Volume 17, no. 2Pages 68 - 82 Solitary Wave Effects of Woods-Saxon Potential in Schrodinger Equation with 3d Cubic Nonlinearity
Mustafa Inc, Muhammad Sajid Iqbal, Ali Hasan Ali, Zuha Manzoor, Farrah AshrafIn this research article, we apply the generalized projective Riccati equation method to construct traveling wave solutions of the 3d cubic focusing nonlinear Schrodinger equation with Woods-Saxon potential. The generalized projective Riccati equation method is a powerful and effective mathematical tool for obtaining exact solutions of nonlinear partial differential equations, and it allows us to derive a variety of traveling wave solutions of the 3d cubic focusing nonlinear Schrodinger equation with Woods-Saxon potential. These solutions contain periodic wave solutions, bright and dark soliton solutions. The study of many physical systems, such as Bose-Einstein condensates and nonlinear optics, that give rise to the nonlinear Schrodinger equation. We provide a detailed description of the generalized projective Riccati equation method in the paper, and demonstrate its usefulness in solving the nonlinear Schrodinger equation with Woods-Saxon potential. We present various graphical representations of the obtained solutions using MATLAB software, and analyze their characteristics. Our results provide new insights into the behavior of the 3d cubic focusing nonlinear Schrodinger equation with Woods-Saxon potential, and have potential applications in numerous fields of physics, as well as nonlinear optics and condensed matter physics.
Full text- Keywords
- 3d cubic focusing nonlinear Schrodinger equation; Woods-Saxon potential; traveling wave solution; generalized projective Riccati equation method (GPREM).
- References
- 1. Onyenegecha C.P., Njoku I.J., Opara A.I., Echendu O.K., Omoko E.N., Eze F.C., Nwaneho F.U. Nonrelativistic Solutions of Schrodinger Equation and Thermodynamic Properties with the Proposed Modified Mobius Square Plus Eckart Potential. Heliyon, 2022, vol. 8, no. 2, article ID: e08952, 10 p. DOI:10.1016/j.heliyon.2022.e08952
2. Wei Gao-Feng, Long Chao-Yun, Duan Xiao-Yong, Dong Shi-Hai. Arbitrary L-Wave Scattering State Solutions of the Schrodinger Equation for the Eckart Potential. Physica Scripta, 2008, vol. 77, no. 3, article ID: 035001, 5 p. DOI:10.1088/0031-8949/77/03/035001
3. Morrison C.L., Shizgal B. Pseudospectral Solution of the Schrodinger Equation for the Rosen-Morse and Eckart Potentials. Journal of Mathematical Chemistry, 2019, vol. 57, no. 12, pp. 1035-1052. DOI: 10.1007/s10910-019-01007-2
4. Onate C.A., Akanbi T.A. Solutions of the Schrodinger Equation with Improved Rosen Morse Potential for Nitrogen Molecule and Sodium Dimer. Results in Physics, 2021, vol. 22, no. 6, article ID: 103961, 7 p. DOI:10.1016/j.rinp.2021.103961
5. Desai A.M., Mesquita N., Fernandes V. A New Modified Morse Potential Energy Function for Diatomic Molecules. Physica Scripta, 2020, vol. 95, no. 8, article ID: 085401, 6 p. DOI:10.1088/1402-4896/ab9bdc
6. Udoh M.E., Okorie U.S., Ngwueke M.I., Ituen E.E., Ikot A.N. Rotation-Vibrational Energies for Some Diatomic Molecules with Improved Rosen-Morse Potential in D-Dimensions. Journal of Molecular Modeling, 2019, vol. 25, no. 6, pp. 1-7. DOI:10.1007/s00894-019-4040-5
7. Carbo-Dorca R., Nath D. Average Energy and Quantum Similarity of a Time Dependent Quantum System Subject to Poschl-Teller Potential. Journal of Mathematical Chemistry, 2022, vol. 60, no. 2, pp. 1-21. DOI:10.1007/s10910-021-01318-3
8. Pereira L.C., Marangoni B.S., do Nascimento V.A. Dynamics and Stability of Matter-Wave Solitons in Cigar-Shaped Bose-Einstein Condensates Dragged by Poschl-Teller Potential. International Journal of Quantum Chemistry, 2021, vol. 121, no. 11, article ID: e26634, 9 p. DOI:10.1002/qua.26634
9. Jaramillo B., Martinez-y-Romero R.P., Nunez-Yepez H.N., Salas-Brito A.L. On the One-Dimensional Coulomb Problem. Physics Letters A, 2009, vol. 374, no. 2, pp. 150-153. DOI:10.1016/j.physleta.2009.10.073
10. Inyang E.P., William E.S., Obu J.A. Eigensolutions of the N-Dimensional Schrodinger Equation Interacting with Varshni-Hulthen Potential Model. Revista Mexicana de Fisica, 2021, vol. 67, no. 2, pp.193-205. DOI:10.31349/RevMexFis.67.193
11. Chen Lu, Lu Guozhen, Zhu Maochun. Sharp Trudinger-Moser Inequality and Ground State Solutions to Quasi-Linear Schrodinger Equations with Degenerate Potentials in R^n. Advanced Nonlinear Studies, 2021, vol. 21, no. 4, pp. 733-749. DOI:10.1515/ans-2021-2146
12. Lorca S., Montenegro M. Spike Solutions of a Nonlinear Schrodinger Equation with Degenerate Potential. Journal of Mathematical Analysis and Applications, 2004, vol. 295, no. 1, pp. 276-286. DOI:10.1016/j.jmaa.2004.03.044
13. Wenbo Wang, Quanqing Li. Existence and Concentration of Positive Ground States for Schrodinger-Poisson Equations with Competing Potential Functions. Electronic Journal of Differential Equations, 2020, vol. 2020, no. 78, pp. 1-19.
