Volume 15, no. 3Pages 34 - 50

# On Inverse Problems with Pointwise Overdetermination for Mathematical Models of Heat and Mass Transfer

S.G. Pyatkov
This article is a survey devoted to inverse problems of recovering sources and coefficients (parameters of a medium) in mathematical models of heat and mass transfer. The main attention is paid to well-posedness questions of the inverse problems with pointwise overdetermination conditions. The questions of this type arise in the heat and mass transfer theory, in environmental and ecology problems, when describing diffusion and filtration processes, etc. As examples, we note the problems of determining the heat conductivity tensor or sources of pollution in a water basin or atmosphere. We describe three types of problems. The first of them is the problem of recovering point or distributed sources. We present conditions for existence and uniqueness of solutions to the problem, show non-uniqueness examples, and, in model situations, give estimates on the number of measurements that allow completely identify intensities of sources and their locations. The second problem is the problem of recovering the parameters of media, in particular, the heat conductivity. The third problem is the problem of recovering the boundary regimes, i. e. the flux through a surface or the heat transfer coefficient.
Full text
Keywords
heat and mass transfer; mathematical modelling; parabolic equation; uniqueness; inverse problem; point source.
References
1. Marchuk G.I. Mathematical Models in Environmental Problems. Amsterdam, Elsevier Science, vol. 16, 1986.
2. Ozisik M.N., Orlande H.R. Inverse Heat Transfer. New York, Taylor and Francis, 2000.
3. Alifanov O.M. Inverse Heat Transfer Problems. Berlin, Springer, 1994.
4. Prilepko A.I., Solov'ev V.V. Solvability Theorems and Rothe's Method for Inverse Problems for a Parabolic Equation. Differential Equations, 1987, vol. 23, no. 10, pp. 1230-1237.
5. Solov'ev V.V. Global Existence of a Solution to the Inverse Problem of Determining the Source Term in a Quasilinear Equation of Parabolic Type. Differential Equations, 1996, vol. 32, no. 4, pp. 538-547.
6. Prilepko A.I., Solov'ev V.V. Solvability of the Inverse Boundary-Value Problem of Finding a Coefficient of a Lower-Order Derivative in a Parabolic Equation. Differential Equations, 1987, vol. 23, no. 1, pp. 101-107.
7. Prilepko A.I., Orlovsky D.G., Vasin I.A. Methods for Solving Inverse Problems in Mathematical Physics. New York, Marcel Dekker, 1999.
8. Ivanchov M. Inverse Problems for Equation of Parabolic Type. Lviv, WNTL Publishers, vol. 10, 2003.
9. Hussein M.S., Lesnic D., Ivanchov M.I. Simultaneous Determination of Time-Dependent Coefficients in the Heat Equation. Computers and Mathematics with Applications, 2014, vol. 67, pp. 1065-1091. DOI: 10.1016/j.camwa.2014.01.004
10. Lesnic D., Ivanchov M., Determination of the Time-Dependent Perfusion Coefficient in the Bio-Heat Equation. Applied Mathematics Letters, 2015, vol. 39, pp. 96-100. DOI: 10.1016/j.aml.2014.08.020
11. Hussein M.S., Lesnic D. Identification of Time-Dependent Conductivity of an Diffusive Material. Applied Mathematics and Computations, 2015, vol. 269, pp. 35-58. DOI: 10.1016/j.amc.2015.07.039
12. Pyatkov S.G., Rotko V.V. On Some Parabolic Inverse Problems with the Pointwise Overdetermination. AIP Conference Proceedings, 2017, vol. 1907, article ID: 020008, 12 p. DOI: 10.1063/1.5012619
13. Baranchuk V.A., Pyatkov S.G. On Some Classes of Inverse Problems with Pointwise Overdetermination for Mathematical Models of Heat and Mass Transfer. Bulletin of Yugra State University, 2020, vol. 3, pp. 38-48.
