Volume 17, no. 3Pages 102 - 111 Application of Particle Swarm Optimization for Parameter Estimation of the Logistic Map
A.S. SheludkoThis work considers the parameter estimation from measurements of the logistic map. The problem is solved in the context of optimization approach, which assumes minimization of a cost function that measures the difference between the time series obtained from the model equation and measurements. Complex dynamics of the logistic map leads to the multi-extremal optimization problem. It requires using appropriate computational techniques. This work presents the application of particle swarm optimization in searching for the global minimum of the cost function.
Full text- Keywords
- logistic map; parameter estimation; cost function; particle swarm optimization.
- References
- 1. Devaney R.L. An Introduction to Chaotic Dynamical Systems. New York, Addison-Wesley, 1989.
2. Sprott J.C. Chaos and Time-Series Analysis. Oxford, Oxford University Press, 2003.
3. Anishchenko V.S., Astakhov V., Neiman A., Vadivasova T., Schimansky-Geier L. Nonlinear Dynamics of Chaotic and Stochastic Systems. Springer, 2007. DOI: 10.1007/978-3-540-38168-6
4. Voss H.U., Timmer J., Kurths J. Nonlinear Dynamical System Identification from Uncertain and Indirect Measurements. International Journal of Bifurcation and Chaos, 2004, vol. 14, no. 6, pp. 1905-1933. DOI:10.1142/S0218127404010345
5. Bezruchko B.P., Smirnov D.A., Sysoev I.V. Identification of Chaotic Systems with Hidden Variables (Modified Bock's Algorithm). Chaos, Solitons and Fractals, 2006, vol. 29, no. 1, pp. 82-90. DOI:10.1016/j.chaos.2005.08.204
6. Smirnov D.A., Vlaskin V.S., Ponomarenko V.I. Estimation of Parameters in One-Dimensional Maps from Noisy Chaotic Time Series. Physics Letters A, 2005, vol. 336, no. 6, pp. 448-458. DOI:10.1016/j.physleta.2004.12.092
7. Quaranta G., Lacarbonara W., Masri S.F. A Review on Computational Intelligence for Identification of Nonlinear Dynamical Systems. Nonlinear Dynamics, 2020, vol. 99, pp. 1709-1761. DOI:10.1007/s11071-019-05430-7
8. Li Lixiang, Yang Yixian, Peng Haipeng, Wang Xiangdong. Parameters Identification of Chaotic Systems via Chaotic Ant Swarm. Chaos, Solitons and Fractals, 2006, vol. 28, no. 5, pp. 1204-1211. DOI:10.1016/j.chaos.2005.04.110
9. He Qie, Wang Ling, Liu Bo. Parameter Estimation for Chaotic Systems by Particle Swarm Optimization. Chaos, Solitons and Fractals, 2007, vol. 32, no. 2, pp. 654-661. DOI:10.1016/j.chaos.2006.03.079
10. Chang Jen-Fuh, Yang Yi-Sung, Liao Teh-Lu, Yan Jun-Juh. Parameter Identification of Chaotic Systems Using Evolutionary Programming Approach. Expert Systems with Applications, 2008, vol. 35, no. 4, pp. 2074-2079. DOI:10.1016/j.eswa.2007.09.021
11. Peng Bo, Liu Bo, Zhang Fu-Yi, Wang Ling. Differential Evolution Algorithm-Based Parameter Estimation for Chaotic Systems. Chaos, Solitons and Fractals, 2009, vol. 39, no. 5, pp. 2110-2119. DOI:10.1016/j.chaos.2007.06.084
12. Li Chaoshun, Zhou Jianzhong, Xiao Jian, Xiao Han. Parameters Identification of Chaotic System by Chaotic Gravitational Search Algorithm. Chaos, Solitons and Fractals, 2012, vol. 45, no.4, pp. 539-547. DOI:10.1016/j.chaos.2012.02.005
13. Gu Wenjuan, Yu Yongguang, Hu Wei. Parameter Estimation of Unknown Fractional-Order Memristor-Based Chaotic Systems by a Hybrid Artificial Bee Colony Algorithm Combined with Differential Evolution. Nonlinear Dynamics, 2015, vol. 84, pp. 779-795. DOI:10.1007/s11071-015-2527-x
14. Nakamura T., Hirata Y., Judd K., Kilminster D. Improved Parameter Estimation from Noisy Time Series for Nonlinear Dynamical Systems. International Journal of Bifurcation and Chaos, 2007, vol. 17, no. 5, pp. 1741-1752. DOI:10.1142/S021812740701804X
15. Jafari S., Sprott J.C., Pham V.-T., Golpayegani S.M.R.H., Jafari A.H. A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints. International Journal of Bifurcation and Chaos, 2014, vol. 24, no. 10. DOI: 10.1142/S021812741450134X