14. Yan Zhenya, Wen Zichao, Konotop V.V. Solitons in a Nonlinear Schrodinger Equation with PT-Symmetric Potentials and Inhomogeneous Nonlinearity: Stability and Excitation of Nonlinear Mordinary Differential Equations. Physical Review A, 2015, vol. 92, no. 2, article ID: 023821, 8 p. DOI:10.1103/PhysRevA.92.023821
15. Deng Yangbao, Deng Shuguang, Tan Chao, Xiong Cuixiu, Zhang Guangfu, Tian Ye. Study on Propagation Characteristics of Temporal Soliton in Scarff II PT-Symmetric Potential Based on Intensity Moments. Optics and Laser Technology, 2016, vol. 79, pp. 32-38. DOI: 10.1016/j.optlastec.2015.11.003
16. Znojil M. Exact Solution for Morse Oscillator in PT-Symmetric Quantum Mechanics. Physics Letters A, 1999, vol. 264, no. 2-3, pp. 108-111. DOI: 10.1016/S0375-9601(99)00805-1
17. Bo Wen-Bo, Wang Ru-Ru, Fang, Yin, Wang, Yue-Yue, Dai Chao-Qing. Prediction and Dynamical Evolution of Multipole Soliton Families in Fractional Schrodinger Equation with the PT-Symmetric Potential and Saturable Nonlinearity. Nonlinear Dynamics, 2022, vol. 111, no. 2, pp. 1-12. DOI: 10.1007/s11071-022-07884-8
18. Midya B., Roychoudhury R. Nonlinear Localized Mordinary Differential Equations in PT-Symmetric Rosen-Morse Potential Wells. Physical Review A, 2013, vol. 87, no. 4, article ID: 045803, 5 p. DOI: 10.1103/PhysRevA.87.045803
19. Inc M., Iqbal M.S., Baber M.Z., Qasim M., Iqbal Z., Tarar M.A., Ali A.H. Exploring the Solitary Wave Solutions of Einstein's Vacuum Field Equation in the Context of Ambitious Experiments and Space Missions. Alexandria Engineering Journal, 2023, vol. 82, pp. 186-194. DOI: 10.1016/j.aej.2023.09.071
20. Rehman, S.U., Nawaz R., Zia F., Fewster-Young N., Ali A.H. A Comparative Analysis of Noyes-Field Model for the Non-Linear Belousov-Zhabotinsky Reaction Using Two Reliable Techniques. Alexandria Engineering Journal, 2024, vol. 93, pp. 259-279. DOI: 10.1016/j.aej.2024.03.010
21. Yongyi Gu, Baixin Chen, Feng Ye, Najva A. Soliton Solutions of Nonlinear Schrodinger Equation with the Variable Coefficients under the Influence of Woods-Saxon Potential. Results in Physics, 2022, vol. 42, article ID: 105979. DOI: 10.1016/j.rinp.2022.105979
22. Zayed E.M.E., Alurrfi K.A.E. The Generalized Projective Riccati Equations Method for Solving Nonlinear Evolution Equations in Mathematical Physics. In Abstract and Applied Analysis, 2014, vol. 2014, article ID: 259190. DOI: 10.1155/2014/259190
23. Yao Shao-Wen, Akram G., Sadaf M., Zainab I., Rezazadeh H., Inc M. Bright, Dark, Periodic and Kink Solitary Wave Solutions of Evolutionary Zoomeron Equation. Results in Physics, 2022, vol. 43, article ID: 106117. DOI: 10.1016/j.rinp.2022.106117
24. Younis M., Sulaiman T.A., Bilal M., Rehman S.U., Younas U. Modulation Instability Analysis, Optical and Other Solutions to the Modified Nonlinear Schrodinger Equation. Communications in Theoretical Physics, 2020, vol. 72, no. 6, article ID: 065001, 12 p. DOI: 10.1088/1572-9494/ab7ec8