14. Pyatkov S.G., Baranchuk V.A. On Some Inverse Parabolic Problems with Pointwise Overdetermination. Journal of Siberian Federal University. Mathematics and Physics, 2021, vol. 14, no. 4, pp. 463-474. DOI: 10.17516/1997-1397-2021-14-4-463-474
15. Pyatkov S.G., Rotko V.V. Inverse Problems with Pointwise Overdetermination for Some Quasilinear Parabolic Systems. Siberian Advances in Mathematics, 2020, vol. 30, no. 2, pp. 124-142. DOI: 10.3103/S1055134420020054
16. Hematiyana M.R., Khosravifarda A., Shiahb Y.C. A Novel Inverse Method for Identification of 3D Thermal Conductivity Coefficients of Anisotropic Media by the Boundary Element Analysis. International Journal of Heat and Mass Transfer, 2015, vol. 89, pp. 85-693. DOI: 10.1016/j.ijheatmasstransfer.2015.05.034
17. Atchonouglo K., Dupre J.-C., Germaneau A., Vallee C. Numerical Identification of the Thermal Conductivity Tensor and the Heat Capacity per Unit Volume of an Anisotropic Material. Mechanics and Industry, 2019, vol. 20, no. 6, article ID: 603, 8 p. DOI: 10.1051/meca/2019026
18. Ivanchov M.I. On the Inverse Problem of Simultaneous Determination of Thermal Conductivity and Specific Heat Capacity. Siberian Mathematical Journal, 1994, vol. 35, no. 3. pp. 547-555.
19. Hussein M.S., Lesnic D. Simultaneous Determination of Time-Dependent Coefficients and Heat Source. Journal for Computational Methods in Engineering Science and Mechanics, 2016, vol. 17, no. 5-6, pp. 401-411. DOI: 10.1080/15502287.2016.1231241
20. Nedin R., Nesterov S., Vatulyan A. Identification of Thermal Conductivity Coefficient and Volumetric Heat Capacity of Functionally Graded Materials. International Journal of Heat and Mass Transfer, 2016, vol. 102, pp. 213-218. DOI: 10.1016/j.ijheatmasstransfer.2016.06.027
21. Albu A., Zubov V. Identification of the Thermal Conductivity Coefficient in Two Dimension Case. Optimization Letters, 2019, vol. 13, pp. 1727-1743. DOI: 10.1007/s11590-018-1304-4
22. Zubova V.I., Albu A.F. Identification of the Thermal Conductivity Coefficient Using a Given Surface Heat Flux. Computational Mathematics and Mathematical Physics, 2018, vol. 58, no. 12, pp. 2031-2042. DOI: 10.1134/S0965542518120023
23. Mathevityi Yu.M., Ganchin V.V. Multiparametric Identification of Several Thermophysical Characteristics by Solving the Internal Inverse Heat Conduction Problem. Journal of Mechanical Engineering, 2020, vol. 23, no. 2, pp. 14-20. DOI: 10.15407/pmach2020.02.014
24. Telejko T., Malinowski Z. Application of an Inverse Solution to the Thermal Conductivity Identification Using the Finite Element Method. Journal of Materials Processing Technology, 2004, vol. 146, pp. 145-155. DOI: 10.1016/j.jmatprotec.2003.10.006
25. Balaji C., Venkateshan S.P., Ambirajan A., Ramakrishnan V. Simultaneous Estimation of Principal Thermal Conductivities of an Anisotropic Composite Medium, an Inverse Analysis. Journal of Heat Transfer, 2014, vol. 135, article ID: 021301, 8 p. DOI: 10.1115/1.4007422
26. Ivanova A., Migorski S., Wyczolkowski R., Ivanov D. Numerical Identification of Temperature Dependent Thermal Conductivity Using Least Squares Method. International Journal of Numerical Methods for Heat and Fluid Flow, 2020, vol. 30, no. 6, pp. 3083-3099. DOI: 10.1108/HFF-10-2018-0589
27. Penenko V.V. Variational Methods of Data Assimilation and Inverse Problems for Studying the Atmosphere, Ocean, and Environment. Numerical Analysis and Applications, 2009, vol. 2, issue 4, pp. 341-351. DOI: 10.1134/S1995423909040065
28. Ching-YuYang. Solving the Two-Dimensional Heat Source Problem Through the Linear Least Square Error Method. International Journal of Heat and Mass Transfer, 1998, vol. 41, no. 2, pp. 393-398.