16. Kennedy J., Eberhart R.C., Shi Yuhui. Swarm Intelligence. San Francisco, Morgan Kaufmann, 2001.
17. Zhang Yudong, Wang Shuihua, Ji Genlin. A Comprehensive Survey on Particle Swarm Optimization Algorithm and its Applications. Mathematical Problems in Engineering, 2015, article ID 931256. DOI:10.1155/2015/931256
18. Gao Fei, Lee Ju-Jang, Li Zhuoqiu, Tong Hengqing, Lu Xiaohong. Parameter Estimation for Chaotic System with Initial Random Noises by Particle Swarm Optimization. Chaos, Solitons and Fractals, 2009, vol. 42, no. 2, pp. 1262-1291. DOI: 10.1016/j.chaos.2009.03.074
19. Tang Yinggan, Guan Xinping. Parameter Estimation for Time-Delay Chaotic System by Particle Swarm Optimization. Chaos, Solitons and Fractals, 2009, vol. 40, no. 3, pp. 1391-1398. DOI:10.1016/j.chaos.2007.09.055
20. Alatas B., Akin E. Chaotically Encoded Particle Swarm Optimization Algorithm and Its Applications. Chaos, Solitons and Fractals, 2009, vol. 41, no. 2, pp. 939-950. DOI:10.1016/j.chaos.2008.04.024
21. Jiang Yunxiang, Lau Francis C.M., Wang Shiyuan, Tse Chi K. Parameter Identification of Chaotic Systems by a Novel Dual Particle Swarm Optimization. International Journal of Bifurcation and Chaos, 2016, vol. 26, no. 2. DOI:10.1142/S0218127416500243
22. Sun Jun, Zhao Ji, Wu Xiaojun, Fang Wei, Cai Yujie, Xu Wenbo. Parameter Estimation for Chaotic Systems with a Drift Particle Swarm Optimization Method. Physics Letters A, 2010, vol. 374, no. 28, pp. 2816-2822. DOI:10.1016/j.physleta.2010.04.071
23. Wang Ling, Xu Ye, Li Lingpo. Parameter Identification of Chaotic Systems by Hybrid Nelder-Mead Simplex Search and Differential Evolution Algorithm. Expert Systems with Applications, 2011, vol. 38, no. 4, pp. 3238-3245. DOI: 10.1016/j.eswa.2010.08.110
24. Zhang Hongjun, Li Baozhu, Zhang Jun, Qin Yuanhui, Feng Xiaoyi, Liu Bo. Parameter Estimation of Nonlinear Chaotic System by Improved TLBO Strategy. Soft Computing, 2015, vol. 20, pp.4965-4980. DOI: 10.1007/s00500-015-1786-2
25. Modares H., Alfi A., Fateh M.-M. Parameter Identification of Chaotic Dynamic Systems through an Improved Particle Swarm Optimization. Expert Systems with Applications, 2010, vol. 37, no. 5, pp. 3714-3720. DOI: 10.1016/j.eswa.2009.11.054