Volume 15, no. 2Pages 17 - 26

Exact Solutions of the (2+1)-Dimensional Kundu-Mukherjee-Naskar Model Via IBSEFM

Kh.R. Mamedov, U. Demirbilek, V. Ala
The aim of this study is to construct the exact solutions of the (2+1)-dimensional Kundu-Mukherjee-Naskar (KMN) equation via Improved Bernoulli Sub-Equation Function Method (IBSEFM). The physics of this model describes optical dromions in (2+1)-dimensional case. It is also studied in fluid dynamics. Applying the proposed method, we obtain new exact solutions of (2+1)-dimensional KMN equation. Moreover, we plot the 2D-3D figures and contour surfaces according to the suitable parameters by the aid of computer software. The results confirm that IBSEFM is powerful, effective and straightforward for solving nonlinear partial differential equations arising in mathematical physics.
Full text
IBSEFM; Kundu-Mukherjee-Naskar equation; exact solutions.
1. Maucher F., Buccoliero D., Skupin S., et al. Tracking Azimuthons in Nonlocal Nonlinear Media. Optical and Quantum Electronics, 2009, no. 41, pp. 337-348. DOI: 10.1007/s11082-009-9351-9
2. Mohamadou A., Kenfack-Jiotsa A., Kofane T.C. Modulational Instability and Spatiotemporal Transition to Chaos. Chaos, Solitons and Fractals, 2006, no. 27, pp. 914-925. DOI: 10.1016/j.chaos.2005.04.039
3. Almatrafi M.B., Alharbi A.R., Tunc C. Constructions of the Soliton Solutions to the Good Boussinesq Equation. Advances in Difference Equations, 2020, Article ID 629. DOI: 10.1186/s13662-020-03089-8
4. Bilbault P.B., Bilbault J.M., Binzcak S. et al. Anosov Flows with Stable and Unstable Differentiable Distributions. Physical Review Letters, 2012, no. 85, Article ID: 011916. DOI: 10.1103/PhysRevE.85.011916
5. Adomian G. A Review of the Decomposition Method and Some Recent Results for Nonlinear Equation. Computers, Mathematics with Applications, 1991, no. 21, pp. 101-127. DOI: 10.1016/0898-1221(91)90220-X
6. Tala-Tebue E., Tsobgni-Fozap D.C., Kenfack-Jiotsa A., et al. Envelope Periodic Solutions for a Discrete Network with the Jacobi Elliptic Functions and the Alternative G-Expansion Method Including the Generalized Riccati Equation. tThe European Physical Journal Plus, 2014, no. 129, p. 136. DOI: 10.1140/epjp/i2014-14136-9
7. El-Wakil S.A., Abdou M.A. New Exact Travelling Wave Solutions of Two Nonlinear Physical Models. Nonlinear Analysis, 2008, vol. 68, no. 2, pp. 235-242.
8. Baskonus H.M., Bulut H. Exponential Prototype Structures for (2+1)-Dimensional Boiti-Leon-Pempinelli Systems in Mathematical Physics. Waves in Random and Complex Media, 2016, no. 26, pp. 189-196. DOI: 10.1080/17455030.2015.1132860
9. Rezazadeh H. New Solitons Solutions of the Complex Ginzburg-Landau Equation with Kerr Law Nonlinearity. Optik, 2018, no. 167, pp. 218-227. DOI:10.1016/j.ijleo.2018.04.026
10. Kundu A., Mukherjee A., Naskar T. Modelling Rogue Waves Through Exact Dynamical Lump Soliton Controlled by Ocean Currents. Proceedings of the Royal Society A, 2014, no. 470, Article ID 20130465. DOI: 10.1098/rspa.2013.0576
11. Mukherjee A., Janaki M.S., Kundu A. A New (2+1) Dimensional Integrable Evolution Equation for an Ion Acoustic Wave in a Magnetized Plasma. Physics of Plasmas, 2015, no. 22, Article ID 072302DOI: 10.1063/1.4923296
12. Biswas A., Yildirim Y., Yasar E., et al. Optical Soliton Perturbation with Full Nonlinearity in Polarization Preserving Fibers Using Trial Equation Method. Journal of Optoelectronics and Advanced Materials, 2018, no. 20, pp. 385-402.
13. Ekici M., Sonmezoglu A., Biswas A., et al. Optical Solitons in (2+1)-Dimensions with Kundu-Mukherjee-Naskar Equation by Extended Trial Function Scheme. Chinese Journal of Physics, 2019, no. 57, pp. 72-77. DOI: 10.1016/j.cjph.2018.12.011
14. Kudryashov N. A., General Solution of Traveling Wave Reduction for the Kundu-Mukherjee-Naskar Model. Optik, 2019, no. 186, pp. 22-27. DOI: 10.1016/j.ijleo.2019.04.072
15. Gunerhan H., Khodadad F.S., Rezazadeh H., et al. Exact Optical Solutions of the (2+1) Dimensions Kundu-Mukherjee-Naskar Model Via the New Extended Direct Algebraic Method. Modern Physics Letters B, 2020, vol. 34, no. 22, Article ID 2050225. DOI: 10.1142/S0217984920502255
16. Ala V., Demirbilek U., Mamedov Kh.R. An Application of Improved Bernoulli Sub-Equation Function Method to the Nonlinear Conformable Time-Fractional SRLW Equation. AIMS Mathematics, 2020, no. 5, pp. 3751-3761. DOI: 10.3934/math.2020243
17. Ala V., Demirbilek U., Mamedov Kh.R. On the Exact Solutions to Conformable Equal Width Wave Equation by Improved Bernoulli Sub-Equation Function Method. Bulletin of the South Ural State University. Mathematics, Mechanics, Physics, 2021, vol. 13, no. 3, pp. 5-13.
18. Demirbilek U., Ala V., Mamedov Kh.R. An Application of Improved Bernoulli Sub-Equation Function Method to the Nonlinear Conformable Time-Fractional Equation. Tbilisi Mathematical Journal, 2021, vol. 14, no. 3, pp. 59-70. DOI: 10.32513/tmj/19322008142
19. Demirbilek U., Ala V., Mamedov Kh.R. Exact Solutions of Conformable Time Fractional Zoomeron Equation via IBSEFM. Applied Mathematics-a Journal of Chinese Universities, 2021, vol. 36, no. 4, pp. 554-563. DOI: 10.1007/s11766-021-4145-3
20. Demirbilek U., Ala V., Mamedov Kh.R. New Traveling Wave Solutions of Nonlinear Time Fractional Duffing Model via IBSFM. Journal of Applied Computer Science and Mathematics, 2020, no. 14, pp. 42-47. DOI: 10.4316/JACSM.202002007