóäíèòåëüíî äëÿ çàäà÷. Èññëåäîâàíû íåêîòîðûå

àñïåêòû ðàçðåøèìîñòè ñîîòâåòñòâóþùèõ ñèñòåì íåëèíåéíûõ óðàâíåíèé. Ðàññìîòðåíû

÷èñëåííûå ìåòîäû ðåøåíèÿ ýòèõ ñèñòåì ïðèìåíèòåëüíî ê çàäà÷àì, òðåáóþùèì âû-

ïîëíåíèÿ ðàñ÷åòîâ â ìàñøòàáå ðåàëüíîãî âðåìåíè. Ïðåäëîæåíà ðàñ÷åòíàÿ ñõåìà, ïîç-

âîëÿþùàÿ ñâåñòè èñõîäíóþ ïîñòàíîâêó çàäà÷è ê êëàññè÷åñêîé ñõåìå ìåòîäà óçëîâûõ

äàâëåíèé. Ðàññìîòðåí ñïîñîá äåêîìïîçèöèè ñòðóêòóðû ãèäðàâëè÷åñêîé öåïè íà âçà-

èìîñâÿçàííûå öåïè ìåíüøåé ðàçìåðíîñòè äëÿ óìåíüøåíèÿ âû÷èñëèòåëüíûõ çàòðàò.

Ïðèâåäåíû ðåçóëüòàòû òåñòîâ, äåìîíñòðèðóþùèõ âûñîêóþ íàäåæíîñòü ðàçðàáîòàííî-

ãî ñïîñîáà ðàñ÷åòà ïîòîêîðàñïðåäåëåíèÿ.

Êëþ÷åâûå ñëîâà: ãèäðàâëè÷åñêèå öåïè; ìàòåìàòè÷åñêèå ìîäåëè; òðàêòû ýíåðãî-

óñòàíîâîê; ñèñòåìû íåëèíåéíûõ óðàâíåíèé; ìåòîä Íüþòîíà; ìåòîä ïðîñòîé èòå-

ðàöèè.
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