29. Mamonov A.V., Richard Tsai. Point Source Identification in Nonlinear Advection-Diffusion-Reaction Systems. Inverse Problems, 2013, vol. 29, no. 3, article ID: 035009, 26 p. DOI: 10.1088/0266-5611/29/3/035009
30. Xiaomao Deng, Zhao Yubo, Jun Zou. On Linear Finite Elements for Simultaneously Recovering Source Location and Intensity. International Journal of Numerical Analysis and Modeling, 2013, vol. 10, no. 3, pp. 588-602.
31. Verdiere N., Joly-Blanchard G., Denis-Vidal L. Identifiability and Identification of a Pollution Source in a River by Using a Semi-Discretized Model. Applied Mathematics and Computation, 2013, vol. 221, pp. 1-9. DOI: 10.1016/j.amc.2013.06.022
32. Mazaheri M., Samani J.M.V. Samani H.M.V. Mathematical Model for Pollution Source Identification in Rivers. Environmental Forensics, 2015, vol. 16, no. 4, pp. 310-321. DOI: 10.1080/15275922.2015.1059391
33. Jian Su, Neto A.S. Heat Source Estimation with the Conjugate Gradient Method in Inverse Linear Diffusive Problems. Journal of the Brazilian Society of Mechanical Sciences, 2001, vol. 23, no. 3, article ID: 2001, 15 p. DOI: 10.1590/S0100-73862001000300005
34. Shoubin Wang, Li Zhang, Xiaogang Sun, Huangchao Jia. Solution to Two-Dimensional Steady Inverse Heat Transfer Problems with Interior Heat Source Based on the Conjugate Gradient Method. Mathematical Problems in Engineering, 2017, vol. 2017, article ID: 2861342, 10 p. DOI: 10.1155/2017/2861342
35. Neto A.J.S., Oziik M.N. Two-Dimensional Inverse Heat Conduction Problem of Estimating the Time Varying Strength of a Line Heat Source. Journal of Applied Physics, 1992, vol. 71, pp. 53-57. DOI: 10.1063/1.350554
36. Milnes E. Simultaneous Identification of a Single Pollution Point-Source Location and Contamination Time Under Known Flow Field Conditions. Advances in Water Resources, 2007, vol. 30, issue 12, pp. 2439-2446. DOI: 10.1016/j.advwatres.2007.05.013
37. Fung-BaoLiu. A Modified Genetic Algorithm for Solving the Inverse Heat Transfer Problem of Estimating Plan Heat Source. International Journal of Heat and Mass Transfer, 2008, vol. 51, issue 15-16, pp. 3745-3752. DOI: 10.1016/j.ijheatmasstransfer.2008.01.002
38. Penenko A.V., Rachmetullina S. Algorithms for Atmospheric Emission Source Localization Based on the Automated Ecological Monitoring System Data. Siberian Electronic Mathematical Reports, 2013, vol. 10, pp. 35-54.
39. Badia A.El., Ha-Duong T., Hamdi A. Identification of a Point Source in a Linear Advection-Dispersion-Reaction Equation: Application to a Pollution Source Problem. Inverse Problems, 2005, vol. 21, no. 3, pp. 1121-1136. DOI: 10.1088/0266-5611/21/3/020
40. Badia A.El., Hamdi A. Inverse Source Problem in an Advection-Dispersion-Reaction System: Application to Water Pollution. Inverse Problems, 2007, vol. 23, pp. 2103-2120. DOI: 10.1088/0266-5611/23/5/017
41. Badia A.El., Ha-Duong T. Inverse Source Problem for the Heat Equation: Application to a Pollution Detection Problem. Journal of Inverse and Ill-Posed Problems, 2002, vol. 10, no. 6, pp. 585-599. DOI: 10.1515/jiip.2002.10.6.585
42. Badia A.El, Ha-Duong T. An Inverse Source Problem in Potential Analysis. Inverse Problems, 2000, vol. 16, issue 3, pp. 651-663. DOI: 10.1088/0266-5611/16/3/308
43. Leevan Ling, Tomoya Takeuchi. Point Sources Identification Problems for Heat Equations. Communications in Computational Physics, 2009, vol. 5, no. 5, pp. 897-913.
