Volume 18, no. 2Pages 5 - 17

On the Mathematical Model of the Control Problem for a Pseudo-Parabolic Equation with Involution

F.N. Dekhkonov
In this paper, we consider the mathematical model of control problem for a pseudoparabolic equation with involution in a bounded two-dimensional domain. The solution with the control function on the border of the considered domain is given. The constraints on the control are determined to ensure that the average value of the solution within the considered domain attains a given value. The initial-boundary problem is solved by the Fourier method, and the control problem under consideration is analyzed with the Volterra integral equation of the second kind. The existence of admissible control is proved by the Laplace transform method.
Full text
Keywords
pseudo-parabolic equation; mathematical model; boundary problem; Volterra integral equation; admissible control; Laplace transform; involution.
References
1. Coleman B.D., Noll W. An Approximation Theorem for Functionals, with Applications in Continuum Mechanics. Archive for Rational Mechanics and Analysis, 1960, vol. 6,
pp. 355–370. DOI: 10.1007/BF00276168
2. Chen Peter J., Gurtin M. On a Theory of Heat Conduction Involving Two Temperatures. Zeitschrift fur angewandte mathematik und physik, 1968, vol. 19, pp. 614–627.
DOI: 10.1007/BF01594969 (in German)
3. Milne E.A. The Diffusion of Imprisoned Radiation Through a Gas. Journal of the London Mathematical Society, 1926, vol. 1, no. 1, pp. 40–51. DOI: 10.1112/jlms/s1-1.1.40
4. White L.W. Controllability Properties of Pseudo-Parabolic Boundary Control Problems. SIAM Journal on Control and Optimization, 1980, vol. 18, no. 5, pp. 534–539.
DOI: 10.1137/0318039
5. Coleman B.D., Duffin R.J., Mizel V.J. Instability, Uniqueness, and Nonexistence Theorems for the Equation on a Strip. Archive for Rational Mechanics and Analysis, 1965, vol. 19,
pp. 100–116. DOI: 10.1007/BF00282277
6. White L.W. Point Control of Pseudoparabolic Problems. Journal of Differential Equations, 1981, vol. 42, pp. 366–374. DOI: 10.1016/0022-0396(81)90110-8
7. Fattorini H.O. Time-Optimal Control of Solutions of Operational Differential Equation. Journal of the Society for Industrial and Applied Mathematics. Series A Control, 1964, vol. 2,
no. 1, pp. 49–65. DOI: 10.1137/0302005
8. Friedman A. Partial Differential Equations of Parabolic Type. New York, Dover Publications, 1964. DOI: 10.1016/0022-247X(67)90040-6
9. Egorov Yu.V. Optimal Control in Banach Spaces. Doklady Akademii nauk SSSR, 1963, vol. 150, no. 2, pp. 241–244. (in Russian)
10. Albeverio S., Alimov Sh.A. On One Time-Optimal Control Problem Associated with the Heat Exchange Process. Applied Mathematics and Optimization, 2008, vol. 57, no. 1, pp. 58–68. DOI: 10.1007/s00245-007-9008-7
11. Alimov Sh.A., Komilov N.M. Determining the Thermal Mode Setting Parameters Based on Output Data. Partial Differential Equations, 2022, vol. 58, no. 1, pp. 21–35.
12. Dekhkonov F.N. On the Control Problem Associated with the Heating Process. Mathematical Notes of NEFU, 2022, vol. 29, no. 4, pp. 62–71. DOI: 10.25587/SVFU.2023.82.41.005
13. Chen Ning, Wang Yanqing, Yang Dong-Hui. Time-Varying Bang-Bang Property of Time Optimal Controls for Heat Equation and Its Applications. Systems and Control Letters, 2018,
vol. 112, pp. 18–23. DOI: 10.1016/j.sysconle.2017.12.008
14. Fayazova Z.K. Boundary Control of the Heat Transfer Process in the Space. Izvestiya VUZ. Matematika, 2019, vol. 63, pp. 71–79. DOI: 10.3103/S1066369X19120089 (in Russian)
15. Dekhkonov F.N. Boundary Control Problem for the Heat Transfer Equation Associated with Heating Process of a Rod. Bulletin of the Karaganda University. Mathematics Series, 2023, vol. 110, no. 2, pp. 63–71. DOI: 10.31489/2023m2/63-71
16. Dekhkonov F.N. Boundary Control Associated with a Parabolic Equation. Journal of Mathematics and Computer Science, 2024, vol. 33, no. 2, pp. 146–154.
DOI: 10.22436/jmcs.033.02.03
17. Dekhkonov F.N., Kuchkorov E.I. On the Time-Optimal Control Problem Associated with the Heating Process of a Thin Rod. Lobachevskii Journal of Mathematics, 2023, vol. 44, no. 3, pp. 1134–1144. DOI: 10.1134/S1995080223030101
18. Lions J.L. Contr´ole optimal de syst´emes gouvern´es par des ´equations aux d´eriv´ees partielles. Paris, Dunod Gauthier-Villars, 1968. (in French)
19. Fursikov A.V. Optimal Control of Distributed Systems, Theory and Applications. Vol. 187. American Mathematical Society, Providence, 2000.
20. Altm¨uller A., Gr¨une L. Distributed and Boundary Model Predictive Control for the Heat Equation. University of Bayreuth, Department of Mathematics, 2012, vol. 35, no. 2,
pp. 131–145. DOI: 10.1002/gamm.201210010
21. Dubljevic S., Christofides P.D. Predictive Control of Parabolic PDEs with Boundary Control Actuation. Chemical Engineering Science, 2006, vol. 61, no. 18, pp. 6239–6248.
DOI: 10.1016/j.ces.2006.05.041
22. Mussirepova E., Sarsenbi A., Sarsenbi A. The Inverse Problem for the Heat Equation with Reflection of the Argument and with a Complex Coefficient. Bound Value Problems, 2022,
vol. 1, article ID: 99, 13 p. DOI: 10.1186/s13661-022-01675-1
23. Kopzhassarova A., Sarsenbi A. Basis Properties of Eigenfunctions of SecondOrder Differential Operators with Involution. Abstract and Applied Analysis, 2012, article ID: 576843, 6 p. DOI: 10.1155/2012/576843
24. Ahmad B., Alsaedi A., Kirane M., Tapdigoglu R. An Inverse Problem for Space and Time Fractional Evolution Equations with an Involution Perturbation. Quaestiones Mathematicae,
2017, vol. 40, no. 2, pp. 151–160. DOI: 10.2989/16073606.2017.1283370 (in French)
25. Dekhkonov F.N. On the Control Problem Associated with a Pseudo-Parabolic Type Equation in an One-Dimensional Domain. International Journal of Applied Mathematics, 2024, vol. 37, no. 1, pp. 109–118. DOI: 10.12732/ijam.v37i1.9
26. Dekhkonov F.N. On a Boundary Control Problem for a Pseudo-Parabolic Equation. Communications in Analysis and Mechanics, 2023, vol. 15, no. 2, pp. 289–299.
DOI: 10.3934/cam.2023015
27. Cabada A., Tojo F.A.F. General Results for Differential Equations with Involutions. Paris, Atlantis Press, 2015, pp. 17–23. DOI: 10.2991/978-94-6239-121-5-2
28. Carleman T. Sur la theorie des equations integrales et ses applications. Verhandlungen des internationalen mathematiker-kongresses, 1932, pp. 138–151. (in French)
29. Wiener J. Generalized Solutions of Functional-Differential Equations. Singapore, World Scientic Publishing, 1999.