Volume 18, no. 4Pages 32 - 44 Inverse Problem of Recovering Fluxes from Integral Data
S.G. Pyatkov, E.I. Safonov, A.A. PetrovIn the article we consider a second order parabolic equation and well-posedness questions in Sobolev spaces of inverse problems of recovering the heat flux on the boundary with the use of a collection of integrals of a solution with weights over the domain. The flux is representable in the form of a finite segments of the series with unknown coefficients depending on time. Under certain conditions on the data, it is demonstrated that there exists a unique solution to the problem which depends on the data continuously. A solution has all generalized derivatives occurring into the equation summable to some power. The proof relies on a priori estimates and the contraction mapping principle. The method is constructive and allows to provide numerical methods of solving the problem. The numerical algorithm is based on the finite element methods and the method of finite differences. The results of numerical experiments are quite satisfactory and the procedure of constructing a solution is stable under small perturbations.
Full text- Keywords
- inverse problem; boundary regime; parabolic equation; heat and mass transfer.
- References
- 1. Alifanov O.M., Artyukhin E.A., Nenarokomov A.V. Inverse Problems in the Study of Complex Heat Transfer. Moscow, Janus-K, 2009.
2. Permyakov P.P., Afanasyeva T.A., Varlamov S.P., Skryabin P.N. Recovering of Boundary Conditions for Heat Exchange Modeling on the Ground Surface. Arctic XXI Century. Humanitarian Sciences, 2019, vol. 17, no. 1, pp. 27-35. DOI: 10.25587/2309-4412-2019-1-27-35
3. Permjakov P.P. Identifikation of Parameters of a Heat and Moisture Transfer Model in Frozen Soils. Novosibirsk, Nauka, 1989.
4. Sabrekov A.F., Glagolev M.V., Terentyeva I.E. Determination of the Specific Flux of Methane from Oil Using Inverse Modeling Based on Conjugate Equations. Reports of the International Conference Mathematical Biology and Bioinformatics, 2018, vol. 7, no. e94. DOI: 10.17537/icmbb18.85
5. Belolipeckij V.M., Belolipeckij P.V. Estimate of the Carbon Dioxide Flux between the Atmosphere and the Terrestrial Ecosystem with Tower Measurements of Vertical Concentration Distribution of $CO_2$. Bulletin of the Novosibirsk State University. Series Information Technologies, 2011, vol. 9, no. 1, pp. 75-81.
6. Pyatkov S.G., Baranchuk V.A. Determination of the Heat Transfer Coefficient in Mathematical Models of Heat and Mass Transfer. Mathematical Notes, 2023, vol. 113, no. 1, pp. 93-108. DOI: 10.4213/mzm13573
7. Pyatkov S.G., Baranchuk V.A. Identification of a Boundary Condition in Heat and Mass Transfer Problems. Chelyabinsk Physical and Mathematical Journal, 2022, vol. 7, no. 2, pp. 234-253. DOI: 10.47475/2500-0101-2022-17206
8. Pjatkov S.G., Potapkov A.A. The Well-Posed Identification of the Interface Heat Transfer Coefficient Using an Inverse Heat Conduction Model. Mathematics, 2023, vol. 11, no. 23, pp. 1-14. DOI: 10.3390/math11234739
9. Kostin A.B., Prilepko A.I. On Some Problems of the Reconstruction of a Boundary Condition for a Parabolic Equation. II. Differential Equations, 1996, vol. 32, no. 11, pp. 1515-1525.
10. Kostin A.B., Prilepko A.I. On some Problem of the Reconstruction of a Boundary Condition for a Parabolic Equation. I. Differential Equations, 1996, vol. 32, no. 1, pp. 113-122.
11. Pilant M., Rundell W. An Iteration Method for the Determination of an Unknown Boundary Condition in a Parabolic Initial-Boundary Value Problem. Proceedings of the Edinburgh Mathematical Society, 1989, vol. 32, issue 1, pp. 59-71. DOI: 10.33048/smzh.2024.65.410
12. Hao Dinh Nho, Thanh Phan Xuan, Lesnik D. Determination of the Heat Transfer Coefficients in Transient Heat Conduction. Inverse Problems, 2013, vol, 29, no. 9, P. 095020. DOI: 10.1088/0266-5611/29/9/095020
13. Hao Dinh Nho, Huong Bui Viet, Thanh Phan Xuan, Lesnik D. Identification of Nonlinear Heat Transfer Laws from Boundary Observations. Applicable Analysis, 2014, vol. 94, no. 9, pp. 1784-1799. DOI: 10.1080/00036811.2014.948425
14. Kozhanov A.I. Linear Inverse Problems for Some Classes of Nonlinear Nonstationary Equations. Siberian Electronic Reports, 2015, vol. 12, pp. 264-275.
15. Verzhbitskii M.A., Pyatkov S.G. On some Inverse Problems of Recovering the Bounary Regimes. Mathematical notes of NEFU, 2016, vol. 23, no. 2, pp. 3-18.
16. Triebel H. Interpolation Theory. Function Spaces. Differential Operators. Veb Deutscher Verlag des Wissenschaften, Berlin, 1978.
17. Denk R., Hieber M., Pruess J. Optimal L_p-L_q-Estimates for Parabolic Boundary Value Problems with Inhomogeneous Data. Mathematische zeitschrift, 2007, vol. 257, no. 1, pp. 193-224. DOI: 10.1007/s00209-007-0120-9
18. Amann H. Compact Embeddings of Vector-Valued Sobolev and Besov Spaces. Glasnik matematicki, 2000, vol. 35, no. 1, pp. 161-177.
19. Ladyzhenskaya O.A., Solonnikov V.A., Ural'tseva N.N. Linear and Quasi-Linear Equations of Parabolic Type. Translations of Mathematical Monographs, 1968, vol. 23. DOI: 10.1090/mmono/023
20. Behzadan A. Multiplication in Sobolev Spaces, Revisited. Arkiv for Matematik, 2021, vol. 59, pp. 275-306. DOI: 10.4310/ARKIV.2021.v59.n2.a2
21. Meyries M., Schnaubert R. Maximal Regularity with Temporal Weights for Parabolic Problems with Inhomogeneous Boundary Conditions. Mathematische Nachrichten, 2012, vol. 285, no. 8-9, pp. 1032-1051. DOI: 10.1002/mana.201100057
22. Hummel F., Lindemulder N. Elliptic and Parabolic Boundary Value Problems in Weighted Function Spaces. Potential Analysis, 2022, vol. 57, pp. 601-669. DOI: 10.1007/s11118-021-09929-w
23. Grisvard P. Equations Differentielles Abstraites, Annales scientifiques de l'Ecole normale supacuterieure, 4^e series, 1969, vol. 2, pp. 311-395. DOI: 10.24033/asens.1178
24. Besov O.V., Il'in V.P., Nikol'skii S.M. Integral Representations of Functions and Imbedding Theorems, V.H. Winston, 1978.