No. 40 (299), issue 14Pages 53 - 58 Convergence Speed of the Stationary Galerkin Method for the Mixed Type Equation
I.E. Egorov, I.M. TikhonovaThe paper studies the boundary value problem of V.N. Vragov for mixed-type equation of the second order, when equation belongs to elliptic type which is close to the cylindrical base region. Using a stationary Galerkin method we prove the unique regular solvability of this boundary value problem. Priori estimates are given for mixed-type equations. An estimate for the rate convergence of Galerkin method in the steady-state rate of the Sobolev spaces is obtained by eigenfunctions of the Laplace operator in the spatial variables and time. For derivation of the estimate of convergence of stationary Galerkin methods we use the expansion of solution of the initial boundary value problem.
Full text- Keywords
- equation of mixed type, stationary, the Galerkin method, boundary value problem, unequality, estimate
- References
- 1. Bitsadze A.V. Uravnenie smeshannogo tipa [Equation of Mixed Type]. Мoscow, Akad. Nauk SSSR, 1959.
2. Smirnov M.M. Uravnenie smeshannogo tipa [Equation of Mixed Type]. Мoscow, Nauka, 1970.
3. Mikhlin S.G. Variatsionnye metody v matematicheskoy fizike [Variational Methods in Mathematical Physics]. Мoscow, Nauka, 1970.
4. Ladyzhensky O.A. Kraevye zadachi matematicheskoy fiziki [Boundary Value Problems of Mathematical Physics]. Мoscow, Nauka, 1973.
5. Moiseev E.I. Uravnenie smeshannogo tipa so spektral'nym parametrom [The Equation of Mixed Type with Spectral Parameter]. Мoscow, Izd-vo Mosk. universiteta, 1988.
6. Egorov I.E., Feodorov V.E. Neklassicheskie uravneniya matematicheskoy fiziki vysokogo poryadka [High-Order Nonclassical Eequations of Mathematical Physics]. Novosibirsk, Vychisl. tsentr SO RAN, 1995.
7. Dgishkariani A.V. The Rate of Convergence of the Bubnov-Galerkin Method [O bystrote shodimosty metoda Bubnova-Galerkina]. J. vich. mat. i mat. fiziki [Computational Mathematics and Mathematical Physics], 1964, vol. 4, no. 2, pp. 343-348.
8. Vragov V.N. To the Theory of Boundary Value Problems for Mixed-Type Equations in Space [K teorii kraevykh zadach dlya uravneniy smeshannogo tipa]. Differentsial'nye uravneniya [Diferential Equation], 1977, vol. 13, no. 6, pp. 1098-1105.
9. Lar'kin N.A. A Class of Nonlinear Equations of Mixed Type [Ob odnom klasse nelineynykh uravneniy smeshannogo tipa]. Sibirskiy matem. j. [Siberian Mathematical Journal], 1978, vol. XIX, no. 6, pp. 1308-1314.
10. Vinogradova P.V., Zarubin A.G. Error Estimation of Galerkin Method for Non-Stationary Equations [Otsenka pogreshnosty metoda Galerkina dlya nestatsionarnykh uravneniy]. J. vich. mat. i mat. fiziki [Computational Mathematics and Mathematical Physics], 2009, vol. 49, no. 9, pp. 1643-1651.
11. Egorov I.E., Tikhonova I.M. On Stationary Galerkin Methods for the Second Order Equation of Mixed Type [O statsionarnom metode Galerkina dlya uravneniya smeshannogo tipa vtorogo poryadka]. Mat. zametki YaGu, 2010, vol. 17, no. 2, pp. 41-47.