Volume 9, no. 4Pages 117 - 128

Simulation of Relay-Races

E.V. Larkin, V.V. Kotov, A.N. Ivutin, A.N. Privalov
It is shown that multistage concurrent games, or relay-races, are widely used in practice. It is proposed to model relay-races in the state space, in which discrete co-ordinates are the mathematical analogue of stages, which participants pass in the current time, and basic principle of modelling of residence of participant in space states is the M-parallel semi-Markov process. With use of the proposed formalisms formulae for evaluation of stochastic and time characteristics of relay-races evolution are obtained. For arbitrary realization of switching trajectory the recurrent procedure of evolution with evaluation of stochastic and time characteristics of realization under investigation is worked out. Conception of distributed forfeit, which depends on difference of stages of participants compete in pairs is introduced. Dependence for evaluation of total forfeit for every participant is obtained.
Full text
relay-race; concurrent game; M-parallel semi-Markov process; distance; stage; state space; evolution; distributed forfeit; trajectory realization; recurrent procedure.
1. Bellman R.E., Dreyfus S.E. Applied Dynamic Programming. New Jersey, Princeton University Press, 2015.
2. Ivutin A.N., Larkin E.V. Simulation of Concurrent Games. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2015, vol. 8, no. 2, pp. 43-54. DOI: 10.14529/mmp150204
3. Krishnendu C., Jurdzi'nski M., Henzinger T.A. Simple Stochastic Parity Games. Computer Science Logic, Berlin, Heildelberg, Springer, 2003, pp. 100-113. DOI: 10.1007/978-3-540-45220-1_11
4. Ivutin A., Larkin E., Kotov V. Established Routine of Swarm Monitoring Systems Functioning. Advances in Swarm and Computational Intelligence. Springer, 2015, pp. 415-422. DOI: 10.1007/978-3-319-20472-7_45
5. Ivutin A.N., Larkin E.V., Lutskov Y.I. Simulation of Concurrent Games in Distributed Systems. 2015 5th International Workshop on Computer Science and Engineering: Information Processing and Control Engineering, WCSE 2015-IPCE. Moscow, 2015, pp. 60-65.
6. Korolyuk V., Swishchuk A. Semi-Markov Random Evolutions. Semi-Markov Random Evolutions. Springer Netherlands, 1995, pp. 59-91. DOI: 10.1007/978-94-011-1010-5_4
7. Ivutin A.N., Larkin E.V., Lutskov Y.I., Novikov A.S. Simulation of Concurrent Process with Petri-Markov Nets. Life Science Journal, 2014, vol. 11, no. 11, pp. 506-511.
8. Shiryaev A.N. Probability. N.Y., Springer, 1996. DOI: 10.1007/978-1-4757-2539-1
9. Cleaveland R., Smolka S.A. Strategic Directions in Concurrency Research. ACM Computing Surveys, 1996, vol. 28, no. 4, pp. 607-625. DOI: 10.1145/242223.242252
10. Heymann M. Concurrency and Discrete Event Control. Institute of Electrical & Electronics Engineers Control System Magazine, 1990, vol. 10, no. 4, pp. 103-112. DOI: 10.1109/37.56284
11. Valk R. Concurrency in Communicating Object Petri Nets. Concurrent Object-Oriented Programming and Petri Nets. Berlin, Heildelberg, Springer, 2001, pp. 164-195. DOI: 10.1007/3-540-45397-0_5.
12. Dijkstra E.W. Cooperating Sequential Processes. The Origin of Concurrent Programming. N.Y., Springer, 1968, pp. 65-138.
13. Ivutin A., Larkin E. Estimation of Latency in Embedded Real-Time Systems. 2014 3rd Mediterranean Conference on Embedded Computing, Institute of Electrical & Electronics Engineers, 2014, pp. 236-239. DOI: 10.1109/meco.2014.6862704
14. Squillante M.S. Stochastic Analysis and Optimization of Multiserver Systems. Run-Time Models for Self-managing Systems and Applications. Birkh'aser Basel, 2010, pp. 1-24. DOI: 10.1007/978-3-0346-0433-8_1
15. Iverson M.A., Ozguner F., Follen G.J. Run-Time Statistical Estimation of Task Execution Times for Heterogeneous Distributed Computing. Proceedings of 5th Institute of Electrical & Electronics Engineers International Symposium on High Performance Distributed Computing-96, Institute of Electrical & Electronics Engineers, 1996. DOI: 10.1109/hpdc.1996.546196