# Impact of Directed Migration on the Incidence of the Population in the SIS Model

A.V. BudyanskyMathematical model of the spread of an infectious disease, written in the form of a system of nonlinear equations of parabolic type, is considered. The spatial and temporal evolution of the densities of two population groups is studied: susceptible to infection and infected. Mutual transition from one group to another is allowed. The dynamics of densities are determined by migration flows and local interaction. Migration flows are caused by the diffusion of the population across the area and directed migration caused by some stimulus. The modeling is carried out taking into account the mortality of infected people. Computational experiments determined the role of migration factors in epidemiological scenarios.Full text

- Keywords
- mathematical modelling; epidemic; compartmental model; nonlinear PDEs; taxis.
- References
- 1. Snowden F.M. Epidemics and Society: from the Black Death to the Present. New Haven, Yale University press, 2019.

2. Brauer F. Mathematical Models in Population Biology and Epidemiology. New York, Springer, 2012.

3. Schlickeiser R., Kroger M. Mathematics of Epidemics: On the General Solution of SIRVD, SIRV, SIRD, and SIR Compartment Models. Mathematics, 2024, vol. 12, no. 7, article ID: 941. DOI:10.3390/math12070941

4. Bubeev Yu.A., Vladimirskiy B.M., Ushakov I.B., Usov V.M., Bogomoloov A.V. Mathematical Modeling of Spread COVID-19 Epidemic for Preventive Measures to Protect Life and Health of Elderly. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2021, vol. 14, no. 3, pp. 92-98. DOI:10.14529/mmp210307

5. Kumar P., Erturk V.S., Yusuf A., Nisar K.S., Abdelwahab S.F. A Study on Canine Distemper Virus (CDV) and Rabies Epidemics in the Red Fox Population via Fractional Derivatives. Results Physics, 2021, vol. 25, article ID: 104281. DOI:10.1016/j.rinp.2021.104281

6. Pathak S., Maiti A., Samanta G.P. Rich Dynamics of an SIR Epidemic Model. Nonlinear Anal Model Control, 2010, vol. 15, no. 1, pp. 71-81. DOI:10.15388/NA.2010.15.1.14365

7. Sidi Ammi M.R., Tahiri M., Torres D.F.M. Global Stability of a Caputo Fractional SIRS Model with General Incidence Rate. Mathematics in Computer Science, 2021, vol. 15, pp. 91-105. DOI:10.1007/s11786-020-00467-z

8. Murray J.D. Mathematical Biology II. Spatial Models and Biomedical Applications. New York, Springer, 2003.

9. Fitzgibbon W.E., Langlais M., Morgan J.J. A Reaction-Diffusion System Modeling Direct and Indirect Transmission of Diseases. Discrete and Continuous Dynamical Systems, Series B, 2004, vol. 4, pp. 893-910. DOI:10.3934/dcdsb.2004.4.893

10. Sidi Ammia M.R., Zinihi A., Raezah A.A., Sabbar Y. Optimal Control of a Spatiotemporal SIR Model with Reaction-Diffusion Involving \rho-Laplacian Operator. Results in Physics, 2023, vol.52, article ID: 106895. DOI:10.1016/j.rinp.2023.106895

11. Malchow H. Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models, and Simulation. London, Chapman and Hall, 2019.

12. Braverman E., Ilmer I. On the Interplay of Harvesting and Various Diffusion Strategies for Spatially Heterogeneous Populations. Journal of Theoretical Biology, 2019, vol. 466, pp. 106-118. DOI:10.1016/j.jtbi.2019.01.024

13. Tyutyunov Y.V., Titova L.I., Sen D., Banerjee M. Predator Overcomes the Allee Effect due to Indirect Prey-Taxis. Ecological Complexity, 2019, vol. 39, article ID: 100772. DOI:10.1016/j.ecocom.2019.100772

14. Budyansky A.V., Tsybulin V.G. Impact of Directed Migration on Formation of Spatial Structures of Populations. Biophysics, 2015, vol. 60, pp. 622-631. DOI:10.1134/S0006350915040077

15. Frischmuth K., Budyansky A.V., Tsybulin V.G. Modeling of Invasion on a Heterogeneous Habitat: Taxis and Multistability. Applied Mathematics and Computation, 2021, vol. 410, article ID: 126456. DOI:10.1016/j.amc.2021.126456

16. Budyansky A.V. Numerical Study of the Impact of Directed Migration of Non-Indigenous Species on Invasion Scenarios. Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2023, vol. 33, no. 4, pp. 551-562. DOI:10.35634/vm230401 (in Russian)

17. Giunta V., Hillen T., Lewis M.A., Potts J.R. Detecting Minimum Energy States and Multi-Stability in Nonlocal Advection-Diffusion Models for Interacting Species. Journal of Mathematical Biology, 2022, vol. 85, no. 5, article ID: 56. DOI:10.1007/s00285-022-01824-1

18. Allen L.J.S., Bolker B.M., Lou Y., Nevai A.L. Asymptotic Profiles of the Steady States for an SIS epidemic Disease Patch Model. SIAM Journal on Applied Mathematics, 2007, vol. 67, pp.1283-1309. DOI:10.1137/060672522

19. Peng Rui, Liu Shengqiang. Global Stability of the Steady States of an SIS Epidemic Reaction-Diffusion Model. Nonlinear Analysis, 2009, vol. 71, pp. 239-247. DOI:10.1016/j.na.2008.10.043