Volume 7, no. 1Pages 104 - 120

Shock Wave Structure in a Mixture of Condensed Media with Different Pressures

A.V. Fedorov
We solve the problem of the structure of the shock wave in the heterogeneous mixture within the model of the mechanics of heterogeneous compressible media with different velocities, temperatures and pressures of components, using the laws of conservation of mass, momentum and energy for each phase, supplemented by kinetic equation compaction. Physical problem is reduced to the analysis of some boundary value problem for ordinary differential equation. The well-posedness of this problem was shown. This allows one to classify the types of shock waves in the mixture in the form of frozen and dispersive shock waves. Mathematical model is verified by experimental data on the shock adiabat mixture of aluminum and epoxy. The limiting conditions for the applicability of this model in describing the shock-wave experiments in a heterogeneous mixture of condensed materials are determined.
Full text
Keywords
mixture of compressible condensed media; relaxation shock wave; mathematical modeling.
References
1. Fedorov A.V. Mathematical Description of Condensed Material Mixture under High Pressures [Matematicheskoe opisanie techeniy smesi kondensirovannykh materialov pri vysokikh davleniyakh]. Fizicheskaya gazodinamika reagiruyushhikh sred [Physical Gas Dynamics of Reactive Media], Novosibirsk, Nauka, 1990, pp. 119-128.
2. Fedorov A. V. Shock Wave Structure in a Mixture of Two Solid Bodies (Hydrodynamics Approach) [Struktura udarnoy volny v smesi dvukh tverdykh tel (gidrodinamicheskoe priblizhenie)]. Modelirovanie v mekhanike [Modelling in Mechanics], 1991, vol. 5 (22), no. 4, pp. 135-158.
3. Fedorov A.V. The Travelling Waves Types in a Mixture of Two Solid Bodies with their Pressures [Tipy begushhikh voln v smesi dvukh tverdykh tel s sobstvennymi davleniyami]. Dinamika sploshnoy sredy. Vyp. 100 (Akustika neodnorodnykh sred) [Dynamics of Continua. Vol. 100 (Acoustic of Nonuniform Media)]. Novosbirsk, Lavrentiev Institute of Hydrodynamics SB RAN, 1991.
4. Fedorov A.V. Shock Wave Structure in a Heterogeneous Mixture of Two Solid Bodies with Equilibrium Pressure of Components [Struktura udarnoy volny v geterogennoy smesi dvukh tverdykh tel s odinakovymi davleniyami komponent]. Chislennye metody resheniya zadach teorii uprugosti i plastichnosti. Novosibirsk, Publishing House SB RAS, 1992, pp. 235-249.
5. Fedorov A.V., Fedorova N.N. Structure, Propagation, and Reflection of Shock Wave in a Mixture of two Solid Bodies (the Hydrodynamics Approach). Journal of Applied Mechanics and Technical Physics, 1992, no. 4, pp. 487-494. DOI: 10.1007/BF00864270
6. Varlamov E.V., Fedorov A.V. Travelling Wave in the Two Velocities Nonisothermal Mixture of Two Solid Bodies [Begushchaya volna v neizotermicheskoy smesi dvukh tverdykh tel]. Modelirovanie v mehanike [Modelling in Mechanics], 1991, vol. 5 (22), no. 3, pp. 14-26.
7. Zhilin A.A., Fedorov A.V., Fomin V.M. The Travelling Wave in the Two Velocities Compressible Components Mixture with Different Pressures [Begushhaya volna v dvuhskorostnoy smesi szhimaemykh sred s razlichnymi davleniyami]. Doklady RAN, 1996, vol. 350, no. 2, pp. 201-205.
8. Zhilin A.A., Fedorov A.V. The Shock-Wave Structure in a Two-Velocity Mixture of Compressible Media with Different Pressures. Journal of Applied Mechanics and Technical Physics, 1998, vol. 39, no. 2, pp. 166-174. DOI: 10.1007/BF02468081
9. Zhilin A.A., Fedorov A.V. Propagation of Shock Waves in a Two-Phase Mixture with Different Pressures of the Components. Journal of Applied Mechanics and Technical Physics, 1999, vol. 40, no. 1, pp. 46-53. DOI: 10.1007/BF02467971
10. Zhilin A.A., Fedorov A.V. Reflection of Shock Waves from a Solid Boundary in a Mixture of Condensed Materials. 1. Equilibrium Approximation. Journal of Applied Mechanics and Technical Physics, 1999, vol. 40, no. 5, pp. 841-846. DOI: 10.1007/BF02468467
11. Zhilin A.A., Fedorov A.V. Interaction of Shock Waves with a Combined Discontinuity in Two-Phase Media. 2. Nonequilibrium Approximation. Journal of Applied Mechanics and Technical Physics, 2002, vol. 43, no. 4, pp. 519-528. DOI: 10.1023/A:1016041328662
12. Fedorov A.V. Matematicheskoe opisanie struktury udarnyh voln v smesi dvuh kondensirovannyh sred [Mathematical Description of Shock Wave Structure in the Mixture of Two condensed Media]. Preprint, no. 3-2003. ITAM SB RAS.