44. Pyatkov S.G., Safonov E.I. Point Sources Recovering Problems for the One-Dimensional Heat Equation. Journal of Advanced Research in Dynamical and Control Systems, 2019, vol. 11, issue 1, pp. 496-510.
45. Neustroeva L.V. On Uniqueness in the Problems of Determining Point Sources in Mathematical Models of Heat and Mass Transfer. Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 2022, vol. 14, no. 2, pp. 31-43. DOI: 10.14529/mmph220203
46. Liming Zhou, Hopke P.K., Wei Liu. Comparison of Two Trajectory Based Models for Locating Particle Sources for Two Rural New York Sites. Atmospheric Environment, 2004, vol. 38, pp. 1955-1963. DOI: 10.1016/j.atmosenv.2003.12.034
47. Young-Ji Han, Holsen T.M., Hopke P.K.,Jang-Pyo Cheong, Ho Kim, Seung-Muk Yi. Identification of Source Location for Atmospheric Dry Deposition of Heavy Metals During Yellow-Sand Events in Seoul, Korea in 1998 Using Hybrid Receptor Models. Atmospheric Environment, 2004, vol. 38, pp. 5353-5361. DOI: 10.1016/j.atmosenv.2004.02.069
48. Pekney N.J., Davidson C.I., Zhow L., Hopke P.K. Application of PSCF and CPF to PMF-Modeled Sources of PM2,5 in Pittsburgh. Aerosol Science and Technology, 2006, vol. 40, issue 10, pp. 952-961. DOI: 10.1080/02786820500543324
49. Onyango T.M., Ingham D.B., Lesnic D. Restoring Boundary Conditions in Heat Conduction. Journal of Engineering Mathematics, 2008, vol. 62, no. 1, pp. 85-101. DOI: 10.1007/s10665-007-9192-0
50. Kostin A.B., Prilepko A.I. Some Problems of Restoring the Boundary Condition for a Parabolic Equation. II. Differential Equations, 1996, vol. 32, no. 11, pp. 1515-1525.
51. Kostin A.B., Prilepko A.I. On Some Problems of Restoration of a Boundary Condition for a Parabolic Equation. I. Differential Equations, 1996, vol. 32, no. 1, pp. 113-122.
52. Pyatkov S.G., Baranchuk V.A. Identification of a Boundary Condition in the Heat and Mass Transfer Problems. Chelyabinsk Physical and Mathematical Journal, 2022, vol. 7, no. 2, pp. 234-253. DOI: 10.47475/2500-0101-2022-17206 (In Russian)
53. Pyatkov S., Shilenkov D. Existence and Uniqueness Theorems in the Inverse Problem of Recovering Surface Fluxes from Pointwise Measurements. Mathematics, 2022, vol. 10, article ID: 1549, 23 p. DOI: 10.3390/math10091549
54. Woodbury K.A., Beck J.V., Najafi H. Filter Solution of Inverse Heat Conduction Problem Using Measured Temperature History as Remote Boundary Condition. International Journal of Heat and Mass Transfer, 2014, vol. 72, pp. 139-147. DOI: 10.1016/j.ijheatmasstransfer.2013.12.073
55. Knupp D.C., Abreu L.A.S. Explicit Boundary Heat Flux Reconstruction Employing Temperature Measurements Regularized via Truncated Eigenfunction Expansions. International Communications in Heat and Mass Transfer, 2016, vol. 78, pp. 241-252. DOI: 10.1016/j.icheatmasstransfer.2016.09.012
56. Alghamdi S.A. Inverse Estimation of Boundary Heat Flux for Heat Conduction Model. Journal of King Saud University - Engineering Sciences, vol. 21, no. 1 pp. 73-95. DOI: 10.4197/Eng.21-1.5
57. Cao K., Lesnic D., Colaco M.J. Determination of Thermal Conductivity of Inhomogeneous Orthotropic Materials from Temperature Measurements. Inverse Problems in Science and Engineering, 2018, vol. 27, no. 10, pp. 1372-1398. DOI: 10.1080/17415977.2018.1554654
58. Osman A.M., Beck J.V. Nonlinear Inverse Problem for the Estimation of Time-and-Space-Dependent Heat-Transfer Coefficients. J. Thermophysics, 1987, vol. 3, no. 2, pp. 146-152.
59. Colac M.J., Orlande H.R.B. Inverse Natural Convection Problem of Simultaneous Estimation of Two Boundary Heat Fluxes in Irregular Cavities. International Journal of Heat and Mass Transfer, 2004, vol. 47, no. 6, pp. 1201-1215. DOI: 10.1016/j.ijheatmasstransfer.2003.09.007
60. Jian Su, Hewitt G.F. Inverse Heat Conduction Problem of Estimating Time-Varying Heat Transfer Coefficient. Numerical Heat Transfer Applications, 2004, vol. 45, pp. 777-789. DOI: 10.1080/1040778049042499
61. Dinh Nho Hao, Phan Xuan Thanh, Lesnic D. Determination of the Heat Transfer Coefficients in Transient Heat Conduction. Inverse Problems, 2013, vol. 29, no. 9, article ID: 095020, 21 p. DOI: 10.1088/0266-5611/29/9/095020
62. Jong-Doo Lee, Ikuo Tanabe, Koji Takada. Identification of the Heat Transfer Coefficient on Machine Tool Surface by Inverse Analysis. JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 1999, vol. 42, no. 4, pp. 1056-1060. DOI: 10.1299/jsmec.42.1056
63. Sladek J., Sladek V., Wen P.H., Hon Y.C. The Inverse Problem of Determining Heat Transfer Coefficients by the Meshless Local Petrov-Galerkin Method. Computer Modeling in Engineering and Sciences, 2009, vol. 48, no. 2, pp. 191-218. DOI: 10.3970/cmes.2009.048.191
64. Bangti Jin, Xiliang Lu. Numerical Identification of a Robin Coefficient in Parabolic Problems. Mathematics of Computation, 2012, vol. 81, no. 279, pp. 1369-1398. DOI: 10.2307/23268046
65. Amann H. Compact Embeddings of Vector-Valued Sobolev and Besov Spaces. Glasnik Matematicki, 2000, vol. 35 (55), no. 1, pp. 161-177.
66. Ladyzhenskaya O.A., Solonnikov V.A., Ural'tseva N.N. Linear and Quasilinear Equations of Parabolic Type. Providence, American Mathematical Society, 1968.
67. Safonov E.I., Pyatkov S.G. On Some Classes of Inverse Problems on Determining the Source Function. Proceedings of the 8th Scientific Conference on Information Technologies for Intelligent Decision Making Support (ITIDS 2020), 2020, Paris, Atlantis Press SARL, vol. 483, pp. 116-120.
68. Pyatkov S.G., Neustroeva L.V. On Solvability of Inverse Problems of Recovering Point Sources. Mathematical Notes of NEFU, 2022, vol. 29, no. 2, pp. 43-58. (In Russian)
69. Neustroeva L.V., Pyatkov S.G. On Recovering a Point Source in Some Heat and Mass Transfer Problems. AIP Conference Proceedings, 2021, vol. 2328, article ID: 020006. DOI: 10.1063/5.0042357
70. Beck J.V., Blackell B., Clair C.R. tInverse Heat Conduction. New York, Wiley-Interscience, 1985.
71. Watson G.N. A Treatize of the Theory of Bessel Functions. Cambridge, Cambridge University Press, 1944.