Volume 7, no. 1Pages 134 - 138 The Optimal Measurement Problem for the Measurement Transducer Model with a Deterministic Multiplicative Effect and Inertia
A.V. Keller, M.A. SagadeevaThe results of the theory of Sobolev-type equations are extensively used to measure of dynamically distorted signals recently. In this paper the authors consider the optimal measurement for the system where the well-known multiplicative effect was produced which in its turn has the form of a scalar function of the variable $t$. The authors develop the exact and approximate solutions of the optimal measurement problem for the specified system.
The paper consists of two parts. The statement of the problem is formulated in the first part as an optimal measurement for the system with a deterministic multiplicative effect, and the second part presents the formulas of exact and approximate solutions of the problem.
Full text- Keywords
- optimal measurement; Leontiev type system; Shestakov-Sviridyuk model.
- References
- 1. Kuropatenko V.F., Andreev Yu.N. Simulation of Dynamic Processes in Spherical and Cylindrical Shells [O modelirovanii dinamicheskih processov v sfericheskih i cilindricheskih obolochkah]. Vychislitel'naya mehanika sploshnyh sred [Computational Continuum Mechanics], 2010, vol. 3, no. 4, pp. 53-67.
2. Shestakov A.L. Dynamic Error Correction Transducer Linear Filter-based Sensor Model [Korrektsiya dinamicheskoy pogreshnosti izmeritel'nogo preobrazovatelya lineynym fil'trom na osnove modeli datchika]. Izvestiya VUZ. Priborostroenie, 1991, vol. 34, no. 4, pp. 8-13.
3. Shestakov A.L., Sviridyuk G.A. A New Approach to Measuring Dynamically Distorted Signals [Novyy podkhod k izmereniyu dinamicheski iskazhennykh signalov]. Bulletin of the South Ural State University. Series 'Mathematical Modelling, Programming & Computer Software', 2010, no. 16 (192), issue 5, pp. 116-120.
4. Keller A.V., Nazarova E.I. Optimal Measuring Problem: the Computation Solution, the Program Algorithm [Zadacha optimal'nogo izmereniya: chislennoe reshenie, algoritm programmy]. Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya 'Matematika', [The Bulletin of Irkutsk State University. Series 'Mathematics'], 2011, vol. 4, no. 3, pp. 74-82.
5. Sviridyuk G.A., Brychev S.V. Numerical solution of Leontiev type systems [Chislennoe reshenie sistem uravneniy leont'evskogo tipa]. Izvestiya VUZ. Matematika [Russian Mathematics], 2003, no. 8, pp. 46-52.
6. Sviridyuk G.A., Zagrebina S.A. The Showalter-Sidorov Problem as a Phenomena of the Sobolev Type Equations [Zadacha Shouoltera - Sidorova kak fenomen uravneniy sobolevskogo tipa]. Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya 'Matematika', [The Bulletin of Irkutsk State University. Series 'Mathematics'], 2010, vol. 3, no. 1, pp. 133-137.
7. Sagadeeva M.A. Investigation of Solutions Stability for Linear Sobolev Type Equations [Issledovanie ustoychivosti resheniy lineynykh uravneniy sobolevskogo tipa: dis...kand. fiz.-mat. nauk]. Chelyabinsk, 2006.
8. Sviridyuk G.A. On the General Theory of Operator Semigroups. Russian Mathematical Surveys, 1994, vol. 49, no. 4, pp. 45-74. DOI: 10.1070/RM1994v049n04ABEH002390
9. Sagadeeva M.A., Badoyan A.D. The Optimal Control over Solutions of Special Form of Nonstacionary Sobolev Type Equations in Relatively Spectral Case [Optimal'noe upravlenie resheniyami nestatsionarnykh uravneniy sobolevskogo tipa spetsial'nogo vida v otnositel'no sektorial'nom sluchae]. Vestnik Magnitogorskogo gosudarstvennogo universiteta. Matematika [Bulletin of Magnitogorsk State University. Mathematics], 2013, no. 15, pp. 68-80.
10. Keller A.V., Sagadeeva M.A. The Numerical Solution of Optimal and Hard Control for Nonstationary System of Leontiev Type [Chislennoe reshenie zadach optimal'nogo i zhestkogo upravleniya dlya odnoy nestacionarnoy sistemy leont'evskogo tipa]. Nauchnye vedomosti BelGU. Seriya: Matematika i fizika [Belgorod State University Scientific Bulletin. Mathematics & Physics], 2013, vol. 32, no. 19, pp. 57-66.