13. Fedorov A.V., Fedorchenko I.A., Leont'ev I.V. Mathematical Modelling of Two Problems of Wave Dynamics in Heterogeneous Media. Extended abstracts of the 20th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS), Montreal, Canada, 31 July - 5 August 2005, 2005, pp. 1-5.
14. Zhilin A.A., Fedorov A.V. Interaction of Rarefaction Waves with a Finite-Thickness Layer Near a Rigid Boundary. Equilibrium Approximation. Combustion, Explosion and Shock Waves, 2007, vol. 43, no. 5, pp. 607-615. DOI: 10.1007/s10573-007-0082-6
15. Zhilin A.A., Fedorov A.V. Mathematical Modelling of the Interaction of Rarefaction Wave with Screening Layer [Matematicheskoe modelirovanie processa vzaimodeystviya voln razrezheniya s ekraniruyushchim sloem]. Sbornik trudov XII Vserossiyskoy shkoly-seminara 'Sovremennye problemy matematicheskogo modelirovaniya' [Modern Problems of Mathematical Modelling: Proceeding], Rostov-na-Donu, Rostov State University, 2007.
16. Zhilin A.A., Fedorov A.V. TVD Scheme Application to Calculate Two-Phases Flow with Different Components Velocities and Pressures [Primenenie skhemy TVD dlya rascheta dvukhfaznykh techeniy s razlichnymi skorostyami i davleniyami komponentov]. Matematicheskoe modelirovanie [Mathematical Models and Computer Simulations], 2008, no. 1, pp. 29-47.
17. Fedorov A.V., Fedorchenko I.A. Interaction of a Normally Incident Shock Wave with a Porous Material Layer on a Solid Wall. Combustion, Explosion and Shock Waves, 2010, vol. 46, no. 1, pp. 89-95. DOI: 10.1007/s10573-010-0015-7
18. Fedorov A.V., Fedorchenko I.A., Leont'ev I.V. Mathematical Modeling of Two Problems of Wave Dynamics in Heterogeneous Media. Shock Waves, 2006, no. 12, pp. 1-8.
19. Holmes B.S., Tsou F.K. Steady Shock Waves in Composite Materials. J. Appl. Physics, 1972, vol. 43, no. 3, pp. 951-961.
20. Orlenko L.P. Povedenie materialov pri intensivnyh dinamicheskih nagruzkah [Materials Behavior under Intensive Dynamical Loadings]. Moscow, Mashinostroenie, 1964.
21. Walsh M.H., Rice R.Q., Queen M., Yanger F.L. Shock-Wave Compression of Twenty-Seven Metals. tPhysical Review, 1957. vol. 108, no. 2, pp. 196-216. DOI: 10.1103/PhysRev.108.196
22. Al'tshuler L.V., Kormer S.B., Bakanova A.A., Trunin R.F. Equation of State of Aluminum, Cuprum and Plumbum in High Pressure Domain [Uravneniya sostoyaniya alyuminiya medi i svintsa dlya oblasti vysokikh davleniy]. Zhurnal eksperimental'noy i teoreticheskoy fiziki [Journal of Experimental and Theoretical Physics], 1960, vol. 38, no. 3, pp. 790-798.
23. Borisov S.N., Nikolaevskiy V.N., Radchenko V.P. About Shock Wave Structure in Ground [O strukture fronta udarnoy volny v vodonasyshhennom grunte]. Izvestiya RAN. Mekhanika Zhidkosti i Gaza, 1967, no. 3, pp. 55-63.
24. Nikolaevskij V.N. Hydrodynamic Analysis of Shock Adiabates Heterogeneous Mixtures of Substances. Journal of Applied Mechanics and Technical Physics, 1969, no. 3, pp. 406-411.
25. Bogachev G.A. Calculation of the Shock-Wave Adiabatics for Some Heterogeneous Mixtures. Journal of Applied Mechanics and Technical Physics, 1973, vol. 14, no. 4, pp. 546-542. DOI: 10.1007/BF01201248
26. Alekseev Ju.F., Al'tshuler L.V., Krupnikova V.P. Shock Compression of Two-Component Paraffin-Tungsten Mixtures. Journal of Applied Mechanics and Technical Physics, 1971, no. 4, pp. 624-627.
27. Dremin A.P., Karpuhin I.A. Method for Determining the Shock Adiabates of Dispersed Materials [Metod opredeleniya udarnykh adiabat dispersnykh veshchestv]. Prikladnaya mekhanika i tekhnicheskaya fizika [Journal of Applied Mechanics and Technical Physics], 1960, no. 3, pp. 184-188.
28. Vysokoskorostnye udarnye yavleniya [High-Speed Shock Phenomenones]. Ed. R. Kinslou. Moscow, Mir, 1973.