Том 8, № 4Страницы 5 - 13

An Integral Method for the Numerical Solution of Nonlinear Singular Boundary Value Problems

M.V. Bulatov, P.M. Lima, Thanh Do Tien
В статье предложены численные методы решения нелинейной краевой задачи для обыкновенного дифференциального уравнения второго порядка, заданного на полуоси и неразрешенного относительно главной части. Такие задачи описывают плотность микроскопических пузырьков в неоднородной жидкости. В связи с тем, что исходное нелинейное дифференциальное уравнение неразрешено относительно главной части, и
краевая задача рассматривается на полуоси, то ранее разработанные подходы являются сложными и требуют значительных вычислительных затрат. Именно этот факт послужил мотивацией для данной статьи, где мы описываем альтернативный подход, в котором предложено записать исходную задачу в виде интегро-дифференциального уравнения типа Вольтерра с особенностью в ядре. Итак, исходную задачу мы записали в виде интегро-дифференциального уравнения типа Вольтерра с сингулярным ядром и, в виду специфики исходной задачи, условием на правом конце. Численное интегрирование таких уравнений также достаточно сложная задача. В данной работе мы предлагаем специальные методы решения таких уравнений первого и второго порядков. Приведены численные расчеты модельных примеров по предлагаемым алгоритмам. Данные расчеты показали перспективность дальнейшего развития такого подхода.
Полный текст
Ключевые слова
уравнение плотности; сингулярная краевая задача; интегро-дифференциальное уравнение; неявный метод Эйлера.
Литература
1. Gurtin M.E., Polignone D., Vinals J. Two-Phase Binary Fluids and Immiscible Fluids Described by an Order Parameter. Mathematical Models and Methods in Applied Sciences, 1996, vol. 6, pp. 815-831. DOI: 10.1142/S0218202596000341
2. Dell'Isola F., Gouin H., Rotoli G. Nucleation of Spherical Shell-Like Interfaces by Second Gradient Theory: Numerical Simulations. European Journal of Mechanics - B/Fluids, 1996, vol. 15, pp. 545-568.
3. Gavrilyuk S.L., Shugrin S.M. Media with Equations of State that Depend on Derivatives. Journal of Applied Mechanics and Technical Physics, 1996, vol. 37, pp. 177-189. DOI: 10.1007/BF02382423
4. Lima P.M., Chemetov N.V., Konyukhova N.B., Sukov A.I. Analytical-Numerical Investigation of Bubble-Type Solutions of Nonlinear Singular Problems. Journal of Computational and Applied Mathematics, 2006, vol. 189, pp. 260-273. DOI: 10.1016/j.cam.2005.05.004
5. Kitzhofer G., Koch O., Lima P.M., Weinmuller E. Efficient Numerical Solution of the Density Profile Equation in Hydrodynamics. Journal of Scientific Computing, 2007, vol. 32, pp. 411-424. DOI: 10.1007/s10915-007-9141-0
6. Пузырьки и капельки в моделях нелинейной физики: анализ и численное решение сингулярной нелинейной краевой задачи / Н.Б. Конюхова, П.М. Лима, М.Л. Моргадо, М.Б. Соловьев // Журнал вычислительной математики и математической физики. - 2008. - Т. 48. - № 11. - C. 2019-2023.
7. Derrick G. Comments on Nonlinear Wave Equations as Models for Elementary Particles. Journal of Mathematical Physics, 1965, vol. 5, pp. 1252-1254. DOI: 10.1063/1.1704233
8. Gazzola F., Serrin J., Tang M. Existence of Ground States and Free Boundary Problems for Quasilinear Elliptic Operators. Advances in Differential Equations, 2000, vol. 5, pp. 1-30.
9. Hastermann G., Lima P.M., Morgado M.L., Weinmuller E.B. Density Profile Equation with p-Laplacian: Analysis and Numerical Simulation. Applied Mathematics and Computation, 2013, vol. 225, pp. 550-561. DOI: 10.1016/j.amc.2013.09.066
10. Kulikov G.Yu., Lima P.M., Morgado M.L. Analysis and Numerical Approximation of Singular Boundary Value Problems with the p-Laplacian in Fluid Mechanis. Journal of Computational and Applied Mathematics, 2014, vol. 262, pp. 87-104. DOI: 10.1016/j.cam.2013.09.071
11. Weiss R., Anderssen R.S. A Product Integration Method for a Class of Singular First Kind Volterra Equations. Numerische Mathematik, 1972, vol. 18, pp. 442-456. DOI: 10.1007/BF01406681
12. Weiss R. Product Integration for the Generalized Abel Equations. Mathematics of Computation, 1972, vol. 26, pp. 177-186. DOI: 10.1090/S0025-5718-1972-0299001-7
13. Brunner H. Collocation Methods for Volterra Integral and Related Functional Equations. Cambridge, University Press, 2004. DOI: 10.1017/CBO9780511543234
14. Brunner H., Van Der Houven P.J. The Numerical Solution of Volterra Equations. Amsterdam, North-Holland, CWI Monographs 3, 1986.
15. Linz P. Analytical and Numerical Methods for Volterra Equations. SIAM, Philadelphia, 1985. DOI: 10.1137/1.9781611970852
16. Brunner H. 1896-1996: One Hundred Years of Volterra Integral Equations of the First Kind. Applied Numerical Mathematics, 1997, vol. 24, pp. 83-93. DOI: 10.1016/S0168-9274(97)00